
Mobile Phone Forensics: Analysis of the
Android Filesystem (YAFFS2)

Diploma Thesis by Christian Zimmermann

April 30, 2011

First Examiner: Prof. Dr. Ing. Felix C. Freiling
Second Examiner: Prof. Dr. Ing. Wolfgang Effelsberg
Advisors: Michael Spreitzenbarth

Sven Schmitt

MOBILE PHONE FORENSICS

Diploma Thesis

submitted in: October 2009

by: Michael Spreitzenbarth

First Examiner: Prof. Dr. Ing. Felix C. Freiling
Second Examiner: Prof. Dr. Ing. Wolfgang Effelsberg

Advisor: Dr. Thorsten Holz

University of Mannheim
Laboratory of Dependable Distributed Systems

D – 68131 Mannheim
http://pi1.informatik.uni-mannheim.de/

University of Mannheim
Laboratory of Dependable Distributed Systems

D - 68131 Mannheim
http://pi1.informatik.uni-mannheim.de/

http://pi1.informatik.uni-mannheim.de/

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Mannheim, den 30. April 2011 Christian Zimmermann

Abstract

Modern smartphones are not only used for communication via phone calls but also for
a variety of other purposes such as emailing or storing personal data. To enable these
services, most smartphones possess a large memory capacity to save files and application
data. As smartphones are not only used for legal purposes but also for criminal actions,
this data can contain valuable evidence for forensic investigators. In order to be able
to analyze this data, it is very important to understand the way smartphones store and
delete data. Therefore, it is necessary to understand the file system that is used to
handle the smartphone’s internal flash memory.

The major focus within this diploma thesis is the analysis of the flash file system
YAFFS2 which is used by the popular Android smartphones. To that purpose, YAFFS2
is theoretically and practically analyzed in a forensic perspective in order to determine
possibilities to recover modified or deleted files from a smartphone’s flash memory. Ad-
ditionally, YAFFS2 is compared to the common file system NTFS within this diploma
thesis.

This diploma thesis also includes a chapter discussing ways to safely delete files from
a YAFFS2 flash memory.

Zusammenfassung

Moderene Smartphones werden nicht nur zum Kommunizieren mittels Telefonaten
genutzt, sondern auch für eine Vielzahl anderer Zwecke, wie beispielsweise zum E-Mai-
Versand oder zum Speichern persönlicher Daten. Um diese Dienste zu ermöglichen,
verfügen die meisten Smartphones über große Speicherkapazitäten, um Dateien und
Anwendungsdaten zu speichern. Da Smartphones nicht nur zu legalen Zwecken, sondern
auch für kriminelle Handlungen verwendet werden, können die auf ihnen gespeicherten
Daten wertvolle Beweise für Computerforensiker darstellen. Um diese Daten analysieren
zu können, ist es wichtig, zu verstehen, wie Smartphones Daten speichern und löschen.
Dazu ist ist es notwendig, das Dateisystem zu verstehen, das von einem Smartphone
verwendet wird, um seinen internen Flash-Speicher zu verwalten.

Das Hauptaugenmerk dieser Diplomarbeit liegt auf der Untersuchung des Dateisys-
tems YAFFS2, das in den weit verbreiteten Android Smartphones Verwendung findet.
Zu diesem Zweck wird YAFFS2 sowohl theoretisch wie auch praktisch unter forensis-
chen Gesichtspunkten analysiert, um Möglichkeiten zur Wiederherstellung gelöschter
oder veränderter Dateien zu bestimmen. Zusätzlich wird YAFFS2 im Rahmen dieser
Diplomarbeit mit dem weit verbreiteten Dateisystem NTFS verglichen.

Des Weiteren wird in dieser Diplomarbeit das sichere Löschen von Dateien von YAFFS2
Flash-Speichern diskutiert.

Contents

List of Figures xi

List of Tables xiii

Listings xv

1. Introduction 1
1.1. Motivation . 1
1.2. Task . 2
1.3. Outline . 3
1.4. Acknowledgements . 3

2. Prerequisites 5
2.1. Flash memory . 5
2.2. YAFFS2 in a Linux environment . 7
2.3. Summary . 9

3. Analysis of YAFFS2 11
3.1. YAFFS2 basics . 11
3.2. Data organization and OOB area tags 15

3.2.1. OOB area tags . 15
3.2.2. Meta data . 26
3.2.3. Object modifications and deletions 27

3.3. Garbage collection . 34
3.4. Wear leveling . 43
3.5. Summary . 45

4. YAFFS2 in a forensic view 47
4.1. Wear leveling . 47
4.2. Shrink header markers . 47
4.3. Garbage Collection . 48

4.3.1. Best and worst case scenarios . 48
4.3.2. Evaluation of best and worst case scenarios 54

4.4. Summary . 57

5. Recovery of files 59
5.1. Used tools and side effects . 59
5.2. Recovery of a modified file . 62

5.2.1. Worst case . 63

vii

5.2.2. Best case . 68
5.3. Recovery of a deleted file . 74

5.3.1. Worst case . 74
5.3.2. Best case . 75

5.4. YAFFS2 in comparison to NTFS . 78
5.4.1. Introduction to NTFS . 78
5.4.2. Recovery of a modified file . 79
5.4.3. Recovery of a deleted file . 89

5.5. Summary . 92

6. Safe deletion on YAFFS2 devices 93
6.1. Safe deletion of files . 93

6.1.1. Safe deletion of files using YAFFS2 93
6.1.2. Safe deletion of files directly on NAND flash memory 95

6.2. Safe deletion of devices . 95
6.3. Summary . 95

7. Conclusion and Future Work 97
7.1. Summary . 97
7.2. Future Work . 97
7.3. Conclusion . 98

A. Appendix 99
A.1. Used tools . 99

A.1.1. File creation . 99
A.1.2. File modification . 100
A.1.3. File truncation . 100

A.2. Nandsim parameters . 101

Literature 102

List of Figures

1.1. Mobile malware growth in recent years [1] 1

3.1. YAFFS2’s block states [2] . 13
3.2. OOB area of a data chunk . 21
3.3. OOB area of a file header chunk . 22
3.4. Data area and OOB area of a soft link header chunk 23
3.5. Modification at the end of a file that decreases the file size to a multiple

of a chunk’s size . 29

5.1. Initial location of “fileA” on the NTFS partition 81
5.2. Content of cluster 16 151 after first modification of “fileA” 82
5.3. Initial location of “fileB” on the NTFS partition 83
5.4. Location of “fileB” after modification . 84
5.5. Initial location of “fileC” on the NTFS partition 86
5.6. Location of “fileC” on the NTFS partition after one modification 87
5.7. Location of “fileC” on the NTFS partition after two modifications 88
5.8. Location of “fileC” on the NTFS partition after three modifications . . . 89
5.9. MFT record of “fileD” before the file’s deletion 90
5.10. MFT record of “fileD” after the file’s deletion 91

xi

List of Tables

1.1. Worldwide smartphone sales to end users by operating system in 2010
(Thousands of units) [3] . 2

2.1. Comparison of a Micron MT29F2G08A NAND flash memory and a Mi-
cron TE28F128J3 NOR flash memory [4] 6

3.1. YAFFS2 OOB area tags according to YAFFS2’s official specification [5] . 16
3.2. Possible values of the objectID tag in header chunks for different object

types . 19
3.3. Representation of a file with a hole smaller than four chunks on a NAND 25
3.4. Representation of a file with a hole of four chunks on a NAND 26
3.5. Usage of OOB area tags in deleted header chunks 32
3.6. Usage of OOB area tags in unlinked header chunks 32
3.7. Deletion of a file with hard links on a YAFFS2 NAND 33

5.1. Result of a file modification using nano 60
5.2. Result of a file modification using vim . 61
5.3. Result of a file modification using replacer 62
5.4. Initial state before modification of “fileA” 65
5.5. State directly after overwriting the last 30 chunks of “fileA” and unmount-

ing the NAND in an overall best case scenario 65
5.6. Initial content of Block 512 before modification of “fileB” 67
5.7. Initial state before creation of “fileC” . 70
5.8. Block 31 after modification of all files on the device 71
5.9. Block 30 after modification of all files on the device 72
5.10. Block 30 after deletion of “fileD” . 76
5.11. Default MFT Record attributes . 79

xiii

Listings

3.1. Function yaffs AllocateChunk (Excerpt from yaffs guts.c) 14
3.2. Function yaffs FindBlockForAllocation (Excerpt from yaffs guts.c) . . 15
3.3. Possible values for the objectID tag (Excerpt from yaffs guts.h) 17
3.4. Assignment of object numbers (Excerpt from yaffs guts.c) 17
3.5. Extension of header chunks’ tags (Excerpt from yaffs packedtags2.c) . . . 19
3.6. Extended tags structure (Excerpt from yaffs guts.h) 20
3.7. Possible values for the blockSequence tag (Excerpt from yaffs guts.h) . . 21
3.8. Function yaffs CheckGarbageCollection (Excerpt from yaffs guts.c) . . 36
3.9. Function yaffs FindBlockForGarbageCollection (Excerpt from

yaffs guts.c) . 41
3.10. Function yaffs FindRefreshBlock (Excerpt from yaffs yaffs2.c) 44

4.1. Function yaffs CalcCheckpointBlocksRequired (Excerpt from
yaffs yaffs2.c) . 49

4.2. Structs used to calculate the number of blocks needed to store checkpoint
data (Excerpt from yaffs guts.h) . 51

4.3. Calculation of garbage collection threshold (Excerpt from yaffs guts.c) . . 53
4.4. Excerpt from kern.log showing garbage collection of a block with one

obsolete chunk . 55
4.5. Excerpt from YAFFS2’s statistics showing garbage collection of a block

with one obsolete chunk . 56

5.1. Deletion of the device’s second block 18 seconds after modification of
”fileA” in an overall best case scenario 66

5.2. Deletion of Block 512 two seconds after modification of ”fileB” 68
5.3. Oldest dirty garbage collection of blocks 30 and 31 73
5.4. Oldest dirty garbage collection of block 30 77

A.1. Source code of fileWriter . 99
A.2. Source code of replacer . 100
A.3. Source code of truncater . 100

xv

1. Introduction

1.1. Motivation

Nowadays, mobile phones have become one of the most important communication de-
vices. Beside traditional mobile phones, especially smartphones are gaining more im-
portance in business as well as in many people’s everyday life, due to their tremendous
range of functions. This reflects in rising smartphone sales, which have increased to 19
percent of total mobile communication device sales in 2010 [3]. As a consequence of
the increasing popularity of smartphones, a rapid growth of malware designed to attack
smartphones can be observed. As depicted in Figure 1.1, according to McAfee Labs
[1], the number of new mobile malware in 2010 increased by 46% compared with 2009.
Additionally to malware cases, there is also a large number of other criminal acts whose
solution depends on forensic analyses of a smartphone’s contents.

Figure 1.1.: Mobile malware growth in recent years [1]

In contrast to traditional mobile phones, smartphones can not only be used to com-
municate via phone calls or text messages but also for a variety of other purposes such as
browsing the internet, listening to music or chatting. To enable these services, modern
smartphones possess a large memory capacity to store files and application data like
mp3 files, stored passwords, SMS messages, call logs or pictures. In order to be able to
analyze these contents, it is very important to understand the way modern smartphones
store and delete those data. Therefore, it is important to understand the file system
that is used to handle the smartphone’s internal storage device.

Due to its low power consumption, small size and shock resistance, many smartphones
use NAND flash memory as mass storage device. However, the physical structure of

1

1. Introduction

NAND flash memory necessitates use of special file systems in order to ensure the flash
memory’s durability. Although several file systems suitable for NAND flash memory ex-
ist, a significant amount of smartphones are using the file system YAFFS2 (Yet Another
Flash File System 2) [6]. That is because, up to now, YAFFS2 is the default file system
for Google’s mobile operating system Android OS [7], which is one of the most popular
mobile operating systems on the market [3]. As can be seen in Table 1.1, 67,224,500
smartphones running Android OS were sold in 2010, accounting for 22.7 percent of all
smartphones sold in 2010 and making Android OS the second most sold smartphone
operating system in 2010.

Company Units in 2010 2010 market share (%)

Symbian 111,576.7 37.6
Android 67,224.5 22.7

Research in Motion 47,451.6 16.0
iOS 46,598.3 15.7

Microsoft 12,378.2 4.2
Other OSs 11417.4 3.8

Total 296,646.6 100.0

Table 1.1.: Worldwide smartphone sales to end users by operating system in 2010
(Thousands of units) [3]

Considering this large number and still growing popularity of smartphones using the
Android operating system, there is a clear need for a detailed forensic understanding of
the file system YAFFS2 in order to perform forensic analyses of Android OS smartphones.

1.2. Task

Both YAFFS2 and the Android operating system are completely open source software
and well documented. However, from a forensic point of view, especially YAFFS2 is still
insufficiently studied. The task of this diploma thesis is an examination of the file system
YAFFS2’s behavior in a forensic perspective. This includes a comparison of YAFFS2’s
specification and its actual behavior.

As YAFFS2 is explicitly designed to be used on NAND flash memory, it makes use of
wear leveling techniques in order to prevent reduction of flash memory chips’ lifespan.
These wear leveling techniques as well as YAFFS2’s techniques regarding garbage col-
lection are suspected to have a significant influence on the amount of evidence forensic
investigators are able to recover from a Android smartphone. Therefore, the analysis of
YAFFS2’s wear leveling and garbage collection mechanisms is a major focus within this
diploma thesis.

Apart from a theoretical analysis of the YAFFS2 source code, this diploma thesis
includes a practical evaluation of YAFFS2’s behavior when performing commonly oc-
curring file system operations such as file modifications or deletions in different scenarios.

2

1.3. Outline

Based on this evaluation as well as on the theoretical analysis of the YAFFS2 source
code, ways to recover deleted files and previous versions of modified files from a YAFFS2
NAND flash memory device are analyzed within this diploma thesis. Additionally, the
results of these recovery attempts are compared with the results of similar analyses of a
NTFS device.

Finally, ways to securely delete data from a YAFFS2 storage device are discussed in
the last part of this diploma thesis.

1.3. Outline

This diploma thesis is outlined as follows: In Chapter 2, we provide background in-
formation on flash memory and an introduction on how to use YAFFS2 in a Linux
environment. Chapter 3 provides a theoretical analysis of YAFFS2’s source code and an
introduction to YAFFS2’s general functionality. This includes a comparison of YAFFS2’s
specification and its actual behavior as well as an in-depth analysis of YAFFS2’s garbage
collection techniques. Based on the results of the analyses conducted in Chapter 3, we
analyze YAFFS2 in a forensic perspective in Chapter 4. In Chapter 5, we provide a
practical analysis of YAFFS2 and discuss ways to recover modified or deleted files from
a YAFFS2 NAND flash memory device. We also discuss ways to safely delete files from
a YAFFS2 device in Chapter 6. Finally, in Chapter 7 we conclude this thesis with a
short summary and propose opportunities for future research.

1.4. Acknowledgements

First of all, I want to express my deepest gratitude to Prof. Dr. Felix C. Freiling
for giving me the opportunity to work on such an interesting topic for my diploma
thesis. It was especially very exciting to work on the cutting edge of mobile phone
forensics. Furthermore, I wish to thank Prof. Dr. Wolfgang Effelsberg for being my
second examiner. I also want to thank my advisors Michael Spreitzenbarth and Sven
Schmitt for their incessant support and very valuable feedback. Another important
concern to me is to thank Michael Spreitzenbarth for supplying me with a mobile phone
that helped a lot to deepen my knowledge of YAFFS2. Many thanks go to my friends
and especially my cohabitants for their support, the interesting discussions and great
time we had. Last but not least, I want to thank my family for giving me constant
backup and support throughout my thesis and studies.

3

1. Introduction

4

2. Prerequisites

In order to understand the basic design principles of flash memory file systems like
YAFFS2 and the issues they have to address, it is important to understand the underly-
ing technical characteristics of flash memory chips. Therefore, we provide an introduction
to flash memory in Section 2.1 of this chapter. As most analyses of YAFFS2 within this
diploma thesis were performed on a simulated NAND flash memory device in a Linux
environment, we provide an introduction on how to integrate YAFFS2 into a Linux en-
vironment in Section 2.2 of this chapter. Additionally, we describe how to simulate a
NAND flash memory device in a Linux environment using RAM in the last part of this
chapter.

2.1. Flash memory

Flash memory is a type of EEPROM (Electrically Erasable Read Only Memory) consist-
ing of memory cells made from floating-gate transistors [8] and is often used as storage
medium in mobile devices. This is mostly because flash memory provides shock resis-
tance due to being a solid state storage, making it much better suited for mobile devices
than magnetic disks or other storage devices featuring moving parts. Additionally, flash
memory provides high density at low production costs [9].

Flash memory is organized in blocks [10] of a device-dependent fixed size. On an
empty flash memory, typically all bits are set to a logical one and can be changed to a
logical zero by a write operation [8, 10]. However, changing a bit’s value from a logical
zero to a logical one can only be achieved by erasing the whole block containing this
bit, that is, by setting all bits of the block to a logical one [10, 11]. Thus, except from
rewrite operations that include only the writing of logical zeros, all rewrite operations
require the erasure of the block the bits to be rewritten are located in. As each block
can only withstand a limited number of erase and rewrite operations [8], techniques to
evenly distribute erasures among all blocks have to be provided by a flash memory file
system. These techniques are referred to as wear leveling. Effects of wear leveling on
forensic analyses of flash memory are discussed in Chapter 4.

Flash memory is available in two major types, NOR and NAND flash memory. Al-
though sharing the aforementioned limitations, NOR and NAND flash memory have
completely different characteristics and differ greatly in their suitability regarding their
use as non-volatile data storage in mobile devices. The reason for that are architectural
differences between NOR and NAND flash memory. While NOR flash memory features
parallel connection of memory cells, thus acting like a NOR gate, NAND flash memory

5

2. Prerequisites

consists of serially connected memory cells, hence acting like a NAND gate [10].

Another major difference between NOR and NAND flash memory concerns their phys-
ical interfaces. Featuring enough address pins to map its entire media, NOR flash mem-
ory offers direct access to every single one of its bytes to a processor. Thus, NOR flash
memory is accessible like other random access memory devices and can be used for code
execution [9].

In contrast to NOR flash memory, NAND flash memory does not offer direct accessi-
bility and can only be accessed sequentially through an I/O interface with typically 8 or
16 pins [12]. Therefore, code can not be executed directly on the NAND flash memory
but has to be loaded into RAM to be executed from there. Additionally, memory cells of
NAND flash memory are not written or read individually like NOR flash memory cells,
but in pages. These pages are a further subunit of the NAND flash memory’s blocks and
constitute the unit of read and write operations of a NAND flash memory [12]. That
means, that once a page has been written, its bytes can only be rewritten after the block
containing the page has been erased. Every page features an OOB area (Out-Of-Band
area) to store additional data for error correction code, bad block information or other
data associated with the page’s content [12]. Bad block handling is necessary, as almost
every NAND flash memory device has some bad blocks, i.e. unusable blocks, due to
manufacturing errors and wear marks.

Characteristic NAND (2048 bytes/page, 64 bytes OOB) NOR

Random access read
25µs (first byte) 0.075µs

0.025µs each for remaining 2111 bytes
Sustained read speed 26 MB/s (x8) 31 MB/s (x8)

(sector basis) 41 MB/s (x16) 62 MB/s (x16)
Random write speed ∼ 220µs/2112 bytes 128µs/32 bytes
Sustained write speed 7.5 MB/s 0.250 MB/s

(sector basis)
Erase block size 128 KB 128 KB

Erase time per block 500µs 1 sec

Table 2.1.: Comparison of a Micron MT29F2G08A NAND flash memory and a Micron
TE28F128J3 NOR flash memory [4]

As depicted in Table 2.1, the aforementioned architectural differences between NOR
and NAND flash memory result in different read and write performances. In application
scenarios where fast read operations of small amounts of data or code execution on the
flash memory are essential and write and erase operations do not occur very often, NOR
flash memory is clearly superior to NAND flash memory. Because of that, NOR flash
memory is well suited for use as code storage as, for instance, in BIOS chips. NOR flash
memory can also be used as mass storage but, due to its parallel architecture, needs
large physical dimensions to realize storage capacities sufficient for modern requirements
[9]. NAND flash memory, on the other hand, is not capable of code execution but offers
significantly higher write and erase performance than NOR flash memory and features
a considerably higher memory density. Thus, NAND flash memory is far better suited

6

2.2. YAFFS2 in a Linux environment

for use as mass storage than NOR flash memory and is used in almost all modern pen
drives, MP3 players and memory cards. NAND flash memory is also widely used as mass
storage for smartphones, where it is sometimes accompanied by a NOR flash memory
that is used for code execution such as booting the operating system.

Because of the aforementioned characteristics and limitations of flash memory, file
systems originally designed for hard disk drives are not very well suited for use on
flash memory, as these file systems are not designed to deal with wear leveling and the
special ways, data has to be rewritten on flash memory. Because of that, several file
systems specially designed for flash memory exist, one of them being YAFFS2. In the
following section, we describe the technical setup for the analyses of YAFFS2 as used in
the following chapters and provide an introduction on how to use YAFFS2 in a Linux
environment.

2.2. YAFFS2 in a Linux environment

As YAFFS2 is an active open source project, its source code is subject to constant devel-
opment. Within this diploma thesis, we analyzed version 0bc94484426d0aa0db445360d6e
5845696936229 [13] of the YAFFS2 source code.1 A Debian Linux workstation running
kernel version 2.6.36 was used to perform all practical analyses.

In order to use YAFFS2 on a Linux workstation, two problems have to be solved
first. Firstly, YAFFS2 is not integrated into the Linux kernel by default. Secondly, as
a flash memory device is not a block device, Linux is not able to access flash memory
by default. Therefore, a custom kernel has to be built to analyze YAFFS2 in a Linux
environment. This requires patching the YAFFS2 source code into the kernel source
tree and compiling the kernel with a configuration that supports NAND flash memory.
To patch the YAFFS2 source code into the kernel tree, the following steps have to be
executed:

1. All of YAFFS2’s source code and header files have to be copied to subdirectory
/fs/yaffs2 of the kernel source tree.

2. The files Kconfig and Makefile.kernel from the YAFFS2 source code package
have to be copied to the subdirectory /fs/yaffs2 of the kernel source tree. The
file Makefile.kernel then has to be renamed to Makefile.

3. The file Kconfig in subdirectory fs of the kernel source tree has to be modified
to include the following line within the file’s MISC FILESYSTEMS section:

source "fs/yaffs2/Kconfig"

4. Finally, the file Makefile in subdirectory fs of the kernel source tree has to be
modified to include the following line:

obj-$(CONFIG YAFFS FS) += yaffs2/

As a next step, the kernel has to be configured to support YAFFS2 and NAND flash

1On the attached DVD, see also: /Source code/yaffs2/

7

2. Prerequisites

memory. Most of our analyses were not performed on an actual NAND flash memory
device but on a software simulation of a NAND flash memory device. To simulate
a NAND flash memory device, we used the nandsim module of the linux kernel. To
compile a kernel supporting YAFFS2 and NAND flash memory devices as well as the
NAND flash memory simulator, the following kernel configuration options have to be
enabled:

• CONFIG YAFFS FS

• CONFIG YAFFS YAFFS2

• CONFIG BLK DEV LOOP

• CONFIG MTD CFI

• CONFIG MTD

• CONFIG MTD CHAR

• CONFIG MTD BLOCK

• CONFIG MTD NAND

• CONFIG MTD NAND NANDSIM

• CONFIG MTD NAND ECC

On a Linux workstation running a kernel compiled with the aforementioned configu-
ration, a NAND flash memory with a size of 64 MiB and a page size of 2048 bytes can be
simulated by using the following command: ’modprobe nandsim first id byte=0x20

second id byte=0xa2 third id byte=0x00 fourth id byte=0x15’. Information on
how to simulate a NAND flash memory device with a different size can be found in
Appendix A.2.

To be able to access the simulated NAND flash memory device, a device file has to
be created. This can be achieved by using the command ’mknod /dev/mtd0 c 90 0’.
The so created device can be used to write an image to the simulated NAND flash
memory device or dump its contents using the nandwrite and nanddump utilities from
the mtd-utils [14] Debian package. However, to be able to mount the simulated NAND
flash memory device and use common Linux commands like ls or nano, it is necessary
to link a block device to the NAND flash memory device, which can be done by using
the command ’mknod /dev/mtdblock0 b 31 0’. The mtdblock driver does not support
wear leveling and bad block management but as YAFFS2 is designed to take care of these
tasks itself, the mtdblock driver is an appropriate tool to access the simulated NAND
flash memory in order to modify or delete files on the simulated NAND flash memory
device. The mtdblock driver is also used by Android OS to access a smartphone’s NAND
flash memory device.

8

2.3. Summary

2.3. Summary

As depicted at the beginning of this chapter, NAND flash memory’s restrictions and
characteristics make conventional file systems unsuitable for NAND flash memory de-
vices. Instead, specially designed flash file systems like YAFFS2 have to be used in order
to ensure a NAND flash memory’s durability and to make use of the advantages NAND
flash memory offers. The techniques used by YAFFS2 to handle NAND flash memory’s
characteristics discussed above are introduced in the next chapter. In the last section
of this chapter, we introduced how to use YAFFS2 in a linux environment and how to
simulate a NAND flash memory device in this environment.

9

2. Prerequisites

10

3. Analysis of YAFFS2

In the following, we introduce and analyze YAFFS2 and its basic design principles.
Major focus of this chapter is a theoretical analysis of YAFFS2’s source code. The
main goal of this chapter is to give an in-depth understanding of YAFFS2 and to reveal
discrepancies between YAFFS2’s specification and its actual behavior. We analyze and
practically evaluate this chapter’s findings’ implications on forensic analyses of YAFFS2
storage devices in Chapter 4 and Chapter 5.

This chapter is outlined as follows: In Section 3.1, we introduce YAFFS2 and its
basic design. In Section 3.2, we analyze YAFFS2’s techniques to manage data. This
also includes an analysis of YAFFS2’s actual behavior regarding data organization and
a comparison of this behavior to the behavior described in YAFFS2’s specification. As
YAFFS2’s garbage collection techniques are likely to have a major impact on the amount
of data that can be restored from a storage device with YAFFS2 as file system, we provide
an analysis of YAFFS2’s garbage collection techniques in Section 3.3. Additionally, in
Section 3.4, we analyze YAFFS2’s techniques to minimize wear of NAND flash memory
devices.

3.1. YAFFS2 basics

YAFFS2 is a file system design mainly by Charles Manning specially for use with NAND
flash memory devices. It is the successor to YAFFS1 and shares some basic characteristic
with its predecessor. However, nowadays, the use of YAFFS1 is deprecated, because it
violates the specification of some NAND flash memory chips by writing deletion markers
into the OOB areas of pages containing deleted objects’ contents, thus rewriting pages’
OOB areas without erasing their respective blocks beforehand. Additionally, YAFFS1
can only handle NAND flash memory pages with a maximum size of 512 bytes, while
YAFFS2 supports page sizes of 2048 bytes and more [2].

To correspond to the layout of NAND flash memory, YAFFS2 structures data in so-
called chunks and blocks, with a chunk being the unit of allocation and writing and a
block being the unit of erasure. To write data to a NAND flash memory device, YAFFS2
first allocates a block and then writes chunk-wise within this block. Typically, the size
of a chunk equals the size of a page on the NAND flash memory, but, if necessary, a
chunk can also be mapped to several pages, for example to write to several NAND flash
memories in parallel [2]. In the following, unless stated otherwise, a chunk has the size
of a page and the terms chunk and page are used synonymously. For simplification,
the terms NAND flash memory device and NAND are also used synonymously in the

11

3. Analysis of YAFFS2

following.

To YAFFS2, anything that can be stored in the file system is, first of all, an object.
The way YAFFS2 manages a specific object depends on the type of the object. An
object can either be a data file, a directory, a hard link, a soft link or a special object,
such as a device file or a pipe. During mounting of a YAFFS2 device, information about
all objects on the device, as well as information about the device itself are loaded into
RAM. This includes building a directory structure in RAM to be able to find objects
by name, as well as building a hash table to be able to find objects by their unique
object number. To speed up mounting of a device, YAFFS2 stores parts of this RAM
structure in specially reserved blocks on the device. This so called checkpoint contains
information about the device, the states of the device’s blocks and information about
objects and their chunks on the device including the directory structure. The number of
blocks reserved for this checkpoint and the number of these blocks in use are relevant to
the intensity with which YAFFS2 tries to perform garbage collection. More information
about YAFFS2’s garbage collector is provided in Section 3.3.

To be able to allocate blocks, identify bad blocks and select blocks for delete oper-
ations, YAFFS2 distinguishes between ten states a block can be in. These states are
defined in lines 229 to 273 of file yaffs guts.h. During runtime, YAFFS2 keeps state
information of all blocks in RAM. As can be seen in Figure 3.1, blocks can only transition
from one state into another in a certain order.

On a device that has never been mounted using YAFFS2 or if YAFFS2 cannot recover
the device’s blocks’ states from a checkpoint, all blocks are in initial state UNKNOWN. In
that case, YAFFS2 needs to scan the device to determine all blocks’ states. The scan
is performed as defined in function yaffs2 ScanBackwards in lines 911 to 1539 of file
yaffs yaffs2.c. If a block turns out to be unusable due to production errors or wear
out, its state transitions from UNKOWN into DEAD. If a block is not unusable it needs
scanning to determine its state and transitions from state UNKNOWN into state NEEDS

SCANNING until it has actually been scanned. While being scanned, a block is in state
SCANNING. During runtime, a block can either be in state FULL, EMPTY, ALLOCATING,
DIRTY or COLLECTING. The block in state ALLOCATING is the block currently selected
for write operations. A block stays in state ALLOCATING until it is completely filled. A
block is in state FULL if all of its chunks have previously been allocated and at least
one chunk contains current data. A block that has not been fully allocated and is not
currently selected for write operations is also in state FULL. This can happen, if a device
is disconnected from its power source without proper unmounting. In this case, the
block’s state is set to FULL on scanning after the device is mounted again. A block
in state EMPTY has been erased and does not contain any data. An empty block can
be allocated for regular write operations or to store checkpoint data. Full blocks are
examined by the garbage collector to check whether they contain current chunks. If the
garbage collector becomes active and copies current chunks from a full block to the block
in state ALLOCATING, the block that is being copied off is in state COLLECTING. A block
that contains only obsolete chunks is in state DIRTY and can transition into state EMPTY

by being erased. YAFFS2 always reserves some blocks on a device to store checkpoint
data. A block containing checkpoint data is in state CHECKPOINT.

When allocating blocks and chunks, YAFFS2 follows two main principles to match

12

3.1. YAFFS2 basics

Figure 3.1.: YAFFS2’s block states [2]

13

3. Analysis of YAFFS2

modern NAND flash memories’ specifications. These are a zero overwrite policy and se-
quential writing of chunks within a block. Although it is technically possible to change
bits of an already written page from a logical one to a logical zero without having to erase
the whole block containing the page, many modern NAND flash memories’ specifications
deprecate such rewrites to improve flash memories’ reliability and lifespan. YAFFS1 vi-
olates these specifications by overwriting a byte in the OOB area of a page to mark
the page’s contents as deleted. YAFFS2 refrains from writing these deletion markers
and never overwrites already written chunks without erasing their blocks beforehand,
hence following a zero overwrite policy. Typically, modern NAND flash memories’ spec-
ifications also require sequential writing of pages within a block. As depicted in Listing
3.1, YAFFS2 complies to this requirement by allocating new chunks in sequential order
within a block.

2019 static int yaffs_AllocateChunk(yaffs_Device *dev , int useReserve ,

2020 yaffs_BlockInfo ** blockUsedPtr)

2021 {

2022 int retVal;

2023 yaffs_BlockInfo *bi;

2024

2025 if (dev ->allocationBlock < 0) {

2026 /* Get next block to allocate off */

2027 dev ->allocationBlock = yaffs_FindBlockForAllocation(dev);

2028 dev ->allocationPage = 0;

2029 }

2030

2031 [...]

2041 /* Next page please */

2042 if (dev ->allocationBlock >= 0) {

2043 bi = yaffs_GetBlockInfo(dev , dev ->allocationBlock);

2044

2045 retVal = (dev ->allocationBlock * dev ->param.nChunksPerBlock) +

2046 dev ->allocationPage;

2047 bi->pagesInUse ++;

2048 yaffs_SetChunkBit(dev , dev ->allocationBlock ,

2049 dev ->allocationPage);

2050

2051 dev ->allocationPage ++;

2052

2053 dev ->nFreeChunks --;

2054

2055 /* If the block is full set the state to full */

2056 if (dev ->allocationPage >= dev ->param.nChunksPerBlock) {

2057 bi->blockState = YAFFS_BLOCK_STATE_FULL;

2058 dev ->allocationBlock = -1;

2059 }

2060

2061 if (blockUsedPtr)

2062 *blockUsedPtr = bi;

2063

2064 return retVal;

2065 }

2066

2067 T(YAFFS_TRACE_ERROR ,

2068 (TSTR("!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!" TENDSTR)));

2069

2070 return -1;

2071 }

Listing 3.1: Function yaffs AllocateChunk (Excerpt from yaffs guts.c)

Strictly sequential writing of chunks within a block does not only comply to NAND

14

3.2. Data organization and OOB area tags

flash memory specifications but also enables YAFFS2 to keep a chronological log of file
modifications. Additionally, as can be seen in Listing 3.2, as long as empty blocks can be
found on a NAND, YAFFS2 also tries to allocate blocks for writing in sequential order.
These methods of allocating chunks and blocks make YAFFS2 a truly log-structured file
system. YAFFS2’s techniques to organize its log are introduced and analyzed in Section
3.2. As YAFFS2 is a log-structured file system and follows a zero overwrite policy, it is
inevitable that a certain amount of obsolete data is almost always stored somewhere on
the NAND. To identify and delete this obsolete data, a garbage collector is needed. We
provide an analysis of YAFFS2’s garbage collector in Section 3.3. In the following, we
analyze YAFFS2’s techniques to manage data and organize its log.

3.2. Data organization and OOB area tags

When data has to be written to or read from a NAND, YAFFS2 distinguishes between
data chunks and header chunks. While data chunks contain actual content of an object,
header chunks are used to identify the object’s type and to store meta data about the
object, such as the object’s name, size or its timestamps. Data chunks are only used
for files whereas directories and links consist only of header chunks. In the following,
we introduce and analyze YAFFS2’s techniques to manage chunks and organize its log.
In Section 3.2.1, we introduce YAFFS2’s OOB area tags. YAFFS2’s way to perform
modifications and deletions of objects are then introduced in Section 3.2.3.

3.2.1. OOB area tags

In order to be able to associate chunks with an object and store information such as
a chunk’s position within an object, the OOB areas of NAND flash memory’s pages
are used. The OOB areas are also used to organize YAFFS2’s log chronologically. For
that purpose, a sequence number is used. As can be seen in lines 1982 and 1983 of
Listing 3.2, every time a block on a device is allocated for writing, the device’s block
sequence number is incremented. Every chunk that is written to the newly allocated
block is marked with the current block sequence number within the chunks OOB area.
That way, the block that has been written to most recently has always the highest
block sequence number. Thus, a chronological order of blocks can be derived from their
sequence numbers, regardless of the blocks’ physical position on the device. As chunks
are allocated strictly sequentially within a block, starting from the lowest address of the
block, all chunks within a block are in chronological order by default.

1954 static int yaffs_FindBlockForAllocation(yaffs_Device *dev)

1955 {

1956 int i;

1957 yaffs_BlockInfo *bi;

1958

1959 [...]

1969 /* Find an empty block. */

1970

1971 for (i = dev ->internalStartBlock; i <= dev ->internalEndBlock; i++) {

1972 dev ->allocationBlockFinder ++;

15

3. Analysis of YAFFS2

1973 if (dev ->allocationBlockFinder < dev ->internalStartBlock

1974 || dev ->allocationBlockFinder > dev ->internalEndBlock) {

1975 dev ->allocationBlockFinder = dev ->internalStartBlock;

1976 }

1977

1978 bi = yaffs_GetBlockInfo(dev , dev ->allocationBlockFinder);

1979

1980 if (bi->blockState == YAFFS_BLOCK_STATE_EMPTY) {

1981 bi->blockState = YAFFS_BLOCK_STATE_ALLOCATING;

1982 dev ->sequenceNumber ++;

1983 bi->sequenceNumber = dev ->sequenceNumber;

1984 dev ->nErasedBlocks --;

1985 T(YAFFS_TRACE_ALLOCATE ,

1986 (TSTR("Allocated block %d, seq %d, %d left" TENDSTR),

1987 dev ->allocationBlockFinder , dev ->sequenceNumber ,

1988 dev ->nErasedBlocks));

1989 return dev ->allocationBlockFinder;

1990 }

1991 }

1992

1993 T(YAFFS_TRACE_ALWAYS ,

1994 (TSTR

1995 ("yaffs tragedy: no more erased blocks , but there should have been %d"

1996 TENDSTR), dev ->nErasedBlocks));

1997

1998 return -1;

1999 }

Listing 3.2: Function yaffs FindBlockForAllocation (Excerpt from yaffs guts.c)

Along with the block sequence number, several other important values are written to
a page’s OOB area. All OOB area tags used by YAFFS2 can be seen in Table 3.1. Other
meta data such as timestamps are not written to a header chunk’s OOB area, but into
the data area of the chunk.

Field Size for 1024 bytes chunks Size for 2048 bytes chunks

blockState 1 byte 1 byte
chunkID 4 bytes 4 bytes
objectID 4 bytes 4 bytes
nBytes 2 bytes 2 bytes

blockSequence 4 bytes 4 bytes
tagsEcc 3 bytes 3 bytes
ecc 1 12 bytes 24 bytes

1 The size of this tag depends on page size. ecc has 3 bytes of size per 256 bytes of page size

Table 3.1.: YAFFS2 OOB area tags according to YAFFS2’s official specification [5]

During our analysis of YAFFS2’s actual behavior, it became obvious that, although
all tags shown in Table 3.1 were actually written to the OOB areas, the actual size of the
nByte tag did not necessarily always match the size stated in Table 3.1. The reasons for
this discrepancy and the actual meanings of YAFFS2’s OOB tags are provided below. It
is important to know, that the actual order in which all aforementioned tags are written
to the OOB areas of a NAND is not controlled by YAFFS2 itself but by the NAND
flash memory driver used by the operating system to access the flash memory chip [15].
Because of that, it is difficult to perform a fully automated analysis of a NAND dump.

16

3.2. Data organization and OOB area tags

blockState

The blockState tag is used to mark bad blocks by writing a value different than 0xff

to the respective byte within a bad block’s pages’ OOB areas.

objectID

The objectID tag contains the unique object number of the object a chunk is associated
with. As depicted in Listing 3.3, certain values are reserved for special pseudo objects,
such as the root directory of a device or the lost+found folder. The lost+found di-
rectory is not written to a NAND. Instead, it is created in RAM on mounting of the
NAND.

78 [...]

79 /* Some special object ids for pseudo objects */

80 #define YAFFS_OBJECTID_ROOT 1

81 #define YAFFS_OBJECTID_LOSTNFOUND 2

82 #define YAFFS_OBJECTID_UNLINKED 3

83 #define YAFFS_OBJECTID_DELETED 4

84 [...]

Listing 3.3: Possible values for the objectID tag (Excerpt from yaffs guts.h)

The unlinked and deleted objects are used by YAFFS2’s to perform object deletions.
Their meaning is provided in Section 3.2.3. All non-pseudo objects have an objectID

tag value of at least 257. In Listing 3.4, the procedure to assign an object number to
a newly created object is depicted, showing that no object numbers below 257 can be
assigned to objects other than the aforementioned pseudo objects. This is because the
variable bucketFinder is of type unsigned integer (see line 693 of yaffs guts.h) and
thus has a minimal value of zero. As the variable bucketFinder is incremented at least
once inside of function yaffs FindNiceObjectBucket, the variable bucket in line 1365
of Listing 3.4 has an initial value of at least one. Thus, as YAFFS NOBJECT BUCKETS has
a value of 256 (see line 61 of yaffs guts.h), the lowest object number available to a
non-pseudo object is 257.

1353 static int yaffs_FindNiceObjectBucket(yaffs_Device *dev)

1354 {

1355 int i;

1356 int l = 999;

1357 int lowest = 999999;

1358

1359

1360 /* Search for the shortest list or one that

1361 * isn ’t too long.

1362 */

1363

1364 for (i = 0; i < 10 && lowest > 4; i++) {

1365 dev ->bucketFinder ++;

1366 dev ->bucketFinder %= YAFFS_NOBJECT_BUCKETS;

1367 if (dev ->objectBucket[dev ->bucketFinder]. count < lowest) {

1368 lowest = dev ->objectBucket[dev ->bucketFinder].count;

1369 l = dev ->bucketFinder;

1370 }

1371

17

3. Analysis of YAFFS2

1372 }

1373

1374 return l;

1375 }

1376

1377 static int yaffs_CreateNewObjectNumber(yaffs_Device *dev)

1378 {

1379 int bucket = yaffs_FindNiceObjectBucket(dev);

1380

1381 /* Now find an object value that has not already been taken

1382 * by scanning the list.

1383 */

1384

1385 int found = 0;

1386 struct ylist_head *i;

1387

1388 __u32 n = (__u32) bucket;

1389

1390 /* yaffs_CheckObjectHashSanity (); */

1391

1392 while (!found) {

1393 found = 1;

1394 n += YAFFS_NOBJECT_BUCKETS;

1395 if (1 || dev ->objectBucket[bucket].count > 0) {

1396 ylist_for_each(i, &dev ->objectBucket[bucket].list) {

1397 /* If there is already one in the list */

1398 if (i && ylist_entry(i, yaffs_Object ,

1399 hashLink)->objectId == n) {

1400 found = 0;

1401 }

1402 }

1403 }

1404 }

1405

1406 return n;

1407 }

Listing 3.4: Assignment of object numbers (Excerpt from yaffs guts.c)

In a data chunk, the objectID tag contains just the object number of the object
the data chunk is associated with. However, in a header chunk, the objectID is not
only used to associate the chunk with an object, but also to identify the type of the
object. As can be seen in line 83 and 84 of Listing 3.5, the highest byte of the objectID

field is used for that purpose. In YAFFS2’s documentation, the extended use of the
objectID tag is mentioned briefly, but no indication of YAFFS2 using extended tags by
default is given. During our analyses we detected the values depicted in Table 3.2 being
used in the objectID field’s highest byte. For example, a file with object number 300
has 0x1000012c as value for its header chunk’s objectID tag, whereas a directory with
object number 300 would have 0x3000012c as value for its header chunk’s objectID

tag. The object type is also written to Byte 0 of the header chunk’s data area. That
way, YAFFS2 is able to identify the type of an object, regardless of extended tags being
used or not.

28 /* Extra flags applied to chunkId */

29

30 #define EXTRA_HEADER_INFO_FLAG 0x80000000

31 #define EXTRA_SHRINK_FLAG 0x40000000

32 #define EXTRA_SHADOWS_FLAG 0x20000000

33 #define EXTRA_SPARE_FLAGS 0x10000000

34

35 #define ALL_EXTRA_FLAGS 0xF0000000

36

18

3.2. Data organization and OOB area tags

37 /* Also , the top 4 bits of the object Id are set to the object type. */

38 #define EXTRA_OBJECT_TYPE_SHIFT (28)

39 #define EXTRA_OBJECT_TYPE_MASK ((0x0F) << EXTRA_OBJECT_TYPE_SHIFT)

40 [...]

65 void yaffs_PackTags2TagsPart(yaffs_PackedTags2TagsPart *ptt ,

66 const yaffs_ExtendedTags *t)

67 {

68 ptt ->chunkId = t->chunkId;

69 ptt ->sequenceNumber = t->sequenceNumber;

70 ptt ->byteCount = t->byteCount;

71 ptt ->objectId = t->objectId;

72

73 if (t->chunkId == 0 && t->extraHeaderInfoAvailable) {

74 /* Store the extra header info instead */

75 /* We save the parent object in the chunkId */

76 ptt ->chunkId = EXTRA_HEADER_INFO_FLAG

77 | t->extraParentObjectId;

78 if (t->extraIsShrinkHeader)

79 ptt ->chunkId |= EXTRA_SHRINK_FLAG;

80 if (t->extraShadows)

81 ptt ->chunkId |= EXTRA_SHADOWS_FLAG;

82

83 ptt ->objectId &= ~EXTRA_OBJECT_TYPE_MASK;

84 ptt ->objectId |=

85 (t->extraObjectType << EXTRA_OBJECT_TYPE_SHIFT);

86

87 if (t->extraObjectType == YAFFS_OBJECT_TYPE_HARDLINK)

88 ptt ->byteCount = t->extraEquivalentObjectId;

89 else if (t->extraObjectType == YAFFS_OBJECT_TYPE_FILE)

90 ptt ->byteCount = t->extraFileLength;

91 else

92 ptt ->byteCount = 0;

93 }

94

95 yaffs_DumpPackedTags2TagsPart(ptt);

96 yaffs_DumpTags2(t);

97 }

Listing 3.5: Extension of header chunks’ tags (Excerpt from yaffs packedtags2.c)

Object type Highest byte of the objectID tag value

File 0x10

Soft link 0x20

Directory 0x30

Hard link 0x40

Special object (e.g. a pipe) 0x50

Table 3.2.: Possible values of the objectID tag in header chunks for different object
types

chunkID

Basically, the chunkID tag defines a chunk’s position within an object. In a data chunk,
the value of the chunkID tag defines the chunk’s offset from the beginning of an object,
e.g. the data chunk with a chunkID tag value of four is the fourth data chunk of its
object and the data chunk with a chunkID tag value of one is the first data chunk of its

19

3. Analysis of YAFFS2

object. Regarding header chunks, YAFFS2’s documentation claims that a chunkId of
zero signifies that this chunk contains an objectHeader [2]. However, during our analyses,
no chunks with a chunkID tag value of zero could be found. Instead, we observed, that the
value of a header chunk’s chunkID tag is constituted of two parts, namely an additional
flag in the top byte of the chunkID tag and the object number of the object’s parent
directory in the other three bytes of the chunkID tag. As can be seen in Listing 3.5 and
Listing 3.6, the reason for that is, that YAFFS2 uses its extended tags functionality.
In doing so, YAFFS2 writes at least 0x80 to the top byte of a header chunk’s chunkID

tag and the the object number of the the header chunk’s object’s parent directory to
the remaining three bytes of the chunkID tag. The object number of an object’s parent
directory is also stored in Bytes 4 to 7 of the object’s header chunk’s data area to enable
YAFFS2 to identify the object’s parent directory regardless of extended tags being used
or not.

If a file’s header chunk is marked with a shrink header marker to indicate a hole inside
the file (see Section 3.2.1), the chunkID tag’s top byte is set to 0xC0 by an OR-operation
of 0x80 and 0x40. YAFFS2 uses its extended tag functionality to speed up scanning
of a device by writing more information into tags than absolutely necessary. Although
writing the value zero into the chunkID tag would be enough to identify a header chunk,
writing 0x80 into the highest byte of the tag and the object’s parent directory to the
rest of the tag speeds up identifying the directory structure of a device.

169 typedef struct {

170

171 unsigned validMarker0;

172 unsigned chunkUsed; /* Status of the chunk: used or unused */

173 unsigned objectId; /* If 0 then this is not part of an object (unused)

*/

174 unsigned chunkId; /* If 0 then this is a header , else a data chunk */

175 unsigned byteCount; /* Only valid for data chunks */

176

177 /* The following stuff only has meaning when we read */

178 yaffs_ECCResult eccResult;

179 unsigned blockBad;

180

181 /* YAFFS 1 stuff */

182 unsigned chunkDeleted; /* The chunk is marked deleted */

183 unsigned serialNumber; /* Yaffs1 2-bit serial number */

184

185 /* YAFFS2 stuff */

186 unsigned sequenceNumber; /* The sequence number of this block */

187

188 /* Extra info if this is an object header (YAFFS2 only) */

189

190 unsigned extraHeaderInfoAvailable; /* There is extra info available if

this is not zero */

191 unsigned extraParentObjectId; /* The parent object */

192 unsigned extraIsShrinkHeader; /* Is it a shrink header? */

193 unsigned extraShadows; /* Does this shadow another object? */

194

195 yaffs_ObjectType extraObjectType; /* What object type? */

196

197 unsigned extraFileLength; /* Length if it is a file */

198 unsigned extraEquivalentObjectId; /* Equivalent object Id if it is a

hard link */

199

200 unsigned validMarker1;

201

202 } yaffs_ExtendedTags;

Listing 3.6: Extended tags structure (Excerpt from yaffs guts.h)

20

3.2. Data organization and OOB area tags

blockSequence

The blockSequence tag is used to determine the chronological order in which chunks
have been written to the NAND. Every time a new block is allocated for writing, the
block sequence number is incremented and every chunk written to the block is tagged
with this block sequence number. Thus, obsolete chunks can easily be detected and
discarded. If two chunks with the same object numbers and chunk numbers can be
found in different blocks, the chunk with the higher value in its blockSequence tag field
is the most recent version. As can be seen in Listing 3.7, the value of the blockSequence
tag can range from 4096 to 4 026 531 584. As depicted in Listing 3.2, a device’s sequence
number is incremented before a new block is allocated. Thus, the first block allocated
by YAFFS2 on a NAND has the sequence number 4097.

108 #define YAFFS_LOWEST_SEQUENCE_NUMBER 0x00001000

109 #define YAFFS_HIGHEST_SEQUENCE_NUMBER 0xEFFFFF00

Listing 3.7: Possible values for the blockSequence tag (Excerpt from yaffs guts.h)

nBytes

According to YAFFS2’s specification [5], the two byte nBytes tag tells the number of
data bytes of a chunk. However, during the analysis of YAFFS2, we discovered, that the
nBytes tag can have several different meanings and sizes. This is the result of YAFFS2’s
use of its extended tags.

In the OOB area of a data chunk, the value of the nBytes tag defines how many bytes
of data are contained within the chunk. In Figure 3.2, the OOB area of a 2048 bytes
NAND page containing a data chunk is depicted. The nBytes value of 0x0800 shows,
that this chunk is completely in use and holds 2048 bytes of data content. As the size
of a chunk typically matches the size of NAND flash memories’ pages, two bytes are
sufficient for the nBytes tag of a data chunk.

Figure 3.2.: OOB area of a data chunk

In the OOB area of a header chunk, the meaning of the nBytes tag depends on the
type of the object associated with the header chunk. As depicted in Listing 3.5 and

21

3. Analysis of YAFFS2

Listing 3.6, in the OOB area of a file header chunk, the nBytes tag stores the size of
the file associated with the header chunk. As the size of a file can easily exceed the
maximum value of 64 KB, two bytes are not sufficient to store a file’s size. Therefore, as
can be seen in Figure 3.3, four bytes are used for the nBytes tag of a file header chunk.
The size of the file associated with the file header chunk depicted in Figure 3.3 amounts
to 128 KB. Therefore, the value 0x00020000 is stored in the chunk’s nBytes tag field.

Figure 3.3.: OOB area of a file header chunk

In the header chunk of a hard link, the nBytes tag serves a completely different
purpose. As a hard link just links another name to an existing file and does not have
any data chunks, it does not need a nByte tag itself. Therefore the OOB area bytes that
would normally contain the nByte flag, can be used for other information. As can be
seen in line 87 and 88 of Listing 3.5, these bytes are used to store the object number of
the object the hard link links to.

A soft link does also not feature any data chunks and consists only of one header
chunk. In this header chunk, as can be seen in line 92 of Listing 3.5, the nBytes tag is
not used and always contains the value zero. This is because a soft link uses the data
area of the header chunk and not the chunk’s OOB area for linking information. In
figure 3.4, a chunk storing a soft link named softlink2 is depicted. The soft link softlink2
links to a file named testFile1 that is stored in a directory named aFolder. As can be
seen, the data area of a soft link’s header chunk contains the absolute path of the object
the soft link links to. The object type (0x20, marked blue) can be seen in Byte 0 of
the chunk’s data area as well as in the objectID tag in the chunk’s OOB area. As can
be seen in Bytes 4 to 7 (marked green) of the data area as well as in the chunkID tag
in the OOB area, this soft link is stored in a directory with object number 1. As this
object number is reserved for the root directory of a device, the soft link softlink2 must
be stored in the root directory.

tagsEcc and ecc

As NAND flash memory is prone to errors like bit flipping, error correction is necessary.
Information regarding error correction is stored in the tagsEcc and ecc OOB area tags,
with tagsEcc containing error correction information regarding a chunk’s OOB area
tags and ecc containing error correction information regarding a chunk’s data contents.

22

3.2. Data organization and OOB area tags

Figure 3.4.: Data area and OOB area of a soft link header chunk

23

3. Analysis of YAFFS2

Shrink header markers

Shrink header markers are YAFFS2’s way to handle files with a hole. Such files occur
when a file is truncated to a size smaller than its original size and a subsequent write
operation on that file starts writing at an offset beyond the truncated size. As shrink
header markers have an important influence on garbage collection, YAFFS2’s way to
handle files with holes are introduced in the following.

According to the POSIX standard, a hole inside a file should always read back as
bytes of value zero [16]. As YAFFS2 does not rewrite already written chunks, YAFFS2
needs another way to create a hole inside a file and fill it with zeros. Additionally, data
chunks that are located inside the hole after a truncation and a write operation have to
be marked as obsolete. Depending on the size of a hole, YAFFS2 chooses one of two
ways to handle files with a hole.

In case the hole is a hole smaller than four chunks (see lines 32 and 807 to 890
of yaffs yaffs2.c) YAFFS2 actually writes zeros to the NAND to indicate the hole
inside a file. This can be seen in Table 3.3.1 The file file.Hole depicted in this NAND
dump has been put through the following:

1. Writing of 15 000 ’a’ to the file, leading to a file size of 15 000 bytes

2. Truncation of the file to 1000 bytes

3. Writing of 3000 ’b’ at position 9191 of the file, leading to a hole of 8191 bytes and
a new file size of 12 191 bytes

To represent the truncation of a file to a smaller size, YAFFS2 writes the data chunk
that contains the new end of the file after the truncation to the NAND, followed by a
file header chunk with the truncated size in its nByte OOB area tag. To represent the
hole in the file, YAFFS2 then writes a respective number of chunks filled with zeros to
the NAND, followed by chunks containing the file’s content beyond the hole.

In case the hole inside a file is bigger than four chunks, YAFFS2 does not write chunks
completely filled with zeros to the NAND but makes use of its so-called shrink header
markers to indicate a hole inside a file. As can be seen in Table 3.4, this saves a lot
of space on the NAND.2 The file file.Hole2 depicted in this NAND dump has been put
through the following:

1. Writing of 15 000 ’a’ to the file, leading to a file size of 15 000 bytes

2. Truncation of the file to 1000 bytes

3. Writing of 3000 ’b’ at position 9192 of the file, leading to a hole of 8192 bytes
(equivalent to four chunks of 2048 bytes) and a new file size of 12 192 bytes.

The header chunk marked with a shrink header marker, recognizable by its chunkID

OOB area tag’s highest byte’s value of 0xC0, marks the end of the hole inside the file
and the data chunk written due to the truncation of the file (see chunk no. 16 in Table

1On the attached DvD, see also: /Chapter3.2/nanddump.smallHole.pretty
2On the attached Dvd, see also: /Chapter3.2/nanddump.bigHole.pretty

24

3.2. Data organization and OOB area tags

Chunk no. Content chunkID objectID nBytes

...
8 file.Hole: Data (2048 ’a’) 1 258 2048
9 file.Hole: Data(2048 ’a’) 2 258 2048
10 file.Hole: Data (2048 ’a’) 3 258 2048
11 file.Hole: Data (2048 ’a’) 4 258 2048
12 file.Hole: Data (2048 ’a’) 5 258 2048
13 file.Hole: Data (2048 ’a’) 6 258 2048
14 file.Hole: Data (2048 ’a’) 7 258 2048
15 file.Hole: Data (664 ’a’, 1384 ’0’) 8 258 664
16 file.Hole: Data (1000 ’a’, 1048 ’0’) 1 258 1000
17 Header file.Hole 0x80000001 0x10000102 1000
18 Header file.Hole 0x80000001 0x10000102 1000
19 file.Hole: Data (1000 ’a’, 1048 ’0’) 1 258 2048
20 file.Hole: Data (2048 ’0’) 2 258 2048
21 file.Hole: Data (2048 ’0’) 3 258 2048
22 file.Hole: Data (2048 ’0’) 4 258 2048
23 file.Hole: Data (999 ’0’, 1049 ’b’) 5 258 2048
24 file.Hole: Data (1951 ’b’, 97 ’0’) 6 258 1951
25 file.Hole: Header 0x80000001 0x10000102 12191
...

Table 3.3.: Representation of a file with a hole smaller than four chunks on a NAND

25

3. Analysis of YAFFS2

3.4) the beginning of the hole. Therefore all of the file’s chunks written before this chunk
are obsolete. The size of the hole can be derived from the number of zeros written to the
end respectively the beginning of the chunks enframing the hole and the gap between
the chunkID tag values of the chunks enframing the hole.

Chunk no. Content chunkID objectID nBytes

...
8 file.Hole2: Data (2048 ’a’) 1 258 2048
9 file.Hole2: Data (2048 ’a’) 2 258 2048
10 file.Hole2: Data (2048 ’a’) 3 258 2048
11 file.Hole2: Data (2048 ’a’) 4 258 2048
12 file.Hole2: Data (2048 ’a’) 5 258 2048
13 file.Hole2: Data (2048 ’a’) 6 258 2048
14 file.Hole2: Data(2048 ’a’) 7 258 2048
15 file.Hole2: Data (664 ’a’, 1384 ’0’) 8 258 664
16 file.Hole2: Data(1000 ’a’, 1048 ’0’) 1 258 1000
17 file.Hole2: Header 0x80000001 0x10000102 1000
18 file.Hole2: Header 0x80000001 0x10000102 1000
19 file.Hole2: Header 0xC0000001 0x10000102 1000
20 file.Hole2: Data (1000 ’0’, 1048 ’b’) 5 258 2048
21 file.Hole2: Data (1952 ’b’, 96 ’0’) 6 258 1952
22 file.Hole2: Header 0x80000001 0x10000102 12192
...

Table 3.4.: Representation of a file with a hole of four chunks on a NAND

3.2.2. Meta data

During a forensic analysis of a storage device, the device’s files’ meta data can provide
valuable information. YAFFS2 uses an object’s header chunk to store meta data such
as time stamps, permissions and ownership information. This meta data of an object is
not stored within the object header chunk’s OOB area, but in the chunk’s data area. In
the following, we introduce the way YAFFS2 stores meta data.

Time stamps

Time stamps can provide relevant information about a file’s history, that is, information
about when a file has been accessed or modified. Typically, such information can be
obtained from a file’s mtime, atime and ctime time stamps. In a Linux environment,
mtime stores the time a file’s content has been modified, atime stores the time a file has
been accessed and ctime the time a file’s inode has been modified. Modifications of a
file’s inode include modifications of a file’s meta data as well as modifications of a file’s
content.

26

3.2. Data organization and OOB area tags

YAFFS2 stores meta data such as time stamps inside a file header chunk’s data area.
However, regarding time stamps, YAFFS2 does not follow the default Unix or Linux way
of keeping track of file modification and access times. During our analysis, we observed
that YAFFS2 does store three time stamps inside an object’s header chunk but these
time stamps do not completely match classic Unix mtime, atime and ctime time stamps.
Although YAFFS2 does store ctime and mtime, it does not store atime on a NAND.
Instead of atime it stores a time stamp containing the time of the object’s creation. On
a simulated NAND as well as on a HTC Magic smartphone running Android OS 2.2,
mtime could be found in Bytes 284 to 287 of an object’s header chunk’s data area, ctime
could be found in Bytes 288 to 291 and the object’s creation time in Bytes 280 to 283
of an object’s header chunk’s data area.

The reason for YAFFS2 waiver of writing atime to a NAND lies in wear considerations.
Keeping track of an object’s access times would require writing of a new object header
chunk every time the object has been accessed. This would lead to an enormous amount
of object header chunks being written to the NAND which would lead to a drastic
increase of block erasures and thus increased wear out of NAND flash memory. Because
of that, by default, YAFFS2 does not write atime to a NAND [17].

Permissions and owner

In a Linux environment, every object, such as a file or a directory, has a user and a group
that own the object. Read, write and execution permissions are assigned separately to
the object’s owner, the object’s group and to all users that are neither the object’s owner
nor part of the group owning the object. Hence, for every object, the object’s owner and
group have to be stored along with the permissions granted to the owner, group and all
other users.

On a simulated NAND as well as on a HTC Magic smartphone running Android OS
2.2, an object’s permissions could be found in Bytes 268 to 271 of the object’s header
chunk’s data area. The object’s owner’s UID (User ID) could be found in Bytes 272 to
275 of the object’s header chunk’s data area and the object’s group’s GID (Group ID)
in Bytes 276 to 279.

3.2.3. Object modifications and deletions

As above-mentioned, YAFFS2 does not overwrite already written chunks. Thus, mod-
ification of an object’s content or deletion of an object can not be performed by direct
modification or deletion of the object’s chunks on a NAND. Instead, existing chunks
have to be marked as obsolete without overwriting these chunks on the NAND. In the
following, we introduce YAFFS2’s techniques to create, modify and delete objects. A
practical evaluation of these techniques is provided in Chapter 5 of this diploma thesis.

27

3. Analysis of YAFFS2

Object creation

When creating an object, YAFFS2 first creates the object in RAM and then writes the
object’s chunks to the NAND. When writing the object’s chunks to the NAND, YAFFS2
uses different writing patterns depending on the object’s type. Hard links, soft links and
directories do not feature any data chunks, but only consist of an object header chunk.
When creating such an object on a NAND, YAFFS2 thus only writes the respective
object header chunk. Additionally, a header chunk for the directory in which the newly
created object is located in is written to the NAND to store the directory’s changed
meta data.

When creating a file, YAFFS2 not only has to write a file header chunk but also at
least one data chunk to a NAND. To create the file on a NAND, YAFFS2 first writes
a file header chunk with a nByte OOB area tag value of zero to indicate creation of an
empty file. Subsequently, the file’s data chunks are written to the NAND, followed by
a file header chunk containing the actual file size. This way to create files on a NAND
thus always leads to writing of a file header chunk that gets obsolete as soon as all the
file’s data chunks and the second file header chunk are written to the NAND. Finally, as
with all other object types, a header chunk for the directory in which the newly created
file is located in is written to the NAND to store the directory’s changed meta data.

Object modifications

As above-mentioned, YAFFS2 keeps information about all objects stored in a RAM
structure. This RAM structure does not only contain general information about an
object, such as the object’s type, name or object number, but also the object’s tnode
tree. Regarding modifications of objects, this tnode tree plays an important role. An
object’s tnode tree is used to map file positions to chunks on a NAND and thus is needed
to determine which chunks need to be replaced in the course of an object’s modification.
When executing a modification of an object, YAFFS2 first modifies the object’s meta
information and tnode tree in RAM and then writes the respective modifications to the
NAND.

YAFFS2 objects can be modified in several ways. Basically, there are two main cate-
gories of object modifications. Firstly, an object can be modified by modification of its
meta data, such as permissions or time stamps. Secondly, objects can be modified by
modification of their content. At that, the object’s size can either stay the same, in-
crease or decrease. These different cases of object modifications are handled differently
by YAFFS2.

In case a modification only modifies an object’s meta data, for example by use of
chmod, only the object’s header chunk is affected as no actual contents within the object’s
data chunks are modified. Thus, YAFFS2 only has to modify the object’s header chunk.
As YAFFS2 cannot overwrite the header chunk, YAFFS2 instead writes a new object
header chunk containing the new meta data information. The new object header chunk
contains the new meta data information and the same OOB area tags the old and now
obsolete object header chunk features. As chunks and blocks are allocated for writing
sequentially, YAFFS2, when scanning the device, discovers the new object header chunk

28

3.2. Data organization and OOB area tags

before discovering the obsolete object header chunks. Thus, YAFFS2 recognizes which
object header chunk has to be the current object header chunk and ignores the obsolete
ones.

In case a modification changes an object’s content, chunks containing the old content
have to be marked as obsolete and new chunks containing the current content have to
be written to the NAND. Additionally, a new object header chunk has to be written, as
a modification of an object’s content always leads to modification of an object’s meta
data. As only files contain data chunks, in the following, we only take modifications of
files into consideration. In case modification of a file does not change the file’s size, but
only replaces parts of its contents, YAFFS2 needs to replace the affected data chunks.
For this purpose, YAFFS2 determines which chunks have to be replaced by use of the
file’s tnode tree. The affected data chunks are then written to the NAND, containing
the new content and the same OOB area tags the old and now obsolete data chunks
feature. Additionally, a new file header chunk is written to store the file’s modified meta
data information and to indicate the modification. When scanning the NAND, YAFFS2
discovers the new file header chunk and new data chunks before discovering the obsolete
file header and data chunks and thus considers the first discovered chunks current.

In case a modification changes a file’s content in a way that changes the object’s
size, YAFFS2 additionally has to check whether the modification puts a hole into the
file. Additionally, the nByte OOB area tag of the file header chunks has to be updated
and, if necessary, also the nByte and chunkID OOB area tags of some data chunks. In
case a modification puts a hole into a file, YAFFS2 needs to represent the hole on the
NAND. YAFFS2’s techniques to do so are described above in Section 3.2.1. In case a
modification changes a file’s size without resulting in a file with a hole, YAFFS2 does
not have to write shrink header markers but has to consider whether the modification
changes the file’s data chunk count. Additionally, in case a modification that changes a
file’s size does not occur at the end of a file, the file positions of the data chunks located
behind the point of modification have to be updated. Thus, the chunkID OOB area tags
of these chunks have to be updated too.

Figure 3.5.: Modification at the end of a file that decreases the file size to a multiple
of a chunk’s size

In case a modification of a file occurs at the end of a file, either only the file’s last data
chunk or several data chunks at the end of the file are affected. If the modification is
small enough only to change the last data chunk without changing the file’s chunk count,
YAFFS2 only has to rewrite the last data chunk. Thus, a new data chunk containing the
new content is written to the NAND, featuring the same OOB area tags as the old last

29

3. Analysis of YAFFS2

data chunk of the file with the only difference that the new data chunk’s nByte OOB area
tag has to contain the new number of bytes within the data chunk. Additionally, a new
file header chunk featuring the new file size in its nByte OOB area tag has to be written.
If a modification at the end of a file changes the file’s data chunk count, YAFFS2 has
to differentiate between modifications that increase the file’s size and modifications that
decrease the file’s size. A modification that decreases a file’s size and its data chunk
count can either lead to a decrease that leads to a new end of file that corresponds to
the end of one of the file’s data chunks or to a new end of file that is located within
one of the file’s data chunks. An end of file that corresponds to the end of one of the
file’s data chunks is given, if the new file size matches the multiple of a chunk’s size. For
example, as depicted in Figure 3.5, on a NAND with 2048 bytes per page, the new end
of file after a file’s modification corresponds to the end of one of the file’s data chunks
if the new file size is a multiple of 2048 bytes. Such a modification does not affect the
content of the file’s new last data chunk. Thus, as such a modification only truncates the
file and does not affect the file’s new last data chunk’s contents, YAFFS2 only needs to
write a new file header chunk containing the new file size in its nByte OOB tag. When
scanning the device, YAFFS2 then considers all data chunks that lie behind the file’s
new last data chunk obsolete as, based on the file size given in the file’s header chunk,
they cannot be part of the file.

In case a modification at the end of a file leads to a decrease in file size that does
not lead to the new end of file corresponding to the end of one of the file’s data chunks,
the contents of the file’s new last data chunk is affected by the modification. Thus,
in this case, YAFFS2 needs to rewrite the file’s new last data chunk with new content
and updated OOB area tags. Therefore, a new data chunk is written to the NAND,
containing the new content and the same OOB area tags as the affected data chunk,
except for the nByte tag that now features a smaller value. Additionally, a new file
header chunk featuring the new file size in its nByte OOB area tag is written to the
NAND.

Modifications at the end of a file that increase the file’s size and the file’s chunk count
by definition append content to the end of the file. Thus, such a modification requires at
least writing of one new chunk containing the new content and, if necessary, rewriting of
some of the file’s old chunks. Simply appending content to a file only requirers rewriting
of the file’s old last chunk if this chunk was not completely filled before the modification
took place and thus parts of the content appended to the file are to be located inside this
chunk. In this case, YAFFS2 writes a data chunk containing the file’s old last chunk’s
content plus as much of the appended content to completely fill the chunk on the NAND.
This chunk’s OOB area tag values match the file’s old last data chunk’s tag values except
for the nByte tag that now features a value representing a completely filled chunk. The
remaining content to be appended to the file is written to additional new data chunks
whose chunkID OOB area tags contain values placing them at the end of the file. If the
modification does not only append content to the file but also replaces content located
in several consecutive data chunks at the end of the file, this data chunks have to be
rewritten too. Additionally, a new file header chunk containing the new file size in its
nByte OOB area tag is written to the NAND.

Obviously, modifications of a file’s content do not only occur at the end of a file,

30

3.2. Data organization and OOB area tags

but also at other positions of a file. Such modifications require more of the file’s data
chunks to be rewritten as not only the data chunks whose content actually changes get
modified but also the positions of all data chunks behind the point of the modification.
This requires updating the chunkID OOB area tag of these chunks which again requires
rewriting these chunks. If such a modification leads to hole in the file, the modification
is handled by YAFFS2 as described in Section 3.2.1. In case a modification of a file’s
content at a position other than the end of the file does not change the file’s size and
causes no hole in the file, only the data chunks affected by the modification have to
be rewritten. YAFFS2 thus writes new data chunks containing the new content and
featuring the same OOB area tags as the replaced chunks to the NAND. Additionally,
YAFFS2 writes a new file header chunk. If the modification also changes the file’s size,
also all data chunks located behind the point of the modification are rewritten. This
is because at least some of them feature new contents after the modification and all of
them require updating of their chunkID OOB area tag.

Practical evaluation of YAFFS2’s behavior when performing file modifications is pro-
vided in Chapter 5 of this diploma thesis.

Object deletions

As mentioned in Section 3.2.1 of this diploma thesis, YAFFS2 uses the pseudo objects
unlinked and deleted to perform deletion of objects. These pseudo objects represent
virtual directories that are not actually written to a NAND. When a link to an object
is deleted, the link is virtually moved to the deleted directory. If an object is deleted
and no links to the object exist anymore on the device, the object is virtually moved
to the unlinked and deleted directory. The reason for that way of marking objects
as deleted is YAFFS2’s zero overwrite policy that prevents YAFFS2 from overwriting
already written chunks without erasing the chunks’ respective blocks beforehand. In the
following, we introduce YAFFS2’s way to mark objects as deleted. A practical evaluation
of YAFFS2’s behavior when performing delete operations is provided in Chapter 5 of
this diploma thesis.

As above-mentioned, the unlinked and deleted directories do not actually exist on a
NAND. Therefore, no object header chunks for these objects are written to the NAND.
Hence, to move an object to the deleted or unlinked directory, a special unlinked or
deleted object header chunk for the deleted or unlinked object is written to the NAND.
After writing of a deleted or an unlinked header chunk, a directory header chunk for
the directory containing the deleted object is also written to the NAND to update the
directory’s time stamps. Although the unlinked and deleted header chunks resemble
regular object header chunks in many ways, there are some differences. In Table 3.5 the
way YAFFS2 uses a deleted header chunk’s OOB area tags is depicted. All OOB area
tags not listed in Table 3.5 are used as they are in the deleted object’s header chunk.

As shown in Section 3.2.1 and depicted in Listing 3.3, object number 4 is reserved
for the deleted directory. Thus, as can be seen in Table 3.5, a deleted header chunk
resembles the object header chunk of an object located inside the deleted directory.
However, some differences are discernible. The deleted header chunk’s chunkID OOB
area tag is also marked with a shrink header marker. Although shrink header markers are

31

3. Analysis of YAFFS2

OOB area tag content

objectID value of the deleted object’s objectID OOB area tag
chunkID 0xc0000004

nBytes “0” or the deleted object’s object number

Table 3.5.: Usage of OOB area tags in deleted header chunks

typically used to mark files with a hole in them, they are also used to indicate deletion
of an object. Thus, deletion of an object can also be seen as a resizing of the object to
a size of zero bytes. The nByte OOB area tag of a deleted header chunk does either
contain the value zero or an object number. The nByte OOB area tag value is always
set to zero, if an object gets deleted and no links to the object are present on the device
anymore. If a hard link gets deleted and the object it links to is still present on the
device, the hard link’s deleted header chunk’s nByte OOB area tag features the object
number of the object the hard link linked to.

Usually, an object header chunk features the object’s name in the object header chunk’s
data area. Although a deleted header chunk features the same value in its objectID

OOB area tag as the deleted object, the name stored in the deleted header chunk is
always “deleted”.

When all links to an object have been deleted, the object is not only virtually moved
to the deleted directory but also to the unlinked directory to indicate the object’s
complete deletion. For example, if a file “xFile” and a hard link to this file exist on a
device, deletion of the hard link leads to a deleted header chunk for the hard link being
written to the NAND. If subsequently the file “xFile” gets deleted both an unlinked

and a deleted header chunk for the file are written to the NAND. Further analysis of
YAFFS2’s behavior in handling deletion of hard links and the objects they link to is
provided below.

OOB area tag content

objectID value of the unlinked object’s objectID OOB area tag
chunkID 0x80000003

nBytes 0

Table 3.6.: Usage of OOB area tags in unlinked header chunks

As can be seen in Table 3.6, an unlinked header chunk’s OOB area tag values strongly
resemble a deleted header chunk’s OOB area tag values. The main difference between
unlinked and deleted header chunks lies in their different chunkID OOB area tag
values. Additionally, an unlinked header chunk features the name “unlinked” instead
of “deleted” in its data area. As shown in Section 3.2.1 and depicted in Listing 3.3, the
virtual unlinked directory has the special object number 3. Thus, writing an unlinked

header chunk for an object and thus virtually moving the object to the virtual unlinked
directory requires the object number “3” being written to the unlinked header chunk’s
chunkID OOB area tag as the object number of the deleted object’s parent directory.

32

3.2. Data organization and OOB area tags

As an unlinked header chunk is alway written to NAND flash memory together with a
deleted header chunk, an unlinked header chunk does not need a shrink header marker.

Technically, a file name represents a link to a file object. If no link to this object other
than the file name exists, deletion of the object is performed by writing unlinked and
deleted header chunks for the object. But in case hard links to the file object exist on
a device, deletion of the file does only delete the file name and not the underlying object
as links to the object still exist on the device. The way YAFFS2 handles this problem
is depicted in Table 3.7.3

Chunk no. Content chunkID objectID nBytes

0 testFile: Header 0x80000001 0x10000101 0
1 testFile: Data 1 257 2048
2 testFile: Header 0x80000001 0x10000101 2048
...
8 hardLink1: Header 0x80000001 0x40000104 257
...
10 hardLink2: Header 0x80000001 0x40000105 257
...
15 deleted: Header 0xC0000004 0x40000105 257
...
17 hardLink1: Header 0x80000001 0x10000101 2048
18 deleted: Header 0xC0000004 0x40000104 257
...
20 unlinked: Header 0x80000003 0x10000101 0
21 deleted: Header 0xC0000004 0x10000101 0
...

Table 3.7.: Deletion of a file with hard links on a YAFFS2 NAND

In Table 3.7, a dump of a NAND on which the following actions have been performed
is depicted:

1. Creation of file “testFile” (object number 257)

2. Creation of hard link “hardLink1” to “testFile” (object number 260)

3. Creation of hard link “hardLink2” to “testFile” (object number 261)

4. Deletion of “hardLink2”

5. Deletion of “testFile”

6. Deletion of “hardLink1”

As can be seen in Table 3.7, deletion of “hardLink2” is performed as described above
by writing a deleted header chunk for “hardLink2” to the NAND (see chunk no. 15 in
Table 3.7). However, deletion of “testFile” does not result in writing of an unlinked or

3On the attached Dvd, see also: /Chapter3.2/nanddump.deletion.pretty

33

3. Analysis of YAFFS2

deleted header chunk for the file object but to writing of a new file header chunk for
the file object with object number 257 and deletion of “hardLink1”. The reason for that
is, that both the file name “testFile” and the hard link “hardLink1” link to the same
file object and thus deletion of “testFile” can not result in actual deletion of the file
object. Instead, only the link to the file object represented by the file name “testFile”
is deleted. Thus, YAFFS2 writes a new file header chunk for the file object with object
number 257 to the NAND, thereby renaming the file object to “hardLink1” (see chunk
no. 17 in Table 3.7). As the name “hardLink1” is now the only remaining link to the
file object, the hard link object with object number 260 has to be deleted by writing a
deleted header chunk for this object (see chunk no. 18 in Table 3.7). Only after the file
name “hardLink1” is deleted, the file object with object number 257 is finally actually
deleted. As no links to the object exist anymore, it is deleted by writing an unlinked

and a deleted header chunk for the object to the NAND (see chunk no. 20 and 21 in
Table 3.7).

3.3. Garbage collection

To comply to NAND flash memory’s demands, YAFFS2 never overwrites an already
written chunk without deleting the chunk’s block beforehand. Hence, chunks whose
content becomes obsolete through modification or deletion of their respective objects
remain stored on the NAND until the blocks containing these chunks are deleted. Ob-
solete chunks need to be deleted at some point to free up space on the device. While
it is not a problem to delete a block that is completely filled with obsolete chunks, sim-
ply deleting a block filled with a mixture of obsolete and current chunks would lead to
data loss. Thus, YAFFS2 needs a way to ensure that all current chunks within a block
that is to be deleted are copied to another block before performing the deletion. Saving
these current chunks is task of YAFFS2’s garbage collector. From a forensic perspective,
as obsolete chunks contain potential evidence, it is important to understand the way,
YAFFS2’s garbage collector performs its task. Therefore, in the following, we provide
an in-depth analysis of the YAFFS2 garbage collector.

YAFFS2 distinguishes between two different modes of garbage collection, aggressive
garbage collection and passive garbage collection [2]. Which of these modes is used is
decided in the first of three steps of YAFFS2’s garbage collection. YAFFS2’s garbage
collector’s functionality is defined in files yaffs guts.c and yaffs yaffs2.c and fea-
tures four main functions representing three major steps of garbage collection. These
functions are:

• yaffs CheckGarbageCollection (lines 2544 to 2632 of yaffs guts.c, Listing 3.8)

• yaffs FindBlockForGarbageCollection (lines 2379 to 2533 of yaffs guts.c)

• yaffs2 FindRefreshBlock (lines 142 to 192 of yaffs yaffs2.c),

• yaffs GarbageCollectBlock (lines 2102 to 2372 of yaffs guts.c)

Every garbage collection starts with a call of yaffs CheckGarbageCollection as a
first step in which necessity of garbage collection is determined. Execution of

34

3.3. Garbage collection

yaffs CheckGarbageCollection results in either abortion of the current attempt of
garbage collection or in a call of yaffs FindBlockForGarbageCollection or
yaffs2 FindRefreshBlock to find a block for garbage collection. After a suitable block
for garbage collection has been found, actual garbage collection of this block is performed
as third step of garbage collection by use of yaffs GarbageCollectBlock.

Function yaffs CheckGarbageCollection is called to check whether garbage collec-
tion is necessary every time one of the following functions is called:

• yaffs BackgroundGarbageCollect (lines 2639 to 2647 of yaffs guts.c)

• yaffs WriteChunkDataToObject (lines 2936 to 2994 of yaffs guts.c)

• yaffs updateObjectHeader (lines 2999 to 2171 of yaffs guts.c)

• yaffs ResizeFile (lines 3792 to 3847 of yaffs guts.c)

At least one of these functions is called every time a file system operation requires
writing of data to the NAND. Thus, YAFFS2 checks necessity of garbage collection ev-
ery time data has to be written to the NAND. That does not only include creation of
objects, but also deletion or modification of existing objects. Additionally, YAFFS2
checks for necessity of garbage collection at fixed time intervals by use of function
yaffs BackgroundGarbageCollect. On our test system, we observed checks for ne-
cessity of garbage collection by yaffs BackgroundGarbageCollect every two seconds.
In case of a NAND that was never mounted before, the first check for necessity of
garbage collection by yaffs BackgroundGarbageCollect was performed directly after
mounting of the NAND. In case the NAND had been mounted before, the first check
for necessity of garbage collection by yaffs BackgroundGarbageCollect was performed
after the first write operation to the NAND. Whether garbage collection of a block is
actually initiated after a check for necessity for garbage collection and, if it is, in which
mode it is performed, depends on several factors. First of all, YAFFS2 checks, whether
garbage collection is permanently or temporarily deactivated for a device (see line 2553
to 2560 of Listing 3.8). Garbage collection is temporarily deactivated during garbage
collection of a block to prevent recursive garbage collection. As can be seen in Listing
3.8, steps two of garbage collection is always performed if aggressive garbage collection
proves necessary. This is the case, if not enough free blocks are available to store a
checkpoint. As defined in function yaffs2 CalcCheckpointBlocksRequired (lines 213
to 247 of yaffs yaffs2.c) and line 2571 of yaffs guts.c, at least n free blocks must
be available for checkpoint data in order not to trigger aggressive garbage collection,
with n having the following value:

n = number of reserved blocks
+ number of complete blocks actually necessary to store current checkpoint data
− number of blocks currently used for checkpoint data
+ 4

Detailed information on how to calculate the number of blocks actually necessary to
store checkpoint data is provided in Section 4.3.

35

3. Analysis of YAFFS2

2544 static int yaffs_CheckGarbageCollection(yaffs_Device *dev , int background)

2545 {

2546 int aggressive = 0;

2547 int gcOk = YAFFS_OK;

2548 int maxTries = 0;

2549 int minErased;

2550 int erasedChunks;

2551 int checkpointBlockAdjust;

2552

2553 if(dev ->param.gcControl &&

2554 (dev ->param.gcControl(dev) & 1) == 0)

2555 return YAFFS_OK;

2556

2557 if (dev ->gcDisable) {

2558 /* Bail out so we don ’t get recursive gc */

2559 return YAFFS_OK;

2560 }

2561

2562 /* This loop should pass the first time.

2563 * We’ll only see looping here if the collection does not increase space.

2564 */

2565

2566 do {

2567 maxTries ++;

2568

2569 checkpointBlockAdjust = yaffs2_CalcCheckpointBlocksRequired(dev);

2570

2571 minErased = dev ->param.nReservedBlocks + checkpointBlockAdjust + 1;

2572 erasedChunks = dev ->nErasedBlocks * dev ->param.nChunksPerBlock;

2573

2574 /* If we need a block soon then do aggressive gc.*/

2575 if (dev ->nErasedBlocks < minErased)

2576 aggressive = 1;

2577 else {

2578 if(! background && erasedChunks > (dev ->nFreeChunks / 4))

2579 break;

2580

2581 if(dev ->gcSkip > 20)

2582 dev ->gcSkip = 20;

2583 if(erasedChunks < dev ->nFreeChunks /2 ||

2584 dev ->gcSkip < 1 ||

2585 background)

2586 aggressive = 0;

2587 else {

2588 dev ->gcSkip --;

2589 break;

2590 }

2591 }

2592

2593 dev ->gcSkip = 5;

2594

2595 /* If we don ’t already have a block being gc’d then see if we should

start another */

2596

2597 if (dev ->gcBlock < 1 && !aggressive) {

2598 dev ->gcBlock = yaffs2_FindRefreshBlock(dev);

2599 dev ->gcChunk = 0;

2600 dev ->nCleanups =0;

2601 }

2602 if (dev ->gcBlock < 1) {

2603 dev ->gcBlock = yaffs_FindBlockForGarbageCollection(dev ,

aggressive , background);

2604 dev ->gcChunk = 0;

2605 dev ->nCleanups =0;

2606 }

2607

2608 if (dev ->gcBlock > 0) {

2609 dev ->allGCs ++;

2610 if (! aggressive)

2611 dev ->passiveGCs ++;

36

3.3. Garbage collection

2612

2613 T(YAFFS_TRACE_GC ,

2614 (TSTR

2615 ("yaffs: GC erasedBlocks %d aggressive %d" TENDSTR),

2616 dev ->nErasedBlocks , aggressive));

2617

2618 gcOk = yaffs_GarbageCollectBlock(dev , dev ->gcBlock ,

aggressive);

2619 }

2620

2621 if (dev ->nErasedBlocks < (dev ->param.nReservedBlocks) && dev ->

gcBlock > 0) {

2622 T(YAFFS_TRACE_GC ,

2623 (TSTR

2624 ("yaffs: GC !!!no reclaim !!! erasedBlocks %d after try %d

block %d"

2625 TENDSTR), dev ->nErasedBlocks , maxTries , dev ->gcBlock));

2626 }

2627 } while ((dev ->nErasedBlocks < dev ->param.nReservedBlocks) &&

2628 (dev ->gcBlock > 0) &&

2629 (maxTries < 2));

2630

2631 return aggressive ? gcOk : YAFFS_OK;

2632 }

2633

2634 }

Listing 3.8: Function yaffs CheckGarbageCollection (Excerpt from yaffs guts.c)

If at least n free blocks are available to store current checkpoint data and for that
reason no aggressive garbage collection has to be performed, YAFFS2 checks, whether
passive garbage collection is necessary. Execution of passive garbage collection depends
on two factors. These are:

1. the way the garbage collection check has been invoked

2. the number of free chunks within free blocks in relation to the total number of free
chunks on the device

Regarding passive garbage collection, YAFFS2 distinguishes between garbage collec-
tion checks that have been caused by background threads and garbage collection checks
that have been caused by foreground threads. In the following, garbage collection that
is caused by a background thread is also referred to as background garbage collection.
Typically, YAFFS2’s periodical check for necessity of garbage collection is the main trig-
ger for background garbage collection. As can be seen in Listing 3.8, once aggressive
garbage collection proved unnecessary, passive garbage collection is performed unless the
if-statement in line 2578 returns true or the if-statement in line 2583 returns false.
If a check for necessity of garbage collection is caused by a background thread, variable
background is set to value 1. This always leads to the if-statement in line 2578 re-
turning false and the if-statement in line 2583 returning true and thus, given that
aggressive garbage collection is not necessary, to execution of step two of passive garbage
collection. If a check for necessity of garbage collection is caused by a foreground thread,
variable background is set to value 0. This means, that the if-statement in line 2578
can only return false if the number of free chunks within free blocks does not exceed
one quarter of the total number of free chunks on the device. This automatically leads
to the if-statement in line 2583 returning true, as, if the number of free chunks within
free blocks does not exceed one quarter of the total number of free chunks on the device,

37

3. Analysis of YAFFS2

it cannot exceed half the total number of free chunks on the device. Hence, if a check for
necessity of garbage collection is caused by a foreground thread and aggressive garbage
collection is not necessary, execution of step two of passive garbage collection depends
only on the ratio of free chunks within free blocks to the total number of free chunks on
the device.

Thus, a check for necessity of garbage collection leads to further steps of garbage col-
lection if garbage collection is not deactivated and at least one of the following conditions
is met:

• shortage of free blocks would prevent storing of checkpoint data

• garbage collection is initiated from a background thread

• garbage collection is initiated from a foreground thread and the number of free
chunks within free blocks does not exceed one quarter of the total number of free
chunks on the device

As can be seen in Listing 3.8, YAFFS2 checks for necessity of garbage collection up to
two times. However, the second check is only performed if the first check leads to garbage
collection and garbage collection does not free up enough space. If, after a first garbage
collection, the number of free blocks is smaller than the number of blocks reserved for
checkpoint data and a block for garbage collection is still available, a second check is per-
formed. This second check always leads to aggressive garbage collection, as the number of
blocks reserved for checkpoint data is always smaller than the value of variable minErased
(see line 2571 of Listing 3.8), because function yaffs2 CalcCheckPointBlocksRequired

of yaffs yaffs2.c never returns a value smaller than 0. A second check can only occur
if the number of free blocks is smaller than the number of blocks reserved for checkpoint
data. Aggressive garbage collection is performed if the number of free blocks is smaller
than the value of variable minErased which is always bigger than the number of blocks
reserved for checkpoint data. Therefore, the if-statement in line 2575 of Listing 3.8
always returns true during a second check, thus causing aggressive garbage collection.

After checking necessity of garbage collection, selection of a block to actually garbage
collect is performed as second step of every garbage collection. This step is skipped if
a block for garbage collection has already been selected in an earlier garbage collection
cycle and has not yet been completely garbage collected. If no block for garbage col-
lection has been selected, either function yaffs FindBlockForGarbageCollection or
function yaffs2 FindRefreshBlock is called to select a block for garbage collection.
If passive garbage collection is performed, first function yaffs2 FindRefreshBlock of
yaffs yaffs2.c is called. This function’s purpose is to enable block refreshing, a wear
leveling technique. Function yaffs2 FindRefreshBlock returns the oldest block in state
FULL with the oldest block being the block with the lowest sequence number and thus
the block that has not been written to for longer than any other block. However,
yaffs2 FindRefreshBlock only returns this block if a fixed number of blocks have been
selected for garbage collection beforehand by function yaffs FindBlockForGarbage

Collection. By default, yaffs2 FindRefreshBlock only returns the oldest block every
500 executions of yaffs FindBlockForGarbageCollection that actually lead to a block
being selected for garbage collection. Otherwise, yaffs2 FindRefreshBlock returns 0
and therefore does not select a block for garbage collection. If yaffs2 FindRefreshBlock

38

3.3. Garbage collection

returns the value 0 or aggressive garbage collection has been chosen, function yaffs Find

BlockForGarbageCollection is used to find a block for garbage collection.

In function yaffs FindBlockForGarbageCollection, most of the main differences
between aggressive and passive garbage collection are defined. When trying to select
a block for garbage collection, passive and aggressive garbage collection differ in three
points, which are:

• the consideration of prioritized blocks.

• the intensity with which a block to garbage collect is searched for

• the number of obsolete chunks inside a block that are necessary to make the block
a candidate for garbage collection

YAFFS2 marks a block as prioritized for garbage collection if the block shows abnormal
behavior, such as errors on read or write operations or a failed ECC check. As such errors
can indicate a forthcoming failure of a block, its prioritization for garbage collection can
prevent data loss through copying the block’s contents to the block currently selected
for allocation. However, when choosing a block to garbage collect, YAFFS2 only takes
prioritizations into consideration when garbage collection is performed passively. When
trying to find a block for passive garbage collection, YAFFS2, as can be seen in lines 2392
to 2408 of Listing 3.9, always selects the first prioritized block of a device for garbage
collection, unless this block is not in state FULL or is disqualified for garbage collection.
A block is disqualified for garbage collection if a file header chunk with a shrink header
marker can be found within the block and the block’s sequence number is higher than
another block’s sequence number and this block is in state FULL and features at least on
obsolete chunk. Hence, a block featuring a header chunk marked with a shrink header
marker is disqualified for garbage collection until it becomes the oldest of all blocks
in state FULL that contain at least one obsolete chunk. If all prioritized blocks are
disqualified for garbage collection, YAFFS2 tries to select the oldest block with obsolete
chunks for passive garbage collection.

In case garbage collection is performed aggressively or passive garbage collection failed
to select a block during its check for prioritized blocks in lines 2392 to 2423 of Listing
3.9, YAFFS2 starts a more extensive search for a block to garbage collect. The intensity
of this search depends solely on whether garbage collection is performed aggressively or
passively. However, how many obsolete chunks a block has to feature before becoming a
valid candidate for garbage collection, does not only depend on whether garbage collec-
tion is performed aggressively or passively but, in case garbage collection is performed
passively, also on whether garbage collection is triggered by a background thread or
not. As garbage collection is performed aggressively only if not enough free blocks are
available to store checkpoint data, aggressive garbage collection’s goal is to free up space
as quickly as possible. Therefore, when garbage collection is performed aggressively,
YAFFS2 searches much harder for a block to garbage collect than is does when garbage
collection is performed passively. As can be see in line 2436 and lines 2460 to 2481 of
Listing 3.9, aggressive garbage collection, if necessary, checks all of a device’s blocks for
their suitability to be garbage collected. Passive garbage collection does not need to
free up space as quickly as aggressive garbage collection and thus does not search for a
block to garbage collect as intensely as aggressive garbage collection. Passive garbage

39

3. Analysis of YAFFS2

collection checks at least one-sixteenth of all a device’s blocks plus one block but maxi-
mal 100 blocks. Both aggressive and passive garbage collection check a device’s blocks
sequentially starting from the block the last search for a block to garbage collect has
stopped at. As can be seen in lines 2474 to 2480 of Listing 3.9, both aggressive and
passive garbage collection first select the best block for garbage collection from those
blocks getting checked, which in case of aggressive garbage collection are all blocks. A
block is suitable for garbage collection if it is in state FULL, has obsolete chunks and is
not disqualified for garbage collection. From all blocks checked that meet these require-
ments the block featuring the most obsolete chunks is selected as the best candidate for
being garbage collected.

If this best candidate is finally actually selected to be garbage collected, again, de-
pends on the mode garbage collection is performed in. As can be seen in line 2483 of
Listing 3.9, before a block is selected to be garbage collected, one last check is performed.
Because of this check, the best candidate for garbage is only selected to be garbage col-
lected if the number of its chunks containing valid data does not exceed a a certain
threshold. The actual value of this threshold depends on the mode garbage collection is
performed in. In case garbage collection is performed aggressively, the threshold value
equals the number of chunks per block so that the best candidate is always selected
to be garbage collected, even if it features only one single obsolete chunk. As passive
garbage collection does not need to free up space as quickly as aggressive garbage col-
lection, it has no need to garbage collect blocks that feature only a very small amount
of obsolete chunks. Thus, the threshold is set to a smaller value when garbage collection
is performed passively. As can be seen in lines 2438 to 2458 of Listing 3.9, the value
used as threshold also depends on whether passive garbage collection is a background
garbage collection or not. In case passive garbage collection is a background garbage
collection, the threshold is set to at least double the number of skipped garbage collec-
tions increased by 2 and maximal one half of the number of chunks per block. Thus,
background garbage collection accepts a higher number of valid chunks inside a block to
be garbage collected after every skipped garbage collection but never garbage collects a
block that has more than half of its chunks in use. If the value chosen for the thresh-
old is smaller than the value of YAFFS GC PASSIVE THRESHOLD, which by default is four,
YAFFS GC PASSIVE THRESHOLD is used as threshold. A garbage collection is skipped, if
none of the blocks checked meets all requirements to be garbage collected. As seen
above, this can only happen in case garbage collection is performed passively. In case
passive garbage collection is not a background garbage collection the threshold is set
to at least the value of YAFFS GC PASSIVE THRESHOLD and maximal one-eighth of the
number of chunks per block. The combination of passive garbage collection’s limited
intensity of search for a block to garbage collect and the threshold requirement is the
reason that passive garbage collection does not always find a block to garbage collect
and thus is skipped. As passive garbage collection only checks a subset of all blocks
for their suitability to be garbage collected it is likely that no suitable block is found.
Additionally, if a suitable block is found there is still no guarantee that this block is
actually selected to be garbage collected because of the threshold requirement. To miti-
gate this problem, YAFFS2 keeps track of the number of consecutively skipped garbage
collections. If passive garbage collection has been consecutively skipped often enough,
YAFFS2 tries to select the device’s oldest block in state FULL that features at least one

40

3.3. Garbage collection

obsolete chunk to be garbage collected. As can be seen in lines 2492 to 2503 of listing
3.9, for this to happen, passive garbage collection must have been skipped ten consecu-
tive times in case of background garbage collection and twenty consecutive times in case
garbage collection was triggered by a foreground thread. In the following, this way to
select a block for garbage collection is also referred to as oldest dirty garbage collection.

2379 static unsigned yaffs_FindBlockForGarbageCollection(yaffs_Device *dev ,

2380 int aggressive ,

2381 int background)

2382 {

2383 int i;

2384 int iterations;

2385 unsigned selected = 0;

2386 int prioritised = 0;

2387 int prioritisedExists = 0;

2388 yaffs_BlockInfo *bi;

2389 int threshold;

2390

2391 /* First let ’s see if we need to grab a prioritised block */

2392 if (dev ->hasPendingPrioritisedGCs && !aggressive) {

2393 dev ->gcDirtiest = 0;

2394 bi = dev ->blockInfo;

2395 for (i = dev ->internalStartBlock;

2396 i <= dev ->internalEndBlock && !selected;

2397 i++) {

2398

2399 if (bi ->gcPrioritise) {

2400 prioritisedExists = 1;

2401 if (bi->blockState == YAFFS_BLOCK_STATE_FULL &&

2402 yaffs2_BlockNotDisqualifiedFromGC(dev , bi)) {

2403 selected = i;

2404 prioritised = 1;

2405 }

2406 }

2407 bi++;

2408 }

2409

2410 /*

2411 * If there is a prioritised block and none was selected then

2412 * this happened because there is at least one old dirty block

gumming

2413 * up the works. Let ’s gc the oldest dirty block.

2414 */

2415

2416 if(prioritisedExists &&

2417 !selected &&

2418 dev ->oldestDirtyBlock > 0)

2419 selected = dev ->oldestDirtyBlock;

2420

2421 if (! prioritisedExists) /* None found , so we can clear this */

2422 dev ->hasPendingPrioritisedGCs = 0;

2423 }

2424

2425 /* If we’re doing aggressive GC then we are happy to take a less -dirty block

, and

2426 * search harder.

2427 * else (we’re doing a leasurely gc), then we only bother to do this if the

2428 * block has only a few pages in use.

2429 */

2430

2431 if (! selected){

2432 int pagesUsed;

2433 int nBlocks = dev ->internalEndBlock - dev ->internalStartBlock + 1;

2434 if (aggressive){

2435 threshold = dev ->param.nChunksPerBlock;

2436 iterations = nBlocks;

2437 } else {

2438 int maxThreshold;

41

3. Analysis of YAFFS2

2439

2440 if(background)

2441 maxThreshold = dev ->param.nChunksPerBlock /2;

2442 else

2443 maxThreshold = dev ->param.nChunksPerBlock /8;

2444

2445 if(maxThreshold < YAFFS_GC_PASSIVE_THRESHOLD)

2446 maxThreshold = YAFFS_GC_PASSIVE_THRESHOLD;

2447

2448 threshold = background ?

2449 (dev ->gcNotDone + 2) * 2 : 0;

2450 if(threshold <YAFFS_GC_PASSIVE_THRESHOLD)

2451 threshold = YAFFS_GC_PASSIVE_THRESHOLD;

2452 if(threshold > maxThreshold)

2453 threshold = maxThreshold;

2454

2455 iterations = nBlocks / 16 + 1;

2456 if (iterations > 100)

2457 iterations = 100;

2458 }

2459

2460 for (i = 0;

2461 i < iterations &&

2462 (dev ->gcDirtiest < 1 ||

2463 dev ->gcPagesInUse > YAFFS_GC_GOOD_ENOUGH);

2464 i++) {

2465 dev ->gcBlockFinder ++;

2466 if (dev ->gcBlockFinder < dev ->internalStartBlock ||

2467 dev ->gcBlockFinder > dev ->internalEndBlock)

2468 dev ->gcBlockFinder = dev ->internalStartBlock;

2469

2470 bi = yaffs_GetBlockInfo(dev , dev ->gcBlockFinder);

2471

2472 pagesUsed = bi->pagesInUse - bi->softDeletions;

2473

2474 if (bi->blockState == YAFFS_BLOCK_STATE_FULL &&

2475 pagesUsed < dev ->param.nChunksPerBlock &&

2476 (dev ->gcDirtiest < 1 || pagesUsed < dev ->

gcPagesInUse) &&

2477 yaffs2_BlockNotDisqualifiedFromGC(dev , bi)) {

2478 dev ->gcDirtiest = dev ->gcBlockFinder;

2479 dev ->gcPagesInUse = pagesUsed;

2480 }

2481 }

2482

2483 if(dev ->gcDirtiest > 0 && dev ->gcPagesInUse <= threshold)

2484 selected = dev ->gcDirtiest;

2485 }

2486

2487 /*

2488 * If nothing has been selected for a while , try selecting the oldest dirty

2489 * because that ’s gumming up the works.

2490 */

2491

2492 if(! selected && dev ->param.isYaffs2 &&

2493 dev ->gcNotDone >= (background ? 10 : 20)){

2494 yaffs2_FindOldestDirtySequence(dev);

2495 if(dev ->oldestDirtyBlock > 0) {

2496 selected = dev ->oldestDirtyBlock;

2497 dev ->gcDirtiest = selected;

2498 dev ->oldestDirtyGCs ++;

2499 bi = yaffs_GetBlockInfo(dev , selected);

2500 dev ->gcPagesInUse = bi->pagesInUse - bi->softDeletions;

2501 } else

2502 dev ->gcNotDone = 0;

2503 }

2504

2505 if(selected){

2506 T(YAFFS_TRACE_GC ,

2507 (TSTR("GC Selected block %d with %d free , prioritised :%d" TENDSTR)

,

42

3.4. Wear leveling

2508 selected ,

2509 dev ->param.nChunksPerBlock - dev ->gcPagesInUse ,

2510 prioritised));

2511

2512 dev ->nGCBlocks ++;

2513 if(background)

2514 dev ->backgroundGCs ++;

2515

2516 dev ->gcDirtiest = 0;

2517 dev ->gcPagesInUse = 0;

2518 dev ->gcNotDone = 0;

2519 if(dev ->refreshSkip > 0)

2520 dev ->refreshSkip --;

2521 } else{

2522 dev ->gcNotDone ++;

2523 T(YAFFS_TRACE_GC ,

2524 (TSTR("GC none: finder %d skip %d threshold %d dirtiest %d using %

d oldest %d%s" TENDSTR),

2525 dev ->gcBlockFinder , dev ->gcNotDone ,

2526 threshold ,

2527 dev ->gcDirtiest , dev ->gcPagesInUse ,

2528 dev ->oldestDirtyBlock ,

2529 background ? " bg" : ""));

2530 }

2531

2532 return selected;

2533 }

Listing 3.9: Function yaffs FindBlockForGarbageCollection (Excerpt from
yaffs guts.c)

As seen above, YAFFS2 puts a lot of effort in selecting a block for garbage collection
and knows a variety of reasons why not to garbage collect a specific block. Nonetheless,
a basic goal in selecting a block to garbage collect is recognizable. This is the goal to
select the dirtiest and oldest block possible for garbage collection.

After checking for necessity of garbage collection and selecting a block to garbage
collect, the third and last step of every garbage collection cycle consists of actually
copying valid chunks from the selected block to the block currently allocated for write
operations. This task is performed by function yaffs GarbageCollectBlock (lines 2102
to 2372 of yaffs guts.c). This function shows the last important difference between
aggressive and passive garbage collection. While aggressive garbage collection collects
the whole block at one go, passive garbage collection only collects five valid chunks per
garbage collection cycle. Because of that, passive garbage collection can need several
garbage collection cycles to collect a block. Once a block has been completely collected,
its state is set to DIRTY which leads to its immediate deletion and transition into state
EMPTY. Additionally, if the block selected for garbage collection is a block containing
checkpoint data, the block’s state is also set to DIRTY immediately and no chunks are
copied off.

3.4. Wear leveling

One of the issues that a NAND flash filesystem has to deal with, is flash memory’s limited
endurance. Flash memory’s erase blocks can only endure a limited number of erase and
rewrite cycles, typically ranging from 104 to 106 cycles [18]. In order to prevent single

43

3. Analysis of YAFFS2

blocks to wear out faster than the device’s other blocks, write and erase operations have
to be evenly distributed among all of a flash memory’s blocks. Techniques to achieve
such a distribution of write and erase cycles are referred to as wear leveling and are an
important feature of flash memory file systems.

Basically, a flash memory file system has two options to perform wear leveling. These
can be described as explicit and implicit wear leveling techniques. A flash file system
performing explicit wear leveling features special functionality exclusively dedicated to
perform wear leveling, whereas a flash file system performing implicit wear leveling does
not feature any special functionality regarding wear leveling. Implicit wear leveling relies
on the basic design of the flash file system to evenly distribute erase and write load among
the flash memory’s blocks.

YAFFS2 performs wear leveling mainly implicitly but also features one explicit wear
leveling technique, block refreshing. YAFFS2’s design implicitly supports wear leveling
in several ways. First of all, YAFFS2 does not use any central structures, such as a file
allocation table. Therefore, YAFFS2 has no need to write such data to fixed addresses
on the flash memory, hence preventing that blocks at these addresses wear out much
faster than other blocks of the flash memory. Additionally to not writing specific blocks
excessively often, YAFFS2 distributes its write operations evenly by means of its block
allocation policy. As already depicted in Listing 3.2, as long as free blocks exist on a
flash memory, YAFFS2, being a truly log-structured file system, tries to allocate them in
sequential order. Thus, YAFFS2 achieves a certain level of wear leveling solely implicitly.
Additionally, YAFFS2 can use its block refreshing technique to distribute block usage
evenly among all blocks of a NAND. Block refreshing, in short, tries to spread wear
by moving the oldest full block’s content to other blocks and erasing the oldest block.
In doing so, block refreshing ensures that every block is erased at some point, even if
no obsolete chunks can be found on that block and thus the block is not a candidate
for regular garbage collection. Although block refreshing can be disabled at compile
time, it is enabled by default. As already mentioned in Section 3.3, block refreshing
is a task performed by YAFFS2’s garbage collector. As can be seen in line 2597 of
Listing 3.8, block refreshing can only occur, if a check for necessity of garbage collection
proves passive garbage collection necessary and no block has already been selected to be
garbage collected.

142 __u32 yaffs2_FindRefreshBlock(yaffs_Device *dev)

143 {

144 __u32 b ;

145

146 __u32 oldest = 0;

147 __u32 oldestSequence = 0;

148

149 yaffs_BlockInfo *bi;

150

151 if(!dev ->param.isYaffs2)

152 return oldest;

153

154 /*

155 * If refresh period < 10 then refreshing is disabled.

156 */

157 if(dev ->param.refreshPeriod < 10)

158 return oldest;

159

160 /*

161 * Fix broken values.

44

3.5. Summary

162 */

163 if(dev ->refreshSkip > dev ->param.refreshPeriod)

164 dev ->refreshSkip = dev ->param.refreshPeriod;

165

166 if(dev ->refreshSkip > 0)

167 return oldest;

168

169 /*

170 * Refresh skip is now zero.

171 * We’ll do a refresh this time around

172 * Update the refresh skip and find the oldest block.

173 */

174 dev ->refreshSkip = dev ->param.refreshPeriod;

175 dev ->refreshCount ++;

176 bi = dev ->blockInfo;

177 for (b = dev ->internalStartBlock; b <=dev ->internalEndBlock; b++){

178

179 if (bi->blockState == YAFFS_BLOCK_STATE_FULL){

180

181 if(oldest < 1 ||

182 bi->sequenceNumber < oldestSequence){

183 oldest = b;

184 oldestSequence = bi ->sequenceNumber;

185 }

186 }

187 bi++;

188 }

189

190 if (oldest > 0) {

191 T(YAFFS_TRACE_GC ,

192 (TSTR("GC refresh count %d selected block %d with sequenceNumber %

d" TENDSTR),

193 dev ->refreshCount , oldest , oldestSequence));

194 }

195

196 return oldest;

197 }

Listing 3.10: Function yaffs FindRefreshBlock (Excerpt from yaffs yaffs2.c)

As can be seen in Listing 3.10, yaffs2 FindRefreshBlock only selects the oldest
block for refreshing, if variable refreshSkip has value zero. By default, this variable
is set to value zero on mount of a YAFFS2 device [19] and to a value of 500 after
the first block refreshing. The value of refreshSkip is only decremented in function
yaffs FindBlockForGarbageCollection in case a block for garbage collection is se-
lected (see Listing 3.9). Thus, block refreshing can only occur as the first garbage
collection after mounting of a YAFFS2 device and subsequently every 500 executions of
yaffs FindBlockForGarbageCollection that lead to selection of a block for garbage
collection.

3.5. Summary

In this chapter we introduced YAFFS2’s basic characteristics and behavior. In the first
part of this chapter we showed that YAFFS2 is a truly log-structured file system which
makes it highly likely that parts of deleted or modified files can be found on a YAFFS2
device within a forensic investigation. In this chapter, we also introduced YAFFS2 way to
use NAND flash memory’s pages’ OOB areas to organize data and analyzed discrepancies
between YAFFS2’s documentation and its actual behavior. As can be seen in Section

45

3. Analysis of YAFFS2

3.2 of this chapter, YAFFS2’s documentation proved to be generally accurate but did
not provide detailed information on some of YAFFS2’s behavior’s aspects, especially
YAFFS2’s garbage collection techniques.

During the analysis of YAFFS2’s garbage collection techniques it became obvious that
garbage collection has substantial impact on the amount of obsolete chunks containing
potential evidence that can be recovered from a YAFFS2 device within a forensic anal-
ysis. As can be seen in Section 3.3 of this chapter, YAFFS2 uses sophisticated methods
to decide whether garbage collection has to be performed and, if yes, which block is best
suited to be garbage collected. Despite the complexity of YAFFS2’s garbage collector’s
techniques to select a block for garbage collection, a basic goal of these techniques be-
came clear, namely to select that block for garbage collection that features the largest
number of obsolete chunks. Additionally, preferably older blocks are garbage collected.
We discovered that YAFFS2 uses aggressive garbage collection only in case a NAND
does not have enough free blocks available to store checkpoint data. The answer to
the question whether garbage collection has to be performed at a specific time depends
mostly on the ratio of free chunks within free blocks to the total amount of free chunks
and on the kind of thread that was used to invoke a check for garbage collection. As can
be seen in Section 3.3 of this chapter, a check for necessity of garbage collection only
leads to further steps of garbage collection if storage space is so scarce that aggressive
garbage collection is necessary, the check was invoked by a background check or at max
one quarter of all a device’s free chunks reside within free blocks. A further analysis
and practical evaluation of YAFFS2’s garbage collection techniques and their impact on
forensic analyses of YAFFS2 devices is provided in Chapter 4 and Chapter 5.

In the last part of this chapter, we analyzed YAFFS2’s wear leveling techniques.
As can be seen in Section 3.4, YAFFS2 performs wear leveling mostly implicitly and
uses its garbage collector for explicit wear leveling also called block refreshing. Block
refreshing is at least performed during the first execution of garbage collection after a
YAFFS2 device has been mounted. Additionally, block refreshing is performed on a
regular basis, by default every 500 times a block is selected to be garbage collected.
Block refreshing is just a variant of regular garbage collection with the crucial difference
that block refreshing always selects the oldest block for garbage collection, regardless of
the number of obsolete chunks within this block.

46

4. YAFFS2 in a forensic view

In Chapter 3, we introduced and analyzed YAFFS2’s behavior and functionalities. Based
on the findings acquired in the last chapter, we discuss the effects of YAFFS2’s behavior
on forensic analyses of YAFFS2 NAND flash memory devices in this chapter. In Section
4.1 and Section 4.2, we discuss the influences of YAFFS2’s wear leveling techniques and
shrink header markers on the amount of data that can be recovered from a YAFFS2
NAND. In Section 4.3, we discuss and analyze YAFFS2’s garbage collector in a forensic
perspective. This includes a discussion of best case and worst case scenarios regard-
ing recovery of obsolete chunks from a YAFFS2 NAND. We practically analyze these
scenarios in Chapter 5.

4.1. Wear leveling

YAFFS2’s only explicit wear leveling technique is block refreshing. As analyzed in Chap-
ter 3, block refreshing is only performed during the first execution of garbage collection
after mounting of a YAFFS2 NAND flash memory device and every 500 times a block
is selected for garbage collection by function yaffs FindBlockForGarbageCollection.
Basically, block refreshing is a variant of garbage collection that does not pay attention
to the number of obsolete chunks within the block that is to be garbage collected. In-
stead, block refreshing’s goal is to move a block’s contents to another location on the
NAND in order to distribute erase operations evenly. Block refreshing always selects the
device’s oldest block for garbage collection, regardless of the number of obsolete chunks
within this block. Thus, if the oldest block does not contain any obsolete chunks, block
refreshing does not lead to deletion of data, as all the oldest block’s chunks are copied
to the current allocation block.

In comparison to regular garbage collection, block refreshing does occur relatively
seldom and does not necessarily lead to deletion of obsolete chunks and thus loss of
possible evidence. Therefore, influence of block refreshing on the amount of recoverable
data can be considered relatively insignificant.

4.2. Shrink header markers

As analyzed in Section 3.2 and Section 3.3 of this diploma thesis, shrink header markers
can delay garbage collection of a block. As analyzed in Section 3.3, a block that features
an object header chunk marked with a shrink header marker is disqualified for garbage

47

4. YAFFS2 in a forensic view

collection unless the block is the device’s oldest dirty block. A block is defined as dirty if
it is in state FULL and contains at least one obsolete chunk. Thus, as defined in function
yaffs2 CalcOldestDirtySequence (see lines 43 to 71 of yaffs yaffs2.c), the oldest
dirty block is that dirty block that features the lowest block sequence number. A dirty
block is not to be confused with a block in state DIRTY. A block that is in state DIRTY

does not feature any valid chunks at all.

From a forensic point of view, shrink header markers can play an important role.
As a block containing an object header chunk marked with a shrink header marker
is disqualified for garbage collection, its contents can remain stored on a device for a
comparatively long time without being deleted by YAFFS2’s garbage collector. Hence,
even a block that features a large number of obsolete chunks and thus constitutes a
preferred candidate for garbage collection can stay undeleted for a long time. As blocks
with a high number of obsolete chunks also have the potential to contain a high amount
of recoverable data relevant to a forensic inquiry, shrink header markers can be a decisive
factor in a forensic analysis. We practically evaluate the effects of shrink header markers
on the recoverability of obsolete chunks in Chapter 5

4.3. Garbage Collection

Among all of YAFFS2’s characteristics and functionalities, YAFFS2’s garbage collector
obviously has the most significant impact on the amount of deleted or modified data
that can be recovered from a YAFFS2 NAND. As analyzed in Chapter 3 of this diploma
thesis, YAFFS2 never overwrites chunks or deletes single chunks without completely
erasing their respective blocks beforehand. Thus, all data ever written to a block is
recoverable until the respective block gets erased during garbage collection. In the
following, we introduce and discuss best case and worst scenarios regarding garbage
collection.

4.3.1. Best and worst case scenarios

As shown in Chapter 3, execution of garbage collection does not primarily depend on
a device’s storage occupancy. Background garbage collection even occurs completely
independent of a device’s storage occupancy. As described in Chapter 3, passive garbage
collection is executed directly after a write operation only in case at max one quarter
of all free chunks are located in free blocks. As long as this is not the case, passive
garbage collection is only executed as background garbage collection, respectively oldest
dirty garbage collection. A device’s storage occupancy is mainly relevant regarding
the question whether aggressive garbage collection is necessary and how soon after a
modification or deletion garbage collection is executed, not regarding the question how
often garbage collection is performed.

Every garbage collection potentially destroys evidence. Thus, from a forensic point of
view, a best case scenario regarding garbage collection of a YAFFS2 NAND to be an-
alyzed includes only a minimum of executed garbage collection cycles, whereas a worst

48

4.3. Garbage Collection

case scenario includes a high number of executed garbage collection cycles, especially
aggressive garbage collection cycles. In the following, we introduce occupancy patterns
representing these best case and worst case scenarios. Although existence of these sce-
narios is theoretically possible, actually being able to create such a scenario in practice
is not necessarily possible. We further discuss this in Section 4.3.2.

Best case scenarios

From a forensic point of view, a best case scenario regarding recovery of deleted or
modified data is a scenario that enables a maximum of obsolete data to be recovered
from a device. As discussed above, the amount of obsolete data that can be recovered
from a YAFFS2 NAND depends heavily on the way obsolete and current chunks are
distributed among the device’s blocks. Additionally, the ratio of obsolete chunks to
valid chunks within a block is crucial to the amount of obsolete chunks that can be
recovered from a YAFFS2 NAND.

As analyzed in Chapter 3, aggressive garbage collection occurs if a device does not
feature enough free blocks to store checkpoint data. As aggressive garbage collection
potentially deletes a higher number of obsolete chunks per garbage collection cycle than
passive garbage collection, aggressive garbage collection should never occur in a best
case scenario. Thus, in a best case scenario, a device features at least n free blocks
during its whole time of usage with n having the following value:

n = number of reserved blocks
+ number of complete blocks actually necessary to store current checkpoint data
− number of blocks currently used for checkpoint data
+ 4

By default, YAFFS2 reserves five blocks for checkpoint data (see line 2891 of
yaffs fs.c). However, the number of blocks actually necessary to store checkpoint
data depends on the number of objects stored on a device and is calculated in function
yaffs2 CalcCheckpointBlocksRequired of yaffs yaffs2.c.

213 int yaffs2_CalcCheckpointBlocksRequired(yaffs_Device *dev)

214 {

215 int retval;

216

217 if(!dev ->param.isYaffs2)

218 return 0;

219

220 if (!dev ->nCheckpointBlocksRequired &&

221 yaffs2_CheckpointRequired(dev)){

222 /* Not a valid value so recalculate */

223 int nBytes = 0;

224 int nBlocks;

225 int devBlocks = (dev ->param.endBlock - dev ->param.startBlock + 1);

226

227 nBytes += sizeof(yaffs_CheckpointValidity);

228 nBytes += sizeof(yaffs_CheckpointDevice);

229 nBytes += devBlocks * sizeof(yaffs_BlockInfo);

230 nBytes += devBlocks * dev ->chunkBitmapStride;

231 nBytes += (sizeof(yaffs_CheckpointObject) + sizeof(__u32)) * (dev ->

nObjects);

49

4. YAFFS2 in a forensic view

232 nBytes += (dev ->tnodeSize + sizeof(__u32)) * (dev ->nTnodes);

233 nBytes += sizeof(yaffs_CheckpointValidity);

234 nBytes += sizeof(__u32); /* checksum */

235

236 /* Round up and add 2 blocks to allow for some bad blocks , so add 3

*/

237

238 nBlocks = (nBytes /(dev ->nDataBytesPerChunk * dev ->param.

nChunksPerBlock)) + 3;

239

240 dev ->nCheckpointBlocksRequired = nBlocks;

241 }

242

243 retval = dev ->nCheckpointBlocksRequired - dev ->blocksInCheckpoint;

244 if(retval < 0)

245 retval = 0;

246 return retval;

247 }

Listing 4.1: Function yaffs CalcCheckpointBlocksRequired (Excerpt from
yaffs yaffs2.c)

As can be seen in Listing 4.1, the number of blocks needed to store a checkpoint
consists of a fixed number of bytes used for checksums and general information regarding
the device and a variable number of bytes depending on the number of objects stored
on the device and the device’s size. For the following calculations the sizes of all data
types are the sizes they feature in a Linux environment.

278 typedef struct {

279

280 int softDeletions :10;

281 int pagesInUse :10;

282 unsigned blockState :4;

283 __u32 needsRetiring :1;

284

285 __u32 skipErasedCheck :1;

286 __u32 gcPrioritise :1;

287

288 __u32 chunkErrorStrikes :3;

289

290 #ifdef CONFIG_YAFFS_YAFFS2

291 __u32 hasShrinkHeader :1;

292 __u32 sequenceNumber;

293 #endif

294

295 } yaffs_BlockInfo;

296 [...]

487 typedef struct {

488 int structType;

489 __u32 objectId;

490 __u32 parentId;

491 int hdrChunk;

492 yaffs_ObjectType variantType :3;

493 __u8 deleted :1;

494 __u8 softDeleted :1;

495 __u8 unlinked :1;

496 __u8 fake :1;

497 __u8 renameAllowed :1;

498 __u8 unlinkAllowed :1;

499 __u8 serial;

500

501 int nDataChunks;

502 __u32 fileSizeOrEquivalentObjectId;

503 } yaffs_CheckpointObject;

50

4.3. Garbage Collection

504 [...]

793 typedef struct {

794 int structType;

795 int nErasedBlocks;

796 int allocationBlock;

797 __u32 allocationPage;

798 int nFreeChunks;

799

800 int nDeletedFiles;

801 int nUnlinkedFiles;

802 int nBackgroundDeletions;

803

804 /* yaffs2 runtime stuff */

805 unsigned sequenceNumber;

806

807 } yaffs_CheckpointDevice;

808

809

810 typedef struct {

811 int structType;

812 __u32 magic;

813 __u32 version;

814 __u32 head;

815 } yaffs_CheckpointValidity;

Listing 4.2: Structs used to calculate the number of blocks needed to store checkpoint
data (Excerpt from yaffs guts.h)

The data types u32, u16 and u8 are defined in lines 32 to 34 of devextras.h

and have the following sizes:

• u32: four bytes

• u16: two bytes

• u8: one byte

As mentioned above, a checkpoint consists of a part of fixed size and a part of vari-
able size. The part of fixed size consists of the structs yaffs CheckpointValidity,
yaffs CheckpointDevice and a checksum of data type u32. As yaffs Checkpoint

Validity is used to mark the beginning and the end of checkpoint data, it is used twice
within every checkpoint. Thus, as can be seen in Listing 4.2, every checkpoint needs 72
bytes for its part of fixed size. The variable part of a checkpoint consists of information
on blocks, objects and tnodes. YAFFS2 keeps a so-called tnode tree in RAM for every
object. This tree is used to provide mapping of object positions to actual chunk posi-
tions on a NAND flash memory device. This tree’s nodes are called tnodes. To store
information on blocks, objects and tnodes in a checkpoint, 12 bytes per block, 32 bytes
per object and 8 bytes per tnode are needed.

Passive garbage collection only collects blocks with a certain number of obsolete
chunks. Background garbage collection only garbage collects blocks with at least half
of their chunks being obsolete chunks. Passive garbage collection that was triggered
by a foreground thread such as a write operation only garbage collects blocks with at
least seven-eighths of their chunks being obsolete chunks. Hence, as long as every block
of a device has at least half of its chunks filled with valid data, the only way a block
can be garbage collected is through oldest dirty garbage collection or block refreshing.

51

4. YAFFS2 in a forensic view

Oldest dirty garbage collection occurs every time garbage collection has been skipped
ten, respectively twenty, consecutive times (see Section 3.3). Oldest dirty garbage col-
lection selects the oldest block that features at least one obsolete chunk and cannot be
prevented.

Thus, a best case scenario requires that, during the whole time of its usage, a device
features enough free blocks to store checkpoint data and a distribution of obsolete and
valid chunks that leads to every block having just more than half of its chunks being
valid. Additionally, enough free blocks must be available to ensure that more than one
quarter of all free chunks is located within empty blocks. That way, all blocks are garbage
collected as seldom as possible and still feature a high number of obsolete chunks that
potentially contain evidence. As in such a scenario all blocks can only be selected for
garbage collection by oldest dirty garbage collection, shrink header markers do not play
a crucial role.

Worst case scenarios

From a forensic point of view, a worst case scenario regarding recovery of deleted or
modified data is a scenario that enables a minimum of obsolete data to be recovered from
a device. As discussed above, only garbage collection can lead to deletion of obsolete
chunks. Thus, a worst case scenario is a scenario in which every check for necessity of
garbage collection of a block containing obsolete chunks leads to actual garbage collection
and as many garbage collection cycles as possible are performed aggressively. Obviously,
the unlikely case of a NAND that does not contain any obsolete chunks at all also
constitutes a worst case scenario. As in this case no recoverable obsolete data exists
on the device in the first place, we do not further consider this scenario. Hence, in the
following, a worst case scenario is a scenario where a certain amount of obsolete chunks
exists on a device but their contribution on the device and the degree of the device’s
storage occupancy lead to a maximum of deletions of obsolete chunks.

As analyzed in Section 3.3 of this diploma thesis, garbage collection is performed
aggressively if a device does not feature enough free blocks to store checkpoint data.
Thus, the amount of obsolete data deleted due to aggressive garbage collection is at its
max in case a device’s storage occupancy does not leave enough free blocks for checkpoint
data. In order to garbage collect a block, at least one free block must exist on a device
to store valid chunks that have to be copied off from the block to be garbage collected.
Thus, in a worst case scenario, a device’s storage capacity is used to a degree that
prevents checkpoint data to be stored but leaves at least one block free for allocation.
A small number of empty blocks also increases the chance, that than one quarter or less
of the device’s free chunks is located in free blocks. Thus, a small number of empty
blocks can increase the chance of passive garbage collection being executed due to write
operations.

As mentioned before, execution of garbage collection depends heavily on the ratio of
valid chunks to obsolete chunks within a block. While aggressive garbage collection even
collects blocks that contain only one obsolete chunk, passive garbage collection accepts a
higher number of obsolete chunks within a block before garbage collecting the block. This
behavior enables another kind of worst case scenario that does not include aggressive

52

4.3. Garbage Collection

garbage collection. If a device features enough free block to store checkpoint data and
thus no aggressive garbage collection takes place, there is still the possibility that passive
garbage collection leads to a maximum of deletions of obsolete chunks. Background
garbage collection does not depend on a device’s storage occupancy and therefore is able
to delete a high amount of obsolete data even if a device’s storage capacity is hardly
used. In case each of a device’s used blocks features only four valid chunks, every check
for necessity of background garbage collection of such a block leads to collection of the
block. As can be seen in Listing 4.3, when performing background garbage collection,
YAFFS2 accepts a block for garbage collection, if the block features (dev->gcNotDone

+ 2) * 2 or less valid chunks. As dev->gcNotDone has a minimum value of zero, the
lowest threshold for execution of background garbage collection amounts to four valid
chunks per block.

2431 if (! selected){

2432 int pagesUsed;

2433 int nBlocks = dev ->internalEndBlock - dev ->internalStartBlock + 1;

2434 if (aggressive){

2435 threshold = dev ->param.nChunksPerBlock;

2436 iterations = nBlocks;

2437 } else {

2438 int maxThreshold;

2439

2440 if(background)

2441 maxThreshold = dev ->param.nChunksPerBlock /2;

2442 else

2443 maxThreshold = dev ->param.nChunksPerBlock /8;

2444

2445 if(maxThreshold < YAFFS_GC_PASSIVE_THRESHOLD)

2446 maxThreshold = YAFFS_GC_PASSIVE_THRESHOLD;

2447

2448 threshold = background ?

2449 (dev ->gcNotDone + 2) * 2 : 0;

2450 if(threshold <YAFFS_GC_PASSIVE_THRESHOLD)

2451 threshold = YAFFS_GC_PASSIVE_THRESHOLD;

2452 if(threshold > maxThreshold)

2453 threshold = maxThreshold;

2454

2455 iterations = nBlocks / 16 + 1;

2456 if (iterations > 100)

2457 iterations = 100;

2458 }

2459

2460 for (i = 0;

2461 i < iterations &&

2462 (dev ->gcDirtiest < 1 ||

2463 dev ->gcPagesInUse > YAFFS_GC_GOOD_ENOUGH);

2464 i++) {

2465 dev ->gcBlockFinder ++;

2466 if (dev ->gcBlockFinder < dev ->internalStartBlock ||

2467 dev ->gcBlockFinder > dev ->internalEndBlock)

2468 dev ->gcBlockFinder = dev ->internalStartBlock;

2469

2470 bi = yaffs_GetBlockInfo(dev , dev ->gcBlockFinder);

2471

2472 pagesUsed = bi->pagesInUse - bi->softDeletions;

2473

2474 if (bi->blockState == YAFFS_BLOCK_STATE_FULL &&

2475 pagesUsed < dev ->param.nChunksPerBlock &&

2476 (dev ->gcDirtiest < 1 || pagesUsed < dev ->

gcPagesInUse) &&

2477 yaffs2_BlockNotDisqualifiedFromGC(dev , bi)) {

2478 dev ->gcDirtiest = dev ->gcBlockFinder;

2479 dev ->gcPagesInUse = pagesUsed;

2480 }

2481 }

53

4. YAFFS2 in a forensic view

2482

2483 if(dev ->gcDirtiest > 0 && dev ->gcPagesInUse <= threshold)

2484 selected = dev ->gcDirtiest;

2485 }

Listing 4.3: Calculation of garbage collection threshold (Excerpt from yaffs guts.c)

In this scenario, a high number of obsolete chunks can be found on a YAFFS2 NAND
but their distribution leads to very quick deletion of these chunks. Thus, although
obsolete chunks exist on the device, the chance to recover these chunks is relatively small,
as garbage collection is likely to delete them before they can be recovered. However, a
block can be protected from garbage collection for a certain time if the block features
header chunks marked with shrink header markers.

4.3.2. Evaluation of best and worst case scenarios

As mentioned before, all data written to a YAFFS2 NAND remains stored on the device
until the blocks containing the data are erased during execution of garbage collection.
Therefore, recovery of modified or deleted files is always a race against YAFFS2’s garbage
collector. In the following, the above-described best and worst case scenarios are further
analyzed for their practical relevance.

As above-mentioned, the critical factor of a forensic analysis of a YAFFS2 NAND is
time. As garbage collection of the device cannot be prevented completely, sooner or
later all obsolete chunks present on the device are deleted and thus no previous ver-
sions of modified files or deleted files are recoverable at this point. The reason for that
are YAFFS2’s unpreventable oldest dirty garbage collection and block refreshing tech-
niques. Even if a YAFFS2 NAND features a chunk occupancy pattern that does not
allow aggressive and regular passive garbage collection (background garbage collection
or passive garbage collection directly after write operations), oldest dirty garbage collec-
tion is executed regularly. This is because YAFFS2 checks for necessity of background
garbage collection regularly. If background collection proves unnecessary every time it
is checked for and thus is skipped, oldest dirty garbage collection is performed regularly.
Additionally, every 500 oldest dirty garbage collections, garbage collection is performed
as block refreshing. As described in Section 3.3, by default YAFFS2 tries to execute
background garbage collection every two seconds. In case background garbage collection
cannot be executed ten consecutive times, oldest dirty garbage collection is performed.
Oldest dirty garbage collection is also performed in case garbage collection triggered by
write operations is skipped twenty consecutive time.

As shown in Section 3.3, passive garbage collection including oldest dirty garbage
collection only collects five valid chunks per execution of passive garbage collection.
Thus, not every execution of passive garbage collection necessarily leads to deletion of
a block. In case a block consisting of 64 pages respectively chunks features only one
obsolete chunk, thirteen executions of passive garbage collection are necessary before
the block gets erased. As described in Section 3.3, once a block has been selected for
garbage collection, YAFFS2 does not need to select another block to garbage collect
until the current garbage collection block is completely collected. Hence, as soon as a

54

4.3. Garbage Collection

block has been chosen for oldest dirty garbage collection, every subsequent attempt of
background garbage collection leads to collection of this block. Thus, even in a best
case scenario, even a block that features only one obsolete chunk gets erased 24 seconds
at most after it was selected for oldest dirty garbage collection. Obviously, in a best
case scenario where no garbage collection other than oldest dirty garbage collection and
block refreshing takes place, a block that becomes the oldest dirty block is not selected
for garbage collection immediately after becoming the oldest dirty block. Necessity of
background garbage collection is only checked for every two seconds. Thus, up to 22
seconds can pass before oldest dirty garbage collection selects the block for garbage
collection

To evaluate this hypothesis, we created one file of size 124 928 bytes on an otherwise
empty NAND. Due to writing of one obsolete file header chunk on creation of a file and
writing of a directory header chunk for the root directory of the device, this lead to a
completely filled block that featured exactly one obsolete chunk. As no write operations
were performed after creation of the file, passive garbage collection triggered by a fore-
ground thread could not be performed. Additionally, aggressive garbage collection was
ruled out due to only one block of the device being occupied. As the block only featured
one obsolete chunk, regular background garbage collection was also unable to select the
block for garbage collection. Thus, only after ten consecutive tries to background garbage
collect a block, the block was selected for oldest dirty garbage collection. Subsequently,
the block was garbage collected every two seconds due to background garbage collection.

As can be seen in Listing 4.4, the block containing the file is selected for garbage
collection six seconds after the last chunk of the block has been written. This is because
of background garbage collection attempts before creation of the file making oldest dirty
garbage collection necessary. As can be seen in Listing 4.5, after selection of the block
for garbage collection and subsequent execution of garbage collection, garbage collection
is executed another twelve times in order to copy all valid chunks to another block. The
reason for backgroundGCs and oldestDirtyGCs having the value one is, that only selec-
tion of a block for garbage collection increments these values. Execution of background
garbage collection increments passiveGCs. As expected, the block is deleted 24 seconds
after being selected for garbage collection. The complete log file can be found on the
attached DVD.1

11:22:50 debian -DA4 kernel: [1799.181232] yaffs_create

11:22:50 debian -DA4 kernel: [1799.181249] yaffs_mknod: parent object 1 type 3

11:22:50 debian -DA4 kernel: [1799.181265] yaffs_mknod: making oject for testFile ,

mode 81a4 dev 0

11:22:50 debian -DA4 kernel: [1799.181281] yaffs locking eec87710

11:22:50 debian -DA4 kernel: [1799.181294] yaffs locked eec87710

11:22:50 debian -DA4 kernel: [1799.181305] yaffs_mknod: making file

11:22:50 debian -DA4 kernel: [1799.181321] yaffs: Tnodes added

11:22:50 debian -DA4 kernel: [1799.181341] yaffs_MarkSuperBlockDirty () sb = f56ac400

11:22:50 debian -DA4 kernel: [1799.181357] Allocated block 1, seq 4097, 511 left

[...]

11:22:50 debian -DA4 kernel: [1799.297144] Writing chunk 63 tags 257 0

[...]

11:22:52 debian -DA4 kernel: [1801.199970] Background gc 0

11:22:52 debian -DA4 kernel: [1801.199988] GC none: finder 297 skip 9 threshold 20

dirtiest 0 using 0 oldest 0 bg

[...]

1On the attached DvD, see /Chapter4.3/kern.log smallBestCase.rtf

55

4. YAFFS2 in a forensic view

11:22:54 debian -DA4 kernel: [1803.200717] Background gc 0

11:22:54 debian -DA4 kernel: [1803.200735] GC none: finder 330 skip 10 threshold 22

dirtiest 0 using 0 oldest 0 bg

[...]

11:22:56 debian -DA4 kernel: [1805.217170] Background gc 0

11:22:56 debian -DA4 kernel: [1805.217187] GC Selected block 1 with 1 free ,

prioritised :0

11:22:56 debian -DA4 kernel: [1805.217202] yaffs: GC erasedBlocks 511 aggressive 0

11:22:56 debian -DA4 kernel: [1805.217218] Collecting block 1, in use 63, shrink 0,

wholeBlock 0

[...]

11:23:20 debian -DA4 kernel: [1829.378242] Erased block 1

Listing 4.4: Excerpt from kern.log showing garbage collection of a block with one
obsolete chunk

[...]

nBlockErasures 1

nGCCopies 63

allGCs 13

passiveGCs 13

oldestDirtyGCs 1

nGCBlocks 1

backgroundGCs 1

[...]

Listing 4.5: Excerpt from YAFFS2’s statistics showing garbage collection of a block
with one obsolete chunk

Even in a best case scenario, garbage collection cannot be prevented completely and
thus, over time, all obsolete chunks are erased. Hence, the number of previous versions
of modified files and the number of deleted files that can be recovered from a YAFFS2
NAND also depends on the time span between the execution of the file deletion or
modification and a forensic analysis of the device respectively the disconnection of the
device from its power source. Due to block refreshing and oldest dirty garbage collection,
chunks on a YAFFS2 NAND are in constant movement. As shown above, the speed of
this movement depends to a part on the occupancy of the device’s storage capacity.
However, the number and distribution of obsolete chunks on the device and the device’s
size have a much greater influence on the speed of this movement. Passive garbage
collection only checks 100 blocks at most during selection of a block to garbage collect.
Therefore, it can take longer for a specific block to be selected for garbage collection on
a large NAND featuring a high number of blocks than it would on a smaller NAND.
The movement of chunks on a YAFFS2 NAND never stops and, as long as obsolete
chunks exist on a device, always leads to deletion of obsolete chunks. Thus, a YAFFS2
NAND can stay in a state that can be considered a best case or worst case scenario
regarding recovery of obsolete chunks only for a very brief span of time. Although these
states constituting either a best case or a worst case scenario theoretically exist, they
can hardly be found in practice. However, when trying to create such a state on purpose,
taking into account the criteria described in Section 4.3.1 leads to states close to the
best case and worst case scenarios described above.

As shown in Chapter 3, the degree to which a YAFFS2 NAND flash memory device’s
capacity is used, is mostly relevant regarding the question whether garbage collection
has to be performed aggressively, not the question, whether garbage collection has to

56

4.4. Summary

be preformed at all. However, the device’s occupancy can still have a great influence on
the amount of obsolete data that can be recovered from the device. In case a YAFFS2
NAND flash memory device’s storage capacity is used to a high extend and features a
distribution of obsolete chunks matching the criteria for a best case scenario, garbage
collection of the most currently written blocks takes place only after all other blocks
have been garbage collected. This, of course, only applies if the most currently written
blocks also feature enough valid blocks to prevent being garbage collected immediately.
Thus, previous versions of modified files and deleted files can be recovered for a longer
time from a YAFFS2 NAND flash memory device that features a high number of used
blocks. Hence, in scenario close to a best case scenario, a YAFFS2 NAND flash memory
device’s capacity is used to a high extend but not so much as to make aggressive garbage
collection necessary and to enable passive garbage collection caused by write operations.

4.4. Summary

In this chapter, we discussed the effects of YAFFS2’s behavior and general functionality
on the recoverability of obsolete data from a YAFFS2 NAND. As described in Section
4.1, we showed that YAFFS2’s block refreshing does not have a significant impact on the
amount of recoverable obsolete chunks. However, shrink header markers can have great
influence on the time span in which obsolete chunks can be recovered from a specific
block. We provide practical evaluation of this in the next chapter.

As described in Section 4.3, we discovered that all obsolete chunks are deleted from a
YAFFS2 NAND after a certain time span. The length of this time span depends on the
distribution of obsolete and valid chunks on the NAND as well as on the storage capacity
of the NAND and its occupancy. We presented best case and worst case scenarios
regarding recovery of obsolete chunks and showed that these scenarios can only exist
temporarily on a YAFFS2 NAND due to constant movement of the chunks stored on
the device.

57

4. YAFFS2 in a forensic view

58

5. Recovery of files

As described in Chapter 4 of this diploma thesis, the storage capacity and occupancy of
a YAFFS2 NAND flash memory device as well as the distribution of obsolete and valid
chunks are the major influences on how long obsolete data can be recovered from the
device. In this chapter, we provide a practical evaluation of the possibilities to recover
previous versions of a modified file or a deleted file. In Section 5.1, we introduce the
tools we used for the evaluation. In Section 5.2 of this chapter, we analyze and evaluate
recovery of previous versions of a modified file. Analysis and evaluation of possibilities
to recover a deleted file from a YAFFS2 NAND are provided in Section 5.3. In Section
5.4, we compare the possibilities to recover modified or deleted files from YAFFS2 and
NTFS devices.

5.1. Used tools and side effects

Theoretically, YAFFS2 performs file modifications as described in Section 3.2.3. How-
ever, practically, the amount of chunks that are written to a NAND by YAFFS2 in the
course of a file modification depends heavily on the program used to modify the file. This
is because every program, such as a text editor, uses different techniques of handling file
modifications. For example, some text editors create swapfiles while performing modifi-
cation of a file. This leads to writing of chunks that contain unmodified and still current
content. This writing of chunks containing unmodified data can influence the amount
of modified data that can be recovered from a YAFFS2 NAND. The more chunks are
written to a NAND in the course of a file modification, the faster the respective block
gets completely filled and transitions into state FULL. As only blocks in state FULL are
candidates for garbage collection and thus possible deletion of relevant evidence, writing
more chunks than necessary in the course of a file modification can reduce the amount
of obsolete chunks that are recoverable from a device.

In order to analyze YAFFS2’s behavior regarding file modifications as accurate as
possible, influences of the program used to perform file modifications have to be kept to
a minimum. To find a program that is best-suited for an analysis of YAFFS2, we tested
several text editors for their influences on YAFFS2’s behavior regarding file modifica-
tions. Exemplarily, dumps of a YAFFS2 NAND on which a single file was modified by
use of the common Linux text editors nano and vim are depicted in Table 5.1 and Table
5.2. In the course of this tests, we created the file “testFile” on the NAND. The file had
a size of 3000 bytes, thus occupying three of the NAND’s pages. Two of these pages were
used for data chunks and one for the file header chunk. We then modified “testFile” by
overwriting the file’s last five bytes. As described in Section 3.2.3, this should have re-

59

5. Recovery of files

sulted in the file’s second data chunk along with a file header chunk being newly written
to the NAND. As can be seen in Table 5.1, use of nano lead to rewriting of all the file’s
data chunks and two additional file header chunks.1 That suggest the assumption that
nano rewrites the whole file in the course of a file’s modification. Additionally, the file’s
size was increased by one byte, probably by appending of a line break. Thus, nano is
not well suited for an analysis of YAFFS2 that minimizes external influences.

Chunk no. Content chunkID objectID nBytes

0 testFile: Header 0x80000001 0x10000101 0
1 testFile: Data 1 257 2048
2 testFile: Data 2 257 952
3 testFile: Header 0x80000001 0x10000101 3000
4 root directory: Header 0x80000000 0x30000001 0
5 testFile: Header 0x80000001 0x10000101 0
6 testFile: Header 0x80000001 0x10000101 0
7 testFile: Data 1 257 2048
8 testFile: Data 2 257 953
9 testFile: Header 0x80000001 0x10000101 3001

Table 5.1.: Result of a file modification using nano

The common Linux text editor vim proved even more unsuitable for an analysis of
YAFFS2 that minimizes external influences by the program used to modify files. As can
be seen in Table 5.2, vim wrote and deleted several swapfiles during modification of a
file thereby writing a large amount of chunks to the NAND.

As can be seen in Table 5.2, when performing modification of a file, vim did not only
change the file’s size and write several swapfiles, but also deleted the original file object
and created a new file object with the same name as the original file object.2 Thus,
vim is badly suited to be used as a tool to perform file modifications during an analysis
of YAFFS2’s behavior. As all other text editors we tested also either wrote swapfiles
or lead to other side effects, another way to perform file modification had to be used
during our analyses of YAFFS2. Therefore, unless stated otherwise, we performed all
file creations and modifications analyzed within this diploma thesis by use of some basic
custom C-programs. These programs use default C file handling techniques in order to
create and modify files with a minimum of side effects. The source code of these tools
(fileWriter, replacer and truncater) is provided in Appendix A.1 and on the DVD
delivered with this diploma thesis.3 The tool fileWriter was used to create a file and
write a specific number of bytes to the file. To truncate an existing file to a certain
length, truncater was used. To overwrite a specific number of bytes at a specific point
within a file, replacer was used. As can be seen in table 5.3, in the same scenario as
described above, use of replacer instead of vim or nano, lead to YAFFS2 performing
the file modification as described in Section 3.2.3.4

1On the attached DVD, see also: /Chapter5.1/nanddump.tools.nano.pretty
2On the attached DVD, see also: /Chapter5.1/nanddump.tools.vim.pretty
3On the attached DVD, see: /Source Code/Tools/
4On the attached DVD, see also: /Chapter5.1/nanddump.tools.replacer.pretty

60

5.1. Used tools and side effects

Chunk no. Content chunkID objectID nBytes

0 testFile: Header 0x80000001 0x10000101 0
1 testFile: Data 1 257 2048
2 testFile: Data 2 257 952
3 testFile: Header 0x80000001 0x10000101 3000
4 root directory: Header 0x80000000 0x30000001 0
5 testFile.swp: Header 0x80000001 0x10000102 0
6 testFile.swpx: Header 0x80000001 0x10000103 0
7 unlinked: Header 0x80000003 0x10000103 0
8 deleted: Header 0xc0000004 0x10000103 0
9 unlinked: Header 0x80000003 0x10000102 0
10 deleted: Header 0xc0000004 0x10000102 0
11 testFile.swp: Header 0x80000001 0x10000104 0
12 testFile.swp: Data 1 260 2048
13 testFile.swp: Data 2 260 2048
14 testFile.swp: Header 0x80000001 0x10000104 4096
15 root directory: Header 0x80000000 0x30000001 0
16 testFile.swp: Data 1 260 2048
17 testFile.swp: Data 2 260 2048
18 testFile.swp: Header 0x80000001 0x10000104 4096
19 4913: Header 0x80000001 0x10000105 0
20 4913: Header 0x80000001 0x10000105 0
21 unlinked: Header 0x80000003 0x10000105 0
22 deleted: Header 0xc0000004 0x10000105 0
23 testFile : Header 0x80000001 0x10000101 3000
24 testFile: Header 0x80000001 0x10000106 0
25 testFile: Data 1 262 2048
26 testFile: Data 2 262 953
27 testFile: Header 0x80000001 0x10000106 3001
28 testFile: Header 0x80000001 0x10000106 3001
29 testFile.swp: Data 1 260 2048
30 testFile.swp: Data 2 260 2048
31 unlinked: Header 0x80000003 0x10000101 0
32 deleted: Header 0xc0000004 0x10000101 0
33 testFile.swp: Header 0x80000001 0x10000104 4096
34 unlinked: Header 0x80000003 0x10000104 0
35 deleted: Header 0xc0000004 0x10000104 0
36 root directory: Header 0x80000000 0x30000001 0

Table 5.2.: Result of a file modification using vim

61

5. Recovery of files

Chunk no. Content chunkID objectID nBytes

0 testFile: Header 0x80000001 0x10000101 0
1 testFile: Data 1 257 2048
2 testFile: Data 2 257 952
3 testFile: Header 0x80000001 0x10000101 3000
4 root directory: Header 0x80000000 0x30000001 0
5 testFile: Data 2 257 952
6 testFile: Header 0x80000001 0x10000101 3000

Table 5.3.: Result of a file modification using replacer

All practical evaluations of YAFFS2 discussed within this chapter were performed on
a simulated NAND flash memory device. The device was simulated in RAM of a Debian
Linux system running kernel version 2.6.36 as described in Chapter 2. The simulated
NAND featured 512 blocks and each block consisted of 64 pages with a size of 2048 bytes.
Thus, the device had a storage capacity of 64 MiB. As customary, YAFFS2 reserved five
of the device’s blocks for checkpoint data and used a chunk size matching the device’s
page size. Hence, a chunk featured a size of 2048 bytes. As described in Chapter 2, for
all analyses, we created images of the simulated NAND by use of nanddump from the
mtd-utils.

All analyses of NTFS took place on a 62,5 MiB5 NTFS (version 3.1) partition of a flash
drive. The partition featured a cluster size of 2048 bytes and a sector size of 512 bytes.
All files were created and modified the same way and in the same Linux environment
as they were on the simulated YAFFS2 NAND flash memory device. For the analyses
of the flash drive’s NTFS partition, we created images of the partition by use of dd.
We then analyzed these images by use of common forensic software SleuthKit [20] and
Autopsy [21].

In the following, we focus on the analysis of best case and worst case scenarios regard-
ing recovery of modified or deleted files. Obviously, a multitude of scenarios between
a best case and a worst case scenario exist. However, a typical average case scenario
regarding recovery of files from a YAFFS2 NAND can not be universally defined. The
reason for that is, that the amount of obsolete data that can be recovered from a YAFFS2
NAND depends heavily on the way the device has been used and the time span that
has passed between deletion or modification of a file and the attempt to recover the file.
However, all scenarios between worst case and best case scenarios can be deduced from
the worst and best case scenarios we analyze in the following.

5.2. Recovery of a modified file

In this section, we analyze and discuss recovery of obsolete chunks belonging to previous
versions of a modified file from a YAFFS2 NAND flash memory device. As described

565 533 952 bytes

62

5.2. Recovery of a modified file

in Chapter 4, the amount of a file’s obsolete chunks recoverable from a YAFFS2 NAND
depends heavily on the time span between the modification and the analysis of the
device. The shorter this time span, the higher the probability that previous versions of a
modified file can be recovered. Thus, an attempt to recover a file from a YAFFS2 NAND
provides best possible results, if the recovery takes place right after the modification of
the file. Hence, in an ideal situation, the device should be disconnected from its power
source right after the file has been modified.

A smartphone’s integrated NAND flash memory storage device can be disconnected
from its power source by simply removing the smartphone’s battery. Subsequently, an
image of the device can be created by removing the device from the smartphone and
connecting it to a power source without mounting the device. As, in most cases, this
requires destruction of the smartphone and use of special hardware to connect the device
to a forensic workstation, this was not an option for the analyses we performed for this
diploma thesis. However, disconnecting a NAND flash memory device simulated in
RAM from its power source is also not possible without data loss. Thus, to analyze
the simulated NAND flash memory device’s content, another way to create an image
of the device had to be found. Creating an image of a device while the device is still
mounted does not provide valuable results as YAFFS2’s garbage collection modifies the
device’s content during creation of the image. Unmounting the device before creating
an image alters the device’s content but prevents garbage collection during creation of
the image. However, unmounting a YAFFS2 NAND only alters the device’s content to
a small degree. Additionally, these alternations are predictable and do not affect the
amount of recoverable obsolete chunks. On unmount of a YAFFS2 NAND flash memory
device, YAFFS2 writes checkpoint data to the device, thus allocating a small number of
blocks. However, YAFFS2 always keeps a sufficient number of blocks empty in order to
store checkpoint data so that no data has to be deleted in order to store checkpoint data.
Hence, for all analyses performed for this diploma thesis, we unmounted the simulated
NAND flash memory device right after the last modification of a file on the device in order
to obtain best possible results. In case a file was modified several times, no unmount and
mount operations were performed between the individual modifications, as mounting a
YAFFS2 NAND flash memory device alters the device’s content to a much higher degree
than unmounting. This, as described in Chapter 4, is because the first passive garbage
collection cycle after mounting is always performed as block refreshing. Therefore, in
case several modifications of a file were performed consecutively, we unmounted the
device after every modification to create an image and subsequently completely erased
the device. Thus, in order to perform the next modifications, all previous modifications
had to be performed again. The created images could not be written back to the device
as subsequently mounting the device would have changed the device’s content. In the
following, we discuss and analyze worst case scenarios regarding recovery of a modified
file’s previous versions.

5.2.1. Worst case

A worst case scenario regarding recovery of a specific file is given if no previous versions
of the file can be recovered after a modification of the file. This is the case if all chunks

63

5. Recovery of files

that become obsolete after the modification are located on blocks that are erased by
garbage collection very quickly after the modification was performed.

In Chapter 4 of this diploma thesis, we introduced worst case scenarios regarding re-
covery of files from a YAFFS2 NAND. These scenarios focus on the overall recoverability
of obsolete chunks from a device. However, a worst case scenario regarding recovery of
one specific file does not necessarily have to constitute an overall worst case scenario
regarding recovery of obsolete chunks from a YAFFS2 NAND. Additionally, an overall
best case scenario can still include a worst case scenario regarding recovery of one specific
file. In the following, we analyze worst case scenarios regarding recovery of a specific file
in overall best case scenarios as well as in overall worst case scenarios.

The most basic worst case scenario regarding recovery of a specific file in an overall
best case scenario consists of one file filling up all chunks but one of a block on an
otherwise empty device. The chunk not used by the file is used for the root directory’s
header chunk. Modifying the file in a way that makes up to one half of the file’s chunks
obsolete constitutes an overall best case scenario as described in Chapter 4. This is
because the only way the block containing the obsolete chunks can be erased is by oldest
dirty garbage collection. Aggressive garbage collection is not necessary as the device’s
storage capacity is hardly used. Additionally, garbage collection is not triggered by write
operations as most free chunks are located within empty blocks. Background garbage
collection can also not be executed as no block features enough obsolete blocks to be a
candidate for background garbage collection. Thus, theoretically, one previous version
of the modified file can be recovered for a very short timespan after the modification.
However, as described in Chapter 4, the block containing the obsolete chunk should be
erased 46 seconds at most after the file’s modification.

To evaluate this scenario, we created a file named “fileA” with a size of 126 976 bytes
on an otherwise empty device with a block size of 131 072 bytes as described in section
5.1. Thus, the file needed 62 of the block’s chunks for its content and one for its file header
chunk. In Table 5.4, the initial state of the YAFFS2 NAND before the modification of
“fileA” was performed is depicted. At this point, one oldest dirty garbage collection
cycle had already been performed due to the obsolete file header chunk written to the
device’s first block during creation of the file (see Section 3.2.3). Therefore, initially all
of the file’s chunks are located in the device’s second block.6

Subsequently, we overwrote the file’s last 30 data chunks. As “fileA” consisted of 62
data chunks and one header chunk, overwriting 30 of the file’s data chunks resulted in 31
chunks of the block becoming obsolete. As a block featured 64 chunks, 30 data chunks
was the maximum amount of the file’s data chunks that could be overwritten without
making the device’s second block a valid candidate for background garbage collection.
Hence, in this case, one previous version of “fileA” should have been recoverable directly
after we performed the modification but not for longer than 46 seconds at most. In
Table 5.5, a dump7 of the device created directly after the last 30 data chunks of “fileA”
had been overwritten and the device had been unmounted is depicted.

As can be seen in Table 5.5, a complete previous version of “fileA” was recoverable

6On the attached DVD, see also: /Chapter5.1/nanddump.smallWorstInOverallBest.initial.pretty
7On the attached DVD, see also: /Chapter5.2/nanddump.smallWorstInOverallBest.mod.pretty

64

5.2. Recovery of a modified file

Chunk no. Content chunkID objectID nBytes

0 - - - -
...
63 - - - -

64 root directory: Header 0x80000000 0x30000001 0
65 fileA: Data 1 257 2048
66 fileA: Data 2 257 2048
...

126 fileA: Data 62 257 2048
127 fileA: Header 0x80000001 0x10000101 126976

128 - - - -
...

Table 5.4.: Initial state before modification of “fileA”

Chunk no. Content chunkID objectID nBytes

0 Checkpoint data 1 2 2048
1 Checkpoint data 2 2 2048
2 Checkpoint data 3 2 2048
3 Checkpoint data 4 2 2048
4 Checkpoint data 5 2 2048
5 - - - -
...
63 - - - -

64 root directory: Header 0x80000000 0x30000001 0
65 fileA: Data 1 257 2048
66 fileA: Data 2 257 2048
...

126 fileA: Data 62 257 2048
127 fileA: Header 0x80000001 0x10000101 126976

128 fileA: Data 33 257 2048
129 fileA: Data 34 257 2048
...

157 fileA: Data 62 257 2048
158 fileA: Header 0x80000001 0x10000101 126976
169 - - - -
...

Table 5.5.: State directly after overwriting the last 30 chunks of “fileA” and unmount-
ing the NAND in an overall best case scenario

65

5. Recovery of files

from the device directly after the modification was performed. However, as depicted
in Listing 5.1, only 18 seconds after the modification was fully performed, no previous
version of “fileA” could be recovered anymore because the device’s second block was
deleted due to oldest dirty garbage collection. As can bee seen in Listing 5.1, eight
attempts to perform background garbage collections had already failed before “fileA”
was modified. Thus, only two more failed attempts of background garbage collection
sufficed to trigger oldest dirty garbage collection. The complete log file can be found on
the attached DVD.8

21:00:11 debian -DA4 kernel: [38480.876652] yaffs_file_write about to write writing

4096(1000) bytesto object 257 at 65536(10000)

21:00:11 debian -DA4 kernel: [38480.876673] yaffs_MarkSuperBlockDirty () sb = f5219600

21:00:11 debian -DA4 kernel: [38480.876688] Allocated block 3, seq 4099, 510 left

[...]

21:00:11 debian -DA4 kernel: [38480.946432] Writing chunk 158 tags 257 0

[...]

21:00:13 debian -DA4 kernel: [38482.731067] Background gc 0

21:00:13 debian -DA4 kernel: [38482.731086] GC none: finder 478 skip 9 threshold 20

dirtiest 0 using 0 oldest 0 bg

[...]

21:00:15 debian -DA4 kernel: [38484.748789] Background gc 0

21:00:15 debian -DA4 kernel: [38484.748807] GC none: finder 511 skip 10 threshold 22

dirtiest 0 using 0 oldest 0 bg

[...]

21:00:17 debian -DA4 kernel: [38486.762048] Background gc 0

21:00:17 debian -DA4 kernel: [38486.762071] GC Selected block 2 with 31 free ,

prioritised :0

[...]

21:00:29 debian -DA4 kernel: [38498.848095] Erased block 2

Listing 5.1: Deletion of the device’s second block 18 seconds after modification of
”fileA” in an overall best case scenario

As can be seen, even in an overall best case scenario, previous versions of a modified
file can only be recovered within a certain time span. In the following, we discuss and
analyze worst case scenarios regarding recovery of a specific file from a YAFFS2 NAND
flash memory device in an overall worst case scenario.

As discussed in Chapter 4, an overall worst case scenario is given if every check of a
dirty block for necessity of garbage collection leads to execution of garbage collection and
every execution of garbage collection leads to a maximum of deleted obsolete chunks.
Hence, the scenario we analyzed above can easily be transformed into an overall worst
case scenario by modifying “fileA” in a way that makes more than half of the device’s
second block’s chunks obsolete. As discussed above, this leads to the device’s second
block being selected for garbage collected two seconds at most after the modification is
performed. However, as passive garbage collection only collects five chunks per garbage
collection cycle, the block is not erased immediately.

Therefore, a more interesting overall worst case scenario is an overall worst case sce-
nario that includes aggressive garbage collection. Aggressive garbage collection always
collects the whole block selected for garbage collection and thus erases a block much
faster than passive garbage collection. Such an overall worst case scenario including a
worst case scenario regarding recovery of a specific file can be created by filling up a

8On the attached DVD, see /Chapter5.2/kern.log.smallWorstInOverallBest.rtf

66

5.2. Recovery of a modified file

YAFFS2 NAND to an extend that makes aggressive garbage collection necessary once
the file in question is modified. In case all of the modified file’s obsolete chunks are
located in the block being garbage collected aggressively, no previous version of the file
should be recoverable after only a very short timespan. In order to create such a scenario,
we performed the following steps:

1. Creation of a large file with a file size of 65 667 072 bytes

2. Creation of a smaller file (“fileB”) with a file size of 192 512 bytes

3. Overwriting of data chunks 23 to 53 of “fileB”

As for each file a file header chunk was written to the device as well as an additional
object header chunk for the device’s root directory, 502 of the device’s blocks were
completely filled with valid chunks after creation of the files and garbage collection of
obsolete file header chunks that had been written during the files’ creation. Additionally,
one further block featured 33 valid chunks. As can be seen in Table 5.6, these 33 chunks
were data chunks 23 to 55 of “fileB” stored in the device’s Block 512.9

Chunk no. Content chunkID objectID nBytes

...

32704 fileB: Data 23 258 2048
32705 fileB: Data 24 258 2048

...
32736 fileB: Data 55 258 2048
32737 - - - -

...
32767 - - - -

Table 5.6.: Initial content of Block 512 before modification of “fileB”

As described in Chapter 3, aggressive garbage collection is necessary if a device does
not feature enough empty blocks to store checkpoint data. This is the case if less than
n empty blocks exist on the device with n being defined as follows:

n = number of reserved blocks
+ number of complete blocks actually necessary to store current checkpoint data
− number of blocks currently used for checkpoint data
+ 4

In this scenario, no checkpoint data was stored on the device and storing checkpoint
data for the two files on the device would have needed less than a complete block. Thus,
as YAFFS2 reserves five blocks for checkpoint data by default, nine blocks had to be kept
free at all time to store checkpoint data. As above-mentioned, after creation of the two
files, 502 blocks were completely filled and one block featured 33 valid chunks. There-
fore, nine completely empty blocks existed on the device before “fileB” was modified.

9On the attached DVD, see also: /Chapter5.1/nanddump.worstInOverallWorst.initial.pretty

67

5. Recovery of files

Overwriting chunks 23 to 53 of “fileB” lead to writing of 31 data chunks and a new file
header chunk for the file. Thus, performing the modification completely filled Block 512
and occupied one chunk of a block reserved for checkpoint data, in this case the device’s
first block. Hence, aggressive garbage collection had to be performed immediately after
“fileB” was modified. As can be seen in Listing 5.2, Block 512 containing all of the file’s
obsolete chunks was erased only two seconds10 after the file’s header chunk had been
written to the device’s first block. Thus, only two seconds after the modification was
performed, no obsolete chunks of “fileB” could be recovered anymore. In case aggressive
garbage collection had not been necessary, oldest dirty garbage collection would have
been necessary to erase the block, as more than half of the block’s chunks were valid.
This shows, that aggressive garbage collection leads to much faster deletion of potentially
recoverable data than passive garbage collection does.

[...]

14:04:25 debian -DA4 kernel: [17389.830753] Allocated block 1, seq 4609, 8 left

14:04:25 debian -DA4 kernel: [17389.830771] Writing chunk 0 tags 258 0

[...]

14:04:27 debian -DA4 kernel: [17391.620181] GC Selected block 512 with 31 free , prioritised :0

14:04:27 debian -DA4 kernel: [17391.620197] yaffs: GC erasedBlocks 8 aggressive 1

[...]

14:04:27 debian -DA4 kernel: [17391.660251] Erased block 512

Listing 5.2: Deletion of Block 512 two seconds after modification of ”fileB”

In the following, we analyze best case scenarios regarding recovery of obsolete chunks
after file modifications.

5.2.2. Best case

Repeated modification of a file can lead to several different versions of the file being
stored on a YAFFS2 NAND. These obsolete versions of the file stay on the device until
the respective chunks are deleted by garbage collection. A best case scenario regarding
recovery of a specific file’s previous versions is given if all previous versions of a modified
file are recoverable from a YAFFS2 NAND for the longest time possible. As discussed in
Chapter 4, overall best case scenarios can only temporarily exist on a device, as garbage
collection constantly changes the device’s state. Best case scenarios regarding recovery
of a specific file’s previous versions can also only exist temporarily as garbage collection
erases blocks containing obsolete chunks sooner or later. In the following, we analyze
best case scenarios regarding recovery of previous versions of a specific file.

As described in Chapter 4, an overall best case scenario regarding recovery of modified
files features a distribution of obsolete and valid chunks on a device that enables no
garbage collection but oldest dirty garbage collection. In that case, obsolete chunks stay
on the device for the longest time possible. Thus, recovery of a maximum of a file’s
obsolete chunks is possible if all of these chunks are located in the device’s most recently
written blocks. Hence, a best case scenario regarding recovery of a specific file after
modifications of the file includes an overall best case scenario. Additionally, the file’s
obsolete chunks have to be located in the device’s most currently written blocks in order

10On the attached DvD, see also: /Chapter5.2/kern.log.worstInOverallWorst.rtf

68

5.2. Recovery of a modified file

to be recoverable for as long as possible. As an overall best case scenario only features
oldest dirty garbage collection, a block is only erased after all blocks featuring lower
sequence numbers have been erased. Therefore, a modified file’s obsolete chunks can be
recovered for a longer time if the device’s storage capacity is used to a large extent but
not as much as to make garbage collection other than oldest dirty garbage collection
necessary. Additionally, in this case, the time span in which recovery of a file’s obsolete
chunks is possible can be longer on a larger NAND that features a higher number of
blocks.

As depicted in Listing 5.1, modification of a file in an overall best case scenario on an
otherwise empty YAFFS2 NAND leads to quick deletion of the file’s obsolete chunks. As
described above, a modified file’s obsolete chunks should be recoverable for much longer
if the device’s storage capacity is used to a larger extend. To verify this hypothesis,
we created an overall best case scenario on a YAFFS2 NAND with ten blocks in use.
Although the device’s storage capacity was still only used to a small extend in this
scenario, this scenario is sufficient to show significant increase of the timespan in which
recovery of a modified file’s obsolete chunks was possible. To create a stable initial state
on the YAFFS2 NAND, we created ten files on the device as follows:

1. Creation of “file1” (126 976 bytes, respectively 62 data chunks)

2. Creation of “file2” (129 024 bytes, respectively 63 data chunks)

3. Creation of “file3” (129 024 bytes, respectively 63 data chunks)

4. Creation of “file4” (129 024 bytes, respectively 63 data chunks)

5. Creation of “file5” (129 024 bytes, respectively 63 data chunks)

6. Creation of “file6” (129 024 bytes, respectively 63 data chunks)

7. Creation of “file7” (129 024 bytes, respectively 63 data chunks)

8. Creation of “file8” (129 024 bytes, respectively 63 data chunks)

9. Creation of “file9” (129 024 bytes, respectively 63 data chunks)

10. Creation of “file10” (129 024 bytes, respectively 63 data chunks)

After each file creation we waited for garbage collection to be performed before we
created the next file. Thus, after all obsolete header chunks had been erased, ten of the
device’s blocks were completely filled with valid chunks. Of these chunks, 629 were data
chunks, one chunk was the root directory’s header chunk and ten chunks were used as
file header chunks. At this point, no garbage collection was performed anymore, as no
obsolete chunks existed on the device. Creation of the above-mentioned files and garbage
collection lead to the block states11 depicted in Table 5.7.

Subsequently, we created a file named “fileC” with a file size of 26 624 bytes, respec-
tively thirteen data chunks. Including the file header chunks and the root directory’s
header chunk that were written to the NAND during creation of “fileC”, this occupied
sixteen chunks of Block 30. Additionally, we modified all other files on the device in a
way that overwrote one chunk of every file. In this, we made sure that each overwritten

11On the attached DVD, see also: /Chapter5.1/nandump.bestInOverallBest.initial.pretty

69

5. Recovery of files

Block no. Block state

1 EMPTY

2 EMPTY

3 EMPTY

4 FULL

5 EMPTY

6 EMPTY

7 FULL

8 EMPTY

9 EMPTY

10 FULL

11 EMPTY

12 EMPTY

13 FULL

14 EMPTY

15 EMPTY

16 FULL

17 EMPTY

18 EMPTY

19 FULL

20 EMPTY

21 EMPTY

22 FULL

23 EMPTY

24 EMPTY

25 FULL

26 EMPTY

27 EMPTY

28 FULL

29 FULL

... EMPTY

Table 5.7.: Initial state before creation of “fileC”

70

5.2. Recovery of a modified file

chunk was located in another block so that each block featured at least one obsolete
chunk after the modifications. Immediately after these modifications, “fileC” was mod-
ified, so that no garbage collection was executed between the modifications. To create
a high number of different versions of “fileC”, the file’s first chunk was overwritten 29
consecutive times. Thus, as can be seen in Table 5.8 and Table 5.9, before garbage
collection was performed, 31 obsolete chunks of “fileC” could be found in Block 30 and
28 obsolete chunks of “fileC” in Block 31. Therefore, 29 different previous versions of
“fileC” were completely recoverable directly after the file’s last modification. As each
of the device’s blocks featured obsolete chunks and no block featured enough obsolete
chunks to make garbage collection other than oldest dirty garbage collection necessary,
Blocks 30 and 31 were not erased until all other blocks had been erased. As can be
seen in Listing 5.3, Block 30 was erased eight minutes and three seconds12 after the last
modification of “fileC” had been performed. Until then, all previous version of “fileC”
were recoverable. After deletion of Block 30, still 28 obsolete chunks of “fileC” could be
found on Block 31. Thus, fourteen previous versions of “fileC” could still be recovered
until Block 31 was finally erased eight minutes and 39 seconds after “fileC” had been
modified for the last time.

Chunk no. Content chunkID objectID nBytes
..

1920 fileC: Data 1 267 2048
1921 fileC: Header 0x80000001 0x1000010b 26624
1922 fileC: Data 1 267 2048
1923 fileC: Header 0x80000001 0x1000010b 26624
1924 fileC: Data 1 267 2048
1925 fileC: Header 0x80000001 0x1000010b 26624
1926 fileC: Data 1 267 2048
1927 fileC: Header 0x80000001 0x1000010b 26624

...
1948 fileC: Data 1 267 2048
1949 fileC: Header 0x80000001 0x1000010b 26624
1950 - - - -

...
1983 - - - -

...

Table 5.8.: Block 31 after modification of all files on the device

As can be seen, given ideal conditions, all of a file’s previous versions and obsolete
data can be recovered from a YAFFS2 NAND flash memory device for a relatively long
time. In the above-described scenario, only ten of the device’s blocks were in use before
the file to be recovered was created and modified. Given a larger device and more blocks
in use that have to be garbage collected before the blocks containing obsolete chunks of
the file in question, previous versions of the file can be recovered up to several days after

12On the attached DVD, see also: /Chapter5.1/kern.log.bestInOverallBest.rtf

71

5. Recovery of files

Chunk no. Content chunkID objectID nBytes

..

1856 fileC: Header 0x80000001 0x1000010b 0
1857 root directory: Header 0x80000000 0x30000001 0
1858 fileC: Data 1 267 2048

..
1870 fileC: Data 13 267 2048
1871 fileC: Header 0x80000001 0x1000010b 26624
1872 file1: Data 62 257 2048
1873 file1: Header 0x80000001 0x10000101 126976
1874 file2: Data 61 258 2048
1875 file2: Header 0x80000001 0x10000102 129024

..
1889 file9: Header 0x80000001 0x10000109 129024
1890 file10: Data 57 266 2048
1891 file10: Header 0x80000001 0x1000010a 129024
1892 fileC: Data 1 267 2048
1893 fileC: Header 0x80000001 0x1000010b 26624
1894 fileC: Data 1 267 2048
1895 fileC: Header 0x80000001 0x1000010b 26624
1896 fileC: Data 1 267 2048
1897 fileC: Header 0x80000001 0x1000010b 26624
1898 fileC: Data 1 267 2048
1899 fileC: Header 0x80000001 0x1000010b 26624
1900 fileC: Data 1 267 2048
1901 fileC: Header 0x80000001 0x1000010b 26624
1902 fileC: Data 1 267 2048
1903 fileC: Header 0x80000001 0x1000010b 26624
1904 fileC: Data 1 267 2048
1905 fileC: Header 0x80000001 0x1000010b 26624
1906 fileC: Data 1 267 2048
1907 fileC: Header 0x80000001 0x1000010b 26624
1908 fileC: Data 1 267 2048
1909 fileC: Header 0x80000001 0x1000010b 26624
1910 fileC: Data 1 267 2048
1911 fileC: Header 0x80000001 0x1000010b 26624
1912 fileC: Data 1 267 2048
1913 fileC: Header 0x80000001 0x1000010b 26624
1914 fileC: Data 1 267 2048
1915 fileC: Header 0x80000001 0x1000010b 26624
1916 fileC: Data 1 267 2048
1917 fileC: Header 0x80000001 0x1000010b 26624
1918 fileC: Data 1 267 2048
1919 fileC: Header 0x80000001 0x1000010b 26624

..

Table 5.9.: Block 30 after modification of all files on the device

72

5.2. Recovery of a modified file

15:25:56 debian -DA4 kernel: [19744.687465] yaffs_mknod: making oject for fileC ,

mode 81a4 dev 0

[...]

15:26:07 debian -DA4 kernel: [19754.946618] Allocated block 30, seq 4126, 501 left

[...]

15:26:11 debian -DA4 kernel: [19759.672286] Allocated block 31, seq 4127, 500 left

[...]

15:26:12 debian -DA4 kernel: [19760.274180] Writing chunk 1949 tags 267 0

15:26:12 debian -DA4 kernel: [19760.274196] nandmtd2_WriteChunkWithTagsToNAND chunk 1949

data e70e5800 tags f2dcfeb0

15:26:12 debian -DA4 kernel: [19760.274545] packed tags obj 268435723 chunk -2147483647

byte 26624 seq 4127

15:26:12 debian -DA4 kernel: [19760.274577] ext.tags eccres 0 blkbad 0 chused 1 obj 267

chunk0 byte 0 del 0 ser 31 seq 4127

[...]

15:26:21 debian -DA4 kernel: [19769.056367] GC Selected block 4 with 2 free ,prioritised :0

[...]

15:26:45 debian -DA4 kernel: [19793.194822] Erased block 4

[...]

15:27:07 debian -DA4 kernel: [19815.321721] GC Selected block 7 with 3 free ,prioritised :0

[...]

15:27:31 debian -DA4 kernel: [19839.485312] Erased block 7

[...]

15:27:53 debian -DA4 kernel: [19861.604232] GC Selected block 10 with 2 free ,prioritised :0

[...]

15:28:17 debian -DA4 kernel: [19885.786414] Erased block 10

[...]

15:28:39 debian -DA4 kernel: [19907.900224] GC Selected block 13 with 2 free ,prioritised :0

[...]

15:29:04 debian -DA4 kernel: [19932.053038] Erased block 13

[...]

15:29:26 debian -DA4 kernel: [19954.149845] GC Selected block 16 with 2 free ,prioritised :0

[...]

15:29:50 debian -DA4 kernel: [19978.282276] Erased block 16

[...]

15:30:12 debian -DA4 kernel: [20000.304321] GC Selected block 19 with 2 free ,prioritised :0

[...]

15:30:36 debian -DA4 kernel: [20024.474886] Erased block 19

[...]

15:30:58 debian -DA4 kernel: [20046.540725] GC Selected block 22 with 2 free ,prioritised :0

[...]

15:31:22 debian -DA4 kernel: [20070.612892] Erased block 22

[...]

15:31:44 debian -DA4 kernel: [20092.704417] GC Selected block 25 with 2 free ,prioritised :0

[...]

15:32:08 debian -DA4 kernel: [20116.768829] Erased block 25

[...]

15:32:30 debian -DA4 kernel: [20138.893062] GC Selected block 28 with 2 free ,prioritised :0

[...]

15:32:55 debian -DA4 kernel: [20162.960199] Erased block 28

[...]

15:33:17 debian -DA4 kernel: [20185.088337] GC Selected block 29 with 2 free ,prioritised :0

[...]

15:33:41 debian -DA4 kernel: [20209.254728] Erased block 29

[...]

15:34:03 debian -DA4 kernel: [20231.304609] GC Selected block 30 with 31 free ,prioritised :0

[...]

15:34:15 debian -DA4 kernel: [20243.339236] Erased block 30

[...]

15:34:37 debian -DA4 kernel: [20265.408944] GC Selected block 31 with 28 free ,prioritised :0

[...]

15:34:51 debian -DA4 kernel: [20279.446441] Erased block 31

[...]

Listing 5.3: Oldest dirty garbage collection of blocks 30 and 31

73

5. Recovery of files

the modification has been performed. However, as long as the device is mounted, a file’s
previous versions are erased from the device at some point in any case, even if no further
write operations are performed on the device by the user or the operating system.

5.3. Recovery of a deleted file

In a forensic analysis, recovery of deleted files can reveal important data that was once
stored on a device. In this section, we discuss and analyze possibilities to recover deleted
files from a YAFFS2 NAND flash memory device.

As described in Chapter 3, YAFFS2 uses deleted and unlinked header chunks to
mark an object as deleted. Hence, an object is recoverable from a YAFFS2 NAND until
garbage collection deletes all of the object’s chunks. Although recovery of a specific
deleted file does not differ fundamentally from recovery of a specific modified file, one
important difference exists. As show in Chapter 3 and Chapter 4, YAFFS2’s deleted

header chunk is always marked with a shrink header marker. A block containing a chunk
marked with a shrink header marked is disqualified for garbage collection until the block
gets the oldest dirty block. Thus, obsolete chunks on such a block can potentially
be recovered for a longer time than obsolete chunks on blocks that feature no chunks
marked with shrink header markers. Considering this, several variants of best case and
worst case scenarios regarding recovery of a deleted file exist. However, only a few of
these scenarios depend on shrink header markers. Those scenarios not depending on
shrink header markers do not differ from the scenarios we described in Section 5.2. In
the following, we introduce best case and worst case scenarios regarding recovery of a
specific deleted file and practically analyze those scenarios that differ from scenarios
already described in Section 5.2.

5.3.1. Worst case

A worst case scenario regarding recovery of a specific deleted file is a scenario in which
none of the file’s obsolete chunks can be recovered. This is the case if the blocks con-
taining the deleted file’s obsolete chunks get erased by garbage collection soon after the
file was deleted. Basically, two variants of such a worst case scenario exist. Either all
of the file’s chunks are located in the same block as the file’s deleted header chunk or
the file’s deleted header chunk is located in a block containing none of the deleted file’s
chunks.

In case the deleted file’s deleted header chunk is located in a block containing none
of the deleted file’s chunks, garbage collection of the blocks containing the deleted file’s
chunks is independent of the deleted header chunk’s shrink header marker. In this case,
recovery of a deleted file does not differ from recovery of previous versions of a modified
file as described in Section 5.2.

If all of a deleted file’s chunks are stored in the same block as the file’s deleted

header chunk, a worst case scenario regarding recovery of this file always requires the
file’s block to be the device’s oldest block. Only then, the block is not disqualified for

74

5.3. Recovery of a deleted file

garbage collection and can be erased directly after the file has been deleted. Thus, such a
worst case scenario is equivalent to a worst case scenario regarding recovery of a modified
file in an overall best case scenario as we presented in Section 5.2.1.

5.3.2. Best case

A best case scenario regarding recovery of a delete file is a scenario in which the deleted
file is completely recoverable for the longest time possible. In contrast to the worst case
scenarios discussed above, some best case scenarios regarding recovery of a deleted file
differ greatly from best case scenarios regarding recovery of modified files. In an absolute
best case scenario regarding recovery of a deleted file, the file’s deleted header chunk
has to be stored in the same block as all of the file’s chunks. If the deleted header chunk
is stored in a block that contains none of the deleted file’s chunks, this block has been
more currently written then all blocks containing chunks of the deleted file. As a block
containing a deleted header chunk can only be erased if it is the oldest dirty block,
it cannot be erased before the blocks containing the deleted file’s chunks. Thus, this
scenario cannot constitute a best case as the block containing the deleted file’s obsolete
chunks are not erased at the latest possible moment. However, in this case, the deleted
file can still be recovered for a relatively long time if the distribution of obsolete and
valid chunks constitute a best case scenario as described in Section 5.2.

Hence, an absolute best case scenario regarding recovery of a specific deleted file
requires all of the deleted file’s chunks to be stored in the same block as the file’s
deleted header chunk. However, such a best case scenario does not necessarily need a
complete overall best case scenario. As shown before, an overall best case scenario only
features oldest dirty garbage collection. As a block containing a deleted header chunk
can only be garbage collected if it is the device’s oldest block, it does not need to feature
a minimum amount of valid chunks to be disqualified for garbage collection. Thus, a
best case scenario regarding recovery of a deleted file is a scenario where all block except
for the block containing the deleted file’s chunks and its deleted header must comply to
the criteria of an overall best case scenario. Although the block containing the deleted
file’s chunks and its deleted header chunk can comply to these criteria, it does not
necessarily have to, as it is protected from garbage collection by the deleted header
chunk’s shrink header marker.

To verify this hypothesis, we performed an analysis of a variant of the overall best
case scenario analyzed in Section 5.2. Similar to the approach we presented in Section
5.2, we created ten files to fill exactly ten of the device’s blocks with valid chunks. This
lead to the same block states13 as depicted in Table 5.7. After creation of this stable
initial state, we performed the following steps on the device:

1. Creation of “fileD” (77 824 bytes, respectively 38 data chunks)

2. Modification of all files on the device except for “fileD”

3. Deletion of “fileD”

13On the attached DVD, see also: /Chapter5.3/nanddump.bestCaseDeletion.initial.pretty

75

5. Recovery of files

To modify the ten initial files we overwrote one data chunk of each file in a way that
lead to one obsolete data chunk in each of the ten initially filled blocks. Hence, featuring
only a very small number of obsolete chunks, these blocks complied to the criteria of
an overall best case scenario. However, the block containing the chunks written due to
execution of the above-mentioned steps, did not comply to the criteria of an overall best
case scenario. As depicted in Table 5.10, Block 30 of the device was allocated to store
“fileD” and the chunks written due to the initial files’ modification. Due to deletion of
“fileD”, Block 30 contained 43 obsolete chunks and thus was a valid candidate for regular
background garbage collection. However, as can be seen in Listing 5.4, Block 30 was
still only collected after all other blocks containing obsolete chunks had been collected
by oldest dirty garbage collection. This shows, that the deleted header chunk’s shrink
header marker protected Block 30 from being garbage collected until the block became
the oldest block containing obsolete chunks.

Chunk no. Content chunkID objectID nBytes

..

1856 fileD: Header 0x80000001 0x1000010b 0
1857 root directory: Header 0x80000000 0x30000001 0
1858 fileD: Data 1 267 2048
1859 fileD: Data 2 267 2048

...
1895 fileD: Data 38 267 2048
1896 fileD: Header 0x80000001 0x1000010b 77824
1897 file1: Data 62 257 2048
1898 file1: Header 0x80000001 0x10000101 126976
1899 file2: Data 61 258 2048
1900 file2: Header 0x80000001 0x10000102 129024

...
1915 file10: Data 57 266 2048
1916 file10: Header 0x80000001 0x1000010a 129024
1917 unlinked: Header 0x80000003 0x1000010b 0
1918 root directory: Header 0x80000000 0x30000001 0
1919 deleted: Header 0xC0000004 0x1000010b 0

..

Table 5.10.: Block 30 after deletion of “fileD”

As can be seen in Listing 5.4, Block 30 was erased seven minutes and 53 seconds after
“fileD” was deleted. The block was selected for garbage collection after background
garbage collection was skipped ten consecutive times. However, the reason for that
was not, that Block 30 was disqualified for regular background garbage collection. As
depicted in Listing 5.4, all attempts of background garbage collection were skipped be-
cause Block 30 was not checked for necessity of garbage collection during these attempts.
Thus, Block 30 was not selected for regular background garbage collection immediately

76

5.3. Recovery of a deleted file

after it became the only dirty block, although that would have been possible.14 This
shows, that obsolete chunks can potentially be recovered for a longer time from a larger
NAND than from a small NAND as passive garbage collection only checks a subset of
all blocks when trying to select a block to garbage collect.

17:33:00 debian -DA4 kernel: [23441.835541] nandmtd2_WriteChunkWithTagsToNAND

chunk 1919 e5b8a800 tags e5917e7c

17:33:00 debian -DA4 kernel: [23441.835560] packed tags obj 268435723 chunk -1073741820

byte 0 seq 4126

17:33:00 debian -DA4 kernel: [23441.835580] ext.tags eccres 0 blkbad 0 chused 1 obj 267

chunk0 byte 0 del 0 ser 4 seq 4126

[...]

17:33:06 debian -DA4 kernel: [23449.874065] GC none: finder 467 skip 10 threshold 22

dirtiest 0 using 0 oldest 0 bg

[...]

17:33:08 debian -DA4 kernel: [23451.889709] GC Selected block 4 with 2 free ,prioritised :0

[...]

17:33:33 debian -DA4 kernel: [23476.023857] Erased block 4

[...]

17:33:55 debian -DA4 kernel: [23498.125647] GC Selected block 7 with 3 free ,prioritised :0

[...]

17:34:19 debian -DA4 kernel: [23522.191842] Erased block 7

[...]

17:34:41 debian -DA4 kernel: [23544.229238] GC Selected block 10 with 2 free ,prioritised :0

[...]

17:35:05 debian -DA4 kernel: [23568.307565] Erased block 10

[...]

17:35:27 debian -DA4 kernel: [23590.364772] GC Selected block 13 with 2 free ,prioritised :0

[...]

17:35:51 debian -DA4 kernel: [23614.419809] Erased block 13

[...]

17:36:13 debian -DA4 kernel: [23636.489919] GC Selected block 16 with 2 free ,prioritised :0

[...]

17:36:37 debian -DA4 kernel: [23660.639091] Erased block 16

[...]

17:36:59 debian -DA4 kernel: [23682.741816] GC Selected block 19 with 2 free ,prioritised :0

[...]

17:37:23 debian -DA4 kernel: [23706.875099] Erased block 19

[...]

17:37:46 debian -DA4 kernel: [23728.994192] GC Selected block 22 with 2 free ,prioritised :0

[...]

17:38:10 debian -DA4 kernel: [23753.157933] Erased block 22

[...]

17:38:32 debian -DA4 kernel: [23775.307320] GC Selected block 25 with 2 free ,prioritised :0

[...]

17:38:56 debian -DA4 kernel: [23799.487782] Erased block 25

[...]

17:39:18 debian -DA4 kernel: [23821.605934] GC Selected block 28 with 2 free ,prioritised :0

[...]

17:39:42 debian -DA4 kernel: [23845.755454] Erased block 28

[...]

17:40:04 debian -DA4 kernel: [23867.857559] GC Selected block 29 with 2 free ,prioritised :0

[...]

17:40:29 debian -DA4 kernel: [23892.007087] Erased block 29

[...]

17:40:31 debian -DA4 kernel: [23894.015366] GC none: finder 216 skip 1 threshold 4

dirtiest 0 using 0 oldest 0 bg

[...]

17:40:49 debian -DA4 kernel: [23912.124845] GC none: finder 1 skip 10 threshold 22

dirtiest 0 using 0 oldest 0 bg

[...]

17:40:51 debian -DA4 kernel: [23914.140462] GC Selected block 30 with 43 free ,prioritised :0

[...]

17:40:59 debian -DA4 kernel: [23922.194880] Erased block 30

[...]

Listing 5.4: Oldest dirty garbage collection of block 30

14On the attached DVD, see also: /Chapter5.3/kern.bestCaseDeletion.rtf

77

5. Recovery of files

As this analysis shows, shrink header markers protect a block from being garbage
collected until it becomes the oldest dirty block. Thus, if all of a deleted file’s chunks are
stored in the same block as the file’s deleted header chunk, in an otherwise overall best
case scenario, the block does not have to comply to the criteria of an overall best case
scenario in order to be selected for garbage collection at the latest moment possible.

5.4. YAFFS2 in comparison to NTFS

In this section we compare the file systems YAFFS2 and NTFS regarding recovery of
modified or deleted files. In Section 5.4.1 we introduce the basic functionality of NTFS.
In Section 5.4.2 and Section 5.4.3 we analyze possibilities to recover modified or deleted
files from a NTFS device in scenarios similar to those we presented in Section 5.2 and
Section 5.3.

5.4.1. Introduction to NTFS

NTFS (New Technology File System) is a file system developed by Microsoft and is widely
used on computers running the Windows operating system. Although NTFS is closed
source software, it has been widely analyzed during the last years and its functionality
is well understood. In the following, only a brief introduction to the basic functionality
of NTFS is provided. Among others, detailed information about NFTS and the forensic
analysis of this file system can be found in Brian Carrier’s File System Forensic Analysis
[22].

NTFS uses its so-called MFT (Master File Table) as a central structure in which all
information about all files on a NTFS device are stored [23, 22]. NTFS treats all objects
on a device as files, even the basic file system administrative data such as the MFT
itself. Therefore, information about all objects on a NTFS device can be found within
the device’s MFT. To store information about a file in the MFT, a MFT record for
the file containing several attributes is stored in the MFT. By default, NTFS uses the
attributes depicted in Table 5.11 [22]. For our analysis, especially the $DATA attribute is
of relevance. The $DATA attribute is used to store a file’s content. In case a file is very
small, the file’s content is stored inside the $DATA attribute of the file’s MTF record.
During our analyses, files containing up to 648 bytes were stored that way. Larger files’
content is stored in external clusters outside the MFT. In that case, the $DATA attribute
contains information on where on the device the files’ content can be found. For that
purpose, so-called cluster runs are stored in the $DATA attribute within a file’s MFT
record. Each of these cluster runs contains a pointer to a cluster along with information
on how many clusters starting from the cluster pointed to have to be read to find a file’s
content. In case a file’s content is stored outside the MFT, the affected clusters are not
deleted on deletion of the file. Instead, these clusters are unlocked for allocation. Thus,
deleted files’ content can be recovered until the respective clusters are newly allocated
and written to. When a file’s content is modified, the new content is either written to the
$DATA attribute inside the MFT or to clusters outside the MFT. To which clusters the
new content is written depends on the program used to perform the modification. The

78

5.4. YAFFS2 in comparison to NTFS

new content is either written to same clusters the old content was stored in or to other
clusters. Thus, the possibility to recover previous versions of a modified file depends
heavily on the program used to perform the modification. We further discuss this in
Section 5.4.2.

Name Description

$STANDARD INFORMATION General information, such as time stamps and owner
$ATTRIBUTE LIST List where other attributes for the file can be found

$FILE NAME File name and time stamps
$VOLUME VERSION Volume information (only in version 1.2)

$OBJECT ID Unique identifier for the file (only in versions 3.0+)
$SECURITY DESCRIPTOR Acces control and security properties of the file

$VOLUME NAME The volume’s name
$VOLUME INFORMATION File system version and other flags

$DATA File contents
$INDEX ROOT Root node of an index tree

$INDEX ALLOCATION Nodes of an index tree rooted in $INDEX ROOT attribute
$BITMAP A bitmap for the $MFT file and for indexes

$SYMBOLIC LINK Soft link information (only in version 1.2)
$REPARSE POINT Information about a reparse point (only versions 3.0+)
$EA INFORMATION For backwards compatibility with OS/2 applications

$EA For backwards compatibility with OS/2 applications
$LOGGED UTILITY STREAM Information on encrypted attributes (only versions 3.0+)

Table 5.11.: Default MFT Record attributes

5.4.2. Recovery of a modified file

As above-mentioned, the program that is used to modify a file has great influence on
the amount of recoverable obsolete data. For our analyses of YAFFS2 we used the
tool replacer to overwrite specific bytes of a file with new values. We used this tool
as its use lead to a minimum of undesired side effects such as complete rewriting of a
modified file and thus allowed undistorted analysis of YAFFS2’s behavior. However, we
observed that, on a NTFS device, use of replacer always lead to loss of all previous
versions of a modified file. The reason for that was, that modifications performed with
replacer were always written to the same clusters the original file was stored in. Hence,
every modification directly destroyed the file’s previous version and left no obsolete data
to be recovered. Therefore, as long as we performed modification by use of replacer,
YAFFS2 was clearly superior to NTFS regarding possibilities to restore previous versions
of modified files.

In order to be able to recover previous versions of a modified file from a NTFS device
and compare the results with our analyses of YAFFS2, we also analyzed recovery of files
modified by use of the text editor nano. In the following, we provide analyses of the

79

5. Recovery of files

scenarios described in Section 5.2. To that purpose, we recreated the scenarios described
in Section 5.2 on a NTFS partition of a flash drive as described in Section 5.1.

Worst Case

In Section 5.2.1, we present two worst case scenarios regarding recovery of a modified
file from a YAFFS2 NAND. In the first scenario, a small file of 126 976 bytes was stored
on an otherwise empty device. The file was a raw text file and consisted of 7936 lines
of 15 “A” and one line break each. The file was modified by overwriting its last 30 data
chunks. To recreate this scenario on a NTFS device, we created a file (“fileA”) with a
file size of 126 976 bytes on our NTFS partition and modified the file’s last 61 440 bytes,
which corresponds to the number of bytes of 30 data chunks. As depicted in Figure 5.1,
after creation of “fileA”, the file’s content was located in Clusters 16 090 to 16 151 of the
partition.15

After modifying the file by overwriting the file’s last 61 440 bytes by use of nano, the
file was rewritten completely and thereby stored in Clusters 20 184 to 20 245. As depicted
in Figure 5.2, the file’s original content was still stored in Clusters 16 090 to 16 151.16

Modifying “fileA” again, lead to writing of the new content to Clusters 24 280 to 24 341.
Thus, at this point, two obsolete versions of “fileA” were recoverable from the NTFS
partition. Performing a third modification of “fileA” lead to writing of the new content
to Cluster 28 376 to 28 437.17 However, a fourth modification18 lead to writing of the
file’s new content to Clusters 16 090 to 16 151 again, thus destroying the file’s original
version. Every subsequent modification lead to overwriting of the file’s oldest version, so
that a maximum of three previous versions of “fileA” were completely recoverable from
the NTFS partition. As shown in Section 5.2, in the same scenario, only one previous
version of the “fileA” was recoverable for just 18 seconds.

The second worst case scenario presented in Section 5.2.1 featured a YAFFS2 NAND
flash memory device almost used to capacity. To occupy most of the devices storage
capacity we created a large file with a file size of 65 667 072 bytes. The file that was
subject to modification (“fileB”) had a file size of 192 512 bytes. This file was modified by
overwriting the file’s Data Chunks 23 to 53, corresponding to overwriting Byte 45 056 to
Byte 108 543 of “fileB”. Recreating this scenario on our NTFS device needed adjustment
of the used files’ sizes. This was necessary, as the NTFS device featured a slightly smaller
storage capacity than the YAFFS2 NAND and, by default, 2,5 MB were already occupied
on the freshly formatted NTFS device. We thus resized the files, so that they occupied
the same percentage of the NTFS device’s capacity as they did on the YAFFS2 NAND.
Therefore, we preformed the following steps on the NTFS device:

1. Creation of a large file with a file size of 61 747 338 bytes

2. Creation of a smaller file (“fileB”) with a file size of 180 741 bytes

3. Overwriting of Bytes 42 302 to 101 908 of “fileB”

15On the attached DVD, see also: /Chapter5.4.2/smallWorstCaseInBest.initial.NTFS.nano.img
16On the attached DVD, see also: /Chapter5.4.2/smallWorstCaseInBest.mod1.NTFS.nano.img
17On the attached DVD, see also: /Chapter5.4.2/smallWorstCaseInBest.mod3.NTFS.nano.img
18On the attached DVD, see also: /Chapter5.4.2/smallWorstCaseInBest.mod4.NTFS.nano.img

80

5.4. YAFFS2 in comparison to NTFS

Figure 5.1.: Initial location of “fileA” on the NTFS partition

81

5. Recovery of files

Figure 5.2.: Content of cluster 16 151 after first modification of “fileA”

82

5.4. YAFFS2 in comparison to NTFS

Initially, as depicted in Figure 5.3, “fileB” was stored in Clusters 14 068 to 14 156 of
the NTFS partition.19 As can be seen in Figure 5.4, modification of “fileB” by use of
nano lead to immediate loss of the file’s original version, as the the new content was
written to the same clusters20 the original content was stored in. In this scenario, one
previous version of “fileB” was recoverable from a YAFFS2 NAND, albeit only for two
seconds.

Figure 5.3.: Initial location of “fileB” on the NTFS partition

In the following, we analyze NTFS in a scenario that constitutes a best case scenario

19On the attached DvD, see also: Chapter5.4.2/worstCaseInWorst.inital.NTFS.nano.img
20On the attached DvD, see also: Chapter5.4.2/worstCaseInWorst.mod1.NTFS.nano.img

83

5. Recovery of files

Figure 5.4.: Location of “fileB” after modification

84

5.4. YAFFS2 in comparison to NTFS

regarding recovery of a specific file from a YAFFS2 NAND flash memory device.

Best Case

For the following analysis, we recreated the scenario described in Section 5.2.2 on a
NTFS partition. For that purpose we created ten files on the device as follows:

1. Creation of “file1” (126 976 bytes)

2. Creation of “file2” (129 024 bytes)

3. Creation of “file3” (129 024 bytes)

4. Creation of “file4” (129 024 bytes)

5. Creation of “file5” (129 024 bytes)

6. Creation of “file6” (129 024 bytes)

7. Creation of “file7” (129 024 bytes)

8. Creation of “file8” (129 024 bytes)

9. Creation of “file9” (129 024 bytes)

10. Creation of “file10” (129 024 bytes)

Additionally, we created a file named “fileC” with a file size of 26 624 bytes on the
device. As can be seen in Section 5.2.2, during our analysis of YAFFS2, we modified
“file1” to “file10” in a way that made garbage collection of every used block on the
YAFFS2 NAND necessary. Although NTFS does not feature a garbage collector that
reacts to such modifications, we still performed the same modifications on these files
in order to recreate the scenario as exactly as possible. Thus, each of the ten files
was modified by overwriting 2048 of its bytes with new values. As in the analysis we
presented in Section 5.2.2, the bytes we overwrote were at the following positions within
the files:

• “file1”: Byte 124 928 to Byte 126 975

• “file2”: Byte 122 880 to Byte 124 927

• “file3”: Byte 122 880 to Byte 124 927

• “file4”: Byte 122 880 to Byte 124 927

• “file5”: Byte 122 880 to Byte 124 927

• “file6”: Byte 122 880 to Byte 124 927

• “file7”: Byte 122 880 to Byte 124 927

• “file8”: Byte 122 880 to Byte 124 927

• “file9”: Byte 122 880 to Byte 124 927

• “file10”: Byte 114 688 to Byte 116 735

85

5. Recovery of files

Figure 5.5.: Initial location of “fileC” on the NTFS partition

86

5.4. YAFFS2 in comparison to NTFS

As can be seen in Figure 5.5, after these modifications, “fileC” was stored in Clus-
ters 28 504 to 28 516. These were the same clusters the file had been stored before the
modification of all other files. All other files were completely rewritten during their mod-
ifications and thus were stored in other clusters than they were originally.21 Starting
from this initial state of the NTFS partition we modified “fileC” repeatedly by over-
writing the file’s first 2048 bytes with new values. As can be seen in Figure 5.6, the
first modification of “fileC” lead to rewriting of “fileC” to Clusters 24 597 to 24 609. As
the file’s original version was still stored in Cluster 28 504 to 28 516, at this point, one
complete previous version of “fileC” was recoverable from the NTFS partition.22

Figure 5.6.: Location of “fileC” on the NTFS partition after one modification

21On the attached DvD, see also: /Chapter5.4.2/bestInOverallBest.mod.files1-10.NTFS.nano.img
22On the attached DvD, see also: /Chapter5.4.2/bestCaseInOverallBest.mod.fileC-1.NTFS.nano.img

87

5. Recovery of files

As depicted in Figure 5.7, a second modification of “fileC” stored the file’s most
current version in Clusters 28 694 to 28 706. Hence, at this point, all previous versions
of “fileC” were recoverable.23

Figure 5.7.: Location of “fileC” on the NTFS partition after two modifications

However, beginning with the file’s third modification, every subsequent modification
lead to loss of one obsolete version. As depicted in Figure 5.8, modifying “fileC” for the
third time stored the file’s new version in Clusters 24 597 to 24 609 again.24 All subse-
quent modifications were alternately written to Clusters 28 694 to 28 706 and Clusters
24 597 to 24 609. Thus, at every point, the file’s original version was recoverable from
the NTFS partition along with the file’s most current previous version. As shown in Sec-
tion 5.2.2, twenty-nine version of “fileC” were recoverable from a YAFFS2 NAND flash
memory device. However, these obsolete versions were only recoverable for a eight min-

23On the attached DvD, see also: /Chapter5.4.2/bestCaseInOverallBest.mod.fileC-2.NTFS.nano.img
24On the attached DvD, see also: /Chapter5.4.2/bestCaseInOverallBest.mod.fileC-3.NTFS.nano.img

88

5.4. YAFFS2 in comparison to NTFS

utes and three seconds, whereas the file’s previous versions could be recovered from the
NTFS partition until the respective clusters were allocated again by a write operation.

Figure 5.8.: Location of “fileC” on the NTFS partition after three modifications

5.4.3. Recovery of a deleted file

In the following, we analyze possibilities to recover deleted files from a NTFS device in
comparison to possibilities to restore deleted files from a YAFFS2 NAND flash memory
device. To that purpose we recreated the scenario described in Section 5.3 on a NTFS
partition.

89

5. Recovery of files

Similar to file deletions on YAFFS2 devices, deletion of a file on a NTFS device does
not directly lead to actual deletion of the file’s content. In NTFS, a file is deleted in three
steps. In the first step, the file’s entry in its parent directory’s $INDEX ROOT is removed.
In the course of that, the parent directory’s time stamps are updated. In the second
step, the deleted file’s MFT record is unallocated by cleaning its in-use flag. Hence,
this record is free for reallocation. In the final step, the clusters containing non-resident
attributes of the file’s MFT record are set to an unallocated state. Thus, these clusters
are free to be reallocated and overwritten. However, at this point, the file’s content is
still recoverable from the NTFS device, as its MFT record is still stored in the MFT, its
non-resident attributes are still stored in their respective clusters and the links between
the MFT record and these clusters still exist. In contrast to YAFFS2, NTFS does not
feature a garbage collector that deletes all obsolete data over time, so that the deleted
file’s content stays on the NTFS device until the respective clusters are actually allocated
again. In the following, we analyze how much of a deleted file can be recovered from a
NTFS partition in a scenario as described in Section 5.3.2.

Figure 5.9.: MFT record of “fileD” before the file’s deletion

To recreate the scenario we presented in Section 5.3.2 on a NTFS partition, we created
ten files on the partition as described above. Subsequently, we created a file named
“fileD” with a file size of 77 824 bytes on the partition. After modifying all files except
for “fileD” as described in Section 5.4.2, we deleted “fileD”. In Figure 5.9, the file’s

90

5.4. YAFFS2 in comparison to NTFS

MFT record is depicted. At this point, all other files had already been modified and
“fileD” had not been deleted yet. The clusters containing the file’s content are defined
in the file’s MFT record’s $DATA attribute (marked green). At offset 32 of the $DATA

attribute, the value 0x40 (marked cyan) told us, that the first cluster run within this
$DATA attribute could be found at offset 64 of the attribute. Every cluster run (marked
blue) consists of three parts:

1. Cluster run information, here: 0x21

2. Length of the cluster run, here: 0x26

3. First cluster, here: 0x6F58

The cluster run information defined that the last two bytes of the cluster run contained
the file’s first cluster and that the first byte of the run contained the number of cluster
allocated for the file. Hence, the content of “fileD” was stored in 38 (0x26) clusters
starting from Cluster 28 504 (0x6F58). Thus, the file’s content was stored in Clusters
28 504 to 28 541 of the NTFS partition.25

Figure 5.10.: MFT record of “fileD” after the file’s deletion

Deleting “fileD” updated the MFT as above-mentioned but left the file completely

25On the attached DVD, see also: /Chapter5.4.3/deletion.mod.file1-10.NTFS.img

91

5. Recovery of files

recoverable. In Figure 5.10, the file’s MFT record after the file’s deletion is depicted. As
can be seen, the file’s name was not stored in the MFT anymore. However, the cluster
run linking to the file’s content was still stored in the MFT record’s $DATA attribute.
Additionally, the clusters still actually contained the file’s content. Therefore, except for
the file’s name, “fileD” was completely recoverable26 from the NTFS partition. In the
same scenario, “fileD” was also recoverable from a YAFFS2 NAND. However, the file was
only recoverable for seven minutes and 53 seconds from the YAFFS2 NAND, whereas
the file was recoverable from the NTFS partition until the file’s respective clusters were
allocated again by a write operation.

5.5. Summary

In this chapter, we presented best and worst case scenarios regarding recovery of obsolete
chunks from a YAFFS2 NAND and analyzed how these scenarios influenced the amount
of obsolete data that was recoverable after a file’s modification or deletion. We also
showed that the tools used to perform file modifications have great influence on the
amount of recoverable obsolete chunks.

We observed that YAFFS2’s design allows easy recovery of obsolete data as all data
written to a YAFFS2 NAND can only be deleted by garbage collection. However, as long
as a YAFFS2 NAND is in use, the amount of recoverable data decreases over time, even
if no further write operations are performed on the NAND. After a certain time span,
no obsolete data can be recovered from a YAFFS2 NAND anymore. In this chapter,
we showed that the length of this time span depends on the NAND’s storage capacity
and its occupancy as well as on the distribution of obsolete and valid chunks within the
NAND’s blocks

In the last section, we compared NTFS and YAFFS2 regarding possibilities to recover
obsolete data after modification or deletion of a file. For that purpose we analyzed
NTFS’s behavior in scenarios that constitute best and worst case scenarios regarding
recovery of obsolete data from a YAFFS2 NAND. We observed that YAFFS2 allows a
much higher amount of obsolete data to be recovered after modifications of a file than
NTFS does. However, while obsolete parts of a modified file were deleted by YAFFS2’s
garbage collector after a certain time span, obsolete parts could be recovered from the
NTFS partition until they were overwritten by a subsequent write operation. In the
scenarios we analyzed, both YAFFS2 as well as NTFS allowed complete recovery of a
deleted file’s content. However, as was the case regarding file modifications, the deleted
file was only recoverable from the YAFFS2 NAND for a certain time span while it
could be recovered from the NTFS partition until the cluster containing its content were
overwritten by a subsequent write operation.

26On the attached DVD, see also: /Chapter5.4.3/deletion.removed.fileD.NTFS.img

92

6. Safe deletion on YAFFS2 devices

Safe deletion of a file means deletion of the file in a way that leaves no traces of the
file on a device. Safe deletion of a device means deletion of all data on the device in
a way, that no data that was stored on the device can be recovered from the device at
all. There are many reasons that make complete and safe deletion of a specific file or a
complete NAND flash memory device desirable. Fore example, safe deletion of a specific
file or a whole device can be necessary to destroy sensitive data for privacy reasons before
reselling a smartphone.

As shown in the previous chapters of this diploma thesis, simply deleting files from
a YAFFS2 NAND flash memory device does not necessarily instantly completely and
safely delete the files from the device. As long as the device’s blocks containing the
deleted files’ chunks are not erased by garbage collection, the files can still be recovered
from the device. Thus, regular deletion by use of tools like rm is not necessarily sufficient
to safely delete a file from a YAFFS2 NAND flash memory. In this chapter, we discuss
ways to safely delete files from a YAFFS2 NAND flash memory device. Additionally, we
introduce ways to completely erase a YAFFS2 NAND flash memory device.

6.1. Safe deletion of files

Deleting a file from a YAFFS2 NAND flash memory can be performed in two ways.
Either the file can be deleted using YAFFS2 functionality or the file can be deleted by
bypassing the file system and deleting the relevant blocks directly on the NAND flash
memory device. In the following, both ways to safely delete files are discussed.

6.1.1. Safe deletion of files using YAFFS2

To delete a specific file from a YAFFS2 NAND flash memory device in a way that leaves
no traces of the file on the device requires complete deletion of all the file’s chunks. This
includes all the file’s data chunks as well as the file’s header chunks on the device. These
chunks are not deleted from a YAFFS2 NAND until the blocks containing the chunks
are completely garbage collected and subsequently erased. As shown in Chapter 4, even
in a best case regarding recovery of files, garbage collection is executed regularly as long
as obsolete chunks can be found on the device. Thus, at some point in time, a deleted
file is completely and safely removed from a YAFFS2 NAND. However, depending on
the number of blocks on the device and the distribution of obsolete and valid chunks
within these blocks, it can take a very long time until no obsolete chunks can be found

93

6. Safe deletion on YAFFS2 devices

on the NAND anymore. As shown in Chapter 4, in our analysis environment, in case
each of a device’s blocks contains one obsolete chunk and the device features enough
free blocks as to make aggressive garbage collection unnecessary, oldest dirty garbage
collection can delete a block every 46 seconds at most. Thus, even on a relatively small
device with 500 blocks in use as described and enough free blocks available, complete
deletion of a file can take longer than six hours.

As can be seen, safely deleting a file is theoretically viable by deleting the file by use of
default commands like rm and subsequently waiting long enough until garbage collection
has deleted all the file’s chunks. However, practically, this way is not useful. First,
without creating a dump of the device and lengthy analysis of the dump, the user has
no way to calculate the time garbage collection actually needs to completely delete all
the deleted file’s chunks. Second, some situations may require quick and safe deletion of
a file so that waiting for an unspecified and possibly very long time is not an option.

A hypothetical tool for safe deletion of a file from a YAFFS2 NAND has to ensure
that all blocks containing the deleted file’s chunks get garbage collected as soon as
possible. Additionally the tool has to trace these blocks’ garbage collection to determine
at which point the blocks are actually erased. The only way for such a tool to speed
up garbage collection of the blocks containing the deleted file’s chunks is to ensure that
these blocks are not disabled for garbage collection and feature maximal four valid chunks
or are prioritized for garbage collection. That way, these blocks are garbage collected
relatively soon after deletion of the file by background garbage collection. However, the
block containing the deleted file’s deleted header chunk is still disabled for garbage
collection until it has become the oldest dirty block on the device, as a deleted header
chunk features a shrink header marker. Making all other blocks containing chunks of the
deleted file candidates for quick garbage collection includes ensuring that these blocks
are in state FULL and modifying other objects in a way that makes their chunks on the
blocks obsolete. This also possibly includes creation of new objects or increasing the
size of existing objects in order to fill blocks. However, if header chunks marked with
shrink header markers exist on one or more of the blocks containing chunks of the deleted
file, these blocks are still disabled for garbage collection until each of them has become
the oldest dirty block at some point. Prioritizing a block for garbage collection by
manipulating its block information requires manipulation of YAFFS2’s RAM structure
and also ensuring that the block is not disqualified for garbage collection. As can be seen,
a tool to safely delete files from a YAFFS2 NAND has to perform actually unnecessary
modifications of objects other than the files to be safely deleted and still cannot ensure
instant or at least quick deletion of the files to be safely deleted.

Thus, there is no way to safely delete a file from a YAFFS2 NAND flash memory device
without having to wait for garbage collection to erase all blocks containing the deleted
file’s chunks or bypassing the YAFFS2 file system. Speeding up garbage collection
in order to completely delete a file more quickly is theoretically possible but requires
creation, modification or deletion of other objects on the device. Additionally, garbage
collection can only be sped up to a certain degree as at least the block containing the
deleted file’s deleted header chunk can only be deleted once it has become the oldest
dirty block.

94

6.2. Safe deletion of devices

6.1.2. Safe deletion of files directly on NAND flash memory

Theoretically, a file can be safely deleted from a YAFFS2 NAND by bypassing the
YAFFS2 file system and deleting the respective blocks directly via the NAND flash
memory iotcl provided in the mtd-utils [14]. However, this requires determining
in which blocks the deleted file’s chunks are stored and additionally saving existing
valid chunks from these blocks. This approach is already discussed in [24]. We could
confirm, that erasing a block containing a deleted file’s obsolete chunks by use of the
tool flash erase of the the mtd-utils safely removed a deleted file from a YAFFS2
NAND flash memory device.

6.2. Safe deletion of devices

As shown in the last section, quick and safe deletion of a specific file from a YAFFS2
NAND flash memory device is not possible without bypassing the file system. Safely
deleting a whole YAFFS2 NAND flash memory device can also be performed by using
YAFFS2’s functionality or by bypassing the file system.

When using YAFFS2’s functionality to safely delete a whole device, the approach to
do so is similar to the approach to safely delete a specific file. Deleting all existing
objects from a YAFFS2 NAND by use of default tools like rm and subsequent waiting
for garbage collection to delete all obsolete chunks is sufficient to safely erase the device.
This is because after deletion of all objects, only one chunk remains valid. This chunk
contains the root directory’s header information. However, again, this approach takes a
lot of time.

A faster way to safely delete all objects from a YAFFS2 NAND requires bypassing
the file system. To that purpose the NAND flash memory device’s blocks can be erased
by use of the NAND flash memory iotcl provided in the mtd-utils. To perform
complete and safe deletion of a whole NAND flash memory device, the widely used
tool flash eraseall from the mtd-utils can be used. We could confirm that use of
flash eraseall completely erased all of a NAND flash memory device’s blocks.

6.3. Summary

Safe deletion of a whole YAFFS2 NAND can easily be achieved by directly erasing all the
device’s blocks using the NAND flash memory ioctl provided in the mtd-utils. Addi-
tionally, given enough time, YAFFS2’s garbage collector can be used for safe deletion of
a whole device. However, depending on the device’s size, this can take an unacceptable
long time.

Safe deletion of a specific file from a YAFFS2 NAND flash memory device is much
more complicated than simply deleting the whole device in a safe way. As for deletion
of a whole device, YAFFS2’s garbage collector can also be used for safe deletion of a
specific file. However, depending on the device’s size and the location of the deleted file’s

95

6. Safe deletion on YAFFS2 devices

chunks this also can take an unacceptable long time. Erasing the blocks containing the
deleted file’s obsolete chunks directly by use of the NAND flash memory ioctl is viable
but requires copying valid chunks from these blocks to other blocks.

96

7. Conclusion and Future Work

In this final chapter, we conclude this diploma thesis, starting with a short summary
in Section 7.1 to recapitulate what we have learned in the last chapters. Section 7.2
highlights remaining tasks that could be the scope of future work on YAFFS2. Finally,
in Section 7.3, we draw our final conclusions.

7.1. Summary

Within this diploma thesis we introduced and analyzed the file system YAFFS2 in a
forensic perspective. For that purpose, we provided basic knowledge on NAND flash
memory and an introduction on how to use YAFFS2 in a Linux environment in the first
chapters of this diploma thesis. In subsequent chapters, we first analyzed YAFFS2’s
source code to reveal the file system’s basic functionality and design. YAFFS2’s garbage
collection techniques were a major focus within this analysis, as garbage collection is the
only technique YAFFS2 uses to delete obsolete data. Next, we discussed and analyzed
the influences of YAFFS2’s behavior on the amount of deleted or modified data that
can be recovered from a YAFFS2 NAND. For that purpose, based on our analyses of
YAFFS2’s garbage collection and wear leveling techniques, we developed best case and
worst case scenarios regarding recovery of obsolete data from a YAFFS2 NAND. We also
evaluated these scenarios practically by performing file modifications and deletions on
a simulated YAFFS2 NAND and analyzing the amount of obsolete data that could be
recovered. Further, we compared YAFFS2 to the common file system NTFS regarding
possibilities to recover obsolete data. Finally, in the last chapter of this diploma thesis,
we discussed techniques to safely delete files from a YAFFS2 NAND or completely erase
such a device.

7.2. Future Work

Concerning mobile phone forensics, Android OS and YAFFS2 still provide important
and interesting points that should receive further investigation in future research and
development.

Based on the analyses provided in this diploma thesis, an automated tool to recover
deleted files and obsolete data of modified files from a YAFFS2 NAND could be devel-
oped. This would enable quicker analysis of an Android smartphone’s data contents.
Additionally, from a counter-forensic perspective, a tool to safely delete specific files

97

7. Conclusion and Future Work

from a YAFFS2 NAND could be developed to ensure privacy of Android smartphone
users.

In the future, many Android OS smartphones will be using the file system ext4 instead
of YAFFS2. Therefore, further analysis of ext4 in a forensic perspective will be necessary.
Additionally, tools to recovery obsolete data from an Android smartphone that uses ext4
could be developed.

7.3. Conclusion

In our analyses of YAFFS2, we discovered that all data written to a YAFFS2 NAND
can only be deleted from the NAND by YAFFS2’s garbage collection techniques or by
bypassing the file system and directly erasing the NAND’s blocks. Because of that,
deleted files and obsolete data of modified files can easily be recovered from a Android
smartphone that uses YAFFS2 as a file system. However, as long as the NAND is in use,
the amount of recoverable data decreases over time until no obsolete data is recoverable
anymore. In Chapter 4 and Chapter 5, we showed that the time that obsolete data stays
stored on a YAFFS2 NAND depends on the capacity and occupancy of the NAND as
well as on the distribution of valid and obsolete chunks among the device’s blocks. We
also discovered, that YAFFS2 allows a higher amount of obsolete data to be recovered
than NTFS does. However, while this obsolete data is erased from a YAFFS2 NAND
after a certain time, potentially, it can be recovered from a NTFS device for much longer
as NTFS does not feature a garbage collector.

Considering that recovery of obsolete data from a YAFFS2 NAND proved relatively
easy, we discussed safe deletion of files as well as complete deletion of YAFFS2 NANDs
in the last chapter of this diploma thesis. We showed, that safe deletion of files is
theoretically possible but requires complex deletion techniques. As opposed to this, safe
deletion of a whole YAFFS2 NAND can easily be achieved by erasing the NAND by use
of common MTD tools.

98

A. Appendix

A.1. Used tools

A.1.1. File creation

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

/**

argv [1]: file length

argv [2]: character to write to the file

argv [3]: file name

Writes a character [argv [1]] times to a file. If the file exists , it is overwritten .

If the does not exist , it is created.

**/

int main(int argc , char *argv [])

{

int length = atoi(argv [1]);

char content = (char) *argv [2];

char name = (char) *argv [3];

char buf1[length];

int fd;

int i;

int j;

for(i=0;i<= length;i++){ buf1[i] = content ;}

fd = open(argv[3], O_RDWR | O_CREAT , 0644);

write(fd, buf1 ,length);

close(fd);

return 0;

}

Listing A.1: Source code of fileWriter

99

A. Appendix

A.1.2. File modification

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

/**

argv [1]: first byte to be overwritten

argv [2]: number of bytes to be written

argv [3]: character to be written to file

argv [4]: file

Replaces [argv [2]] bytes of a file starting with byte [argv [1]]

**/

int main(int argc , char *argv [])

{

int startPos = atoi(argv [1]);

int length = atoi(argv [2]);

char newContent = (char) *argv [3];

char buf2[length];

int fd;

int j;

for(j=0;j<= length;j++){ buf2[j] = newContent ;}

fd = open(argv[4], O_RDWR);

lseek(fd, startPos , SEEK_SET);

write(fd, buf2 , length);

close(fd);

return 0;

}

Listing A.2: Source code of replacer

A.1.3. File truncation

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

/**

argv [1]: new file size

argv [2]: file

Truncates a file to a size of [argv [1]] bytes

**/

int main(int argc , char *argv [])

{

100

A.2. Nandsim parameters

int newSize = atoi(argv [1]);

int fd;

fd = open(argv[2], O_RDWR);

ftruncate(fd, newSize);

close(fd);

return 0;

}

Listing A.3: Source code of truncater

A.2. Nandsim parameters

When simulating a NAND flash memory device by use of nandsim, the following pa-
rameters can be used to create devices of different sizes [14]:

• 64 MiB, 2048 bytes pages: first id byte=0x20 second id byte=0xa2

third id byte=0x00 fourth id byte=0x15

• 128 MiB, 2048 bytes pages: first id byte=0xec second id byte=0xa1

third id byte=0x00 fourth id byte=0x15

• 256 MiB, 2048 bytes pages: first id byte=0x20 second id byte=0xaa

third id byte=0x00 fourth id byte=0x15

• 512 MiB, 2048 bytes pages: first id byte=0x20 second id byte=0xac

third id byte=0x00 fourth id byte=0x15

• 1 GiB, 2048 bytes pages: first id byte=0xec second id byte=0xd3

third id byte=0x51 fourth id byte=0x95

101

A. Appendix

102

Bibliography

[1] McAfee Labs. Mcafee threats report: Fourth quarter 2010, 2011.
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2010.

pdf, Last Accessed: April 22, 2011.

[2] Charles Manning. How yaffs works, 2010. [Online]
http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf, Last Accessed: April
22, 2011.

[3] Gartner Inc. Gartner press release, 2011.
http://www.gartner.com/it/page.jsp?id=1543014, Last Accessed: April 22, 2011.

[4] Micron Technology Inc. Nand flash 101: An introduction to nand flash and how to
design it in to your next product, 2010. [Online]
http://www.micron.com/products/nand_flash/high_speed_nand.html, Last Ac-
cessed: April 22, 2011.

[5] Charles Manning. Yaffs 2 specification and development notes, 2005. [Online]
http://www.yaffs.net/yaffs-2-specification-and-development-notes, Last Ac-
cessed: April 22, 2011.

[6] Aleph One Ltd. http://www.yaffs.net, Last Accessed: April 22, 2011.

[7] Google Inc. http://www.android.com, Last Accessed: April 22, 2011.

[8] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti. Introduc-
tion to flash memory. Proceedings of the IEEE, 91(4):489 – 502, 2003.

[9] Arie Tal for M-Systems Ltd. Two technologies compared: Nor vs. nand. white
paper, 2003.

[10] Paolo Pavan, Roberto Bez, Piero Olivo, and Enrico Zanoni. Flash memory cells -
an overview. Proceedings of the IEEE, 85(8):1248 – 1271, 1997.

[11] David Woodhouse. Jffs : The journalling flash file system, 2001. [Online]
http://sourceware.org/jffs2/jffs2.pdf, Last Accessed: April 22, 2011.

[12] Hynix Semiconductor, Intel Corporation Micron Technology, Inc. Phison Electron-
ics Corp., Sony, Corporation, and STMicroelectronics. Open nand flash interface
specification, 2006. [Online]
http://onfi.org/wp-content/uploads/2009/02/onfi_1_0_gold.pdf, Last Ac-
cessed: April 22, 2011.

[13] Yaffs2 source code, 2010.
http://www.yaffs.net/gitweb?p=yaffs2/.git;a=snapshot;h=

103

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2010.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2010.pdf
http://www.yaffs.net/files/yaffs.net/HowYaffsWorks.pdf
http://www.gartner.com/it/page.jsp?id=1543014
http://www.micron.com/products/nand_flash/high_speed_nand.html
http://www.yaffs.net/yaffs-2-specification-and-development-notes
http://www.yaffs.net
http://www.android.com
http://sourceware.org/jffs2/jffs2.pdf
http://onfi.org/wp-content/uploads/2009/02/onfi_1_0_gold.pdf
http://www.yaffs.net/gitweb?p=yaffs2/.git;a=snapshot;h=213dc0b42fbe8652e454bfdbf9f5c41c6eb4974c;sf=tgz
http://www.yaffs.net/gitweb?p=yaffs2/.git;a=snapshot;h=213dc0b42fbe8652e454bfdbf9f5c41c6eb4974c;sf=tgz

Bibliography

213dc0b42fbe8652e454bfdbf9f5c41c6eb4974c;sf=tgz.

[14] David Woodhouse. http://www.linux-mtd.infradead.org/, Last Accessed: April
22, 2011.

[15] Charles Manning. Structure of yaffs2 spare oob area, 2011. [Email communication]
http://balloonboard.org/lurker/message/20110203.214218.e77b9b11.en.html,
Last Accessed: April 22, 2011.

[16] IEEE Computer Society and The Open Group. Standard for information technology
1003.1 - portable operating system interface, 2008.

[17] Charles Manning. Time stamps in file header chunks, 2011. [Email communication]
http://www.aleph1.co.uk/lurker/message/20110323.224326.cc219d84.en.html,
Last Accessed: April 22, 2011.

[18] Taeho Kgil, David Roberts, and Trevor Mudge. Improving nand flash based disk
caches. In Proceedings of the 35th Annual International Symposium on Computer
Architecture, ISCA ’08, pages 327–338, 2008.

[19] Charles Manning. Block refreshing, 2011. [Email communication]
http://www.aleph1.co.uk/lurker/message/20110320.212508.2a671a70.en.html,
Last Accessed: April 22, 2011.

[20] Brian Carrier. http://www.sleuthkit.org/, Last Accessed: April 22, 2011.

[21] Brian Carrier. http://www.sleuthkit.org/autopsy/, Last Accessed: April 22, 2011.

[22] Brian Carrier. File system forensic analysis. Addison-Wesley, 2009.

[23] Microsoft Corp. How ntfs works, 2003. [Online]
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx, Last Ac-
cessed: April 22, 2011.

[24] Kyoungmoon Sun, Jongmoo Choi, Donghee Lee, and S.H. Noh. Secure deletion of
confidential data in consumer electronics. In Consumer Electronics, 2008. ICCE
2008. Digest of Technical Papers. International Conference on, pages 1 –2, January
2008.

104

http://www.yaffs.net/gitweb?p=yaffs2/.git;a=snapshot;h=213dc0b42fbe8652e454bfdbf9f5c41c6eb4974c;sf=tgz
http://www.yaffs.net/gitweb?p=yaffs2/.git;a=snapshot;h=213dc0b42fbe8652e454bfdbf9f5c41c6eb4974c;sf=tgz
http://www.linux-mtd.infradead.org/
http://balloonboard.org/lurker/message/ 20110203.214218.e77b9b11.en.html
http://www.aleph1.co.uk/lurker/message/20110323.224326.cc219d84.en.html
http://www.aleph1.co.uk/lurker/message/20110320.212508.2a671a70.en.html
http://www.sleuthkit.org/
http://www.sleuthkit.org/autopsy/
http://technet.microsoft.com/en-us/library/cc781134(WS.10).aspx

	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Task
	Outline
	Acknowledgements

	Prerequisites
	Flash memory
	YAFFS2 in a Linux environment
	Summary

	Analysis of YAFFS2
	YAFFS2 basics
	Data organization and OOB area tags
	OOB area tags
	Meta data
	Object modifications and deletions

	Garbage collection
	Wear leveling
	Summary

	YAFFS2 in a forensic view
	Wear leveling
	Shrink header markers
	Garbage Collection
	Best and worst case scenarios
	Evaluation of best and worst case scenarios

	Summary

	Recovery of files
	Used tools and side effects
	Recovery of a modified file
	Worst case
	Best case

	Recovery of a deleted file
	Worst case
	Best case

	YAFFS2 in comparison to NTFS
	Introduction to NTFS
	Recovery of a modified file
	Recovery of a deleted file

	Summary

	Safe deletion on YAFFS2 devices
	Safe deletion of files
	Safe deletion of files using YAFFS2
	Safe deletion of files directly on NAND flash memory

	Safe deletion of devices
	Summary

	Conclusion and Future Work
	Summary
	Future Work
	Conclusion

	Appendix
	Used tools
	File creation
	File modification
	File truncation

	Nandsim parameters

	Literature

