
PyBox - A Python Sandbox

Diploma Thesis by Christian Schönbein

May 03, 2011

First Examiner: Prof. Dr. Ing. Felix C. Freiling
Second Examiner: Prof. Dr. Ing. Wolfgang Effelsberg
Advisor: Jan Göbel, Markus Engelberth

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst und keine anderen als
die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Mannheim, den 03. Mai 2011 Christian Schönbein

Abstract

Considering the challenges resulting from the complexity and variety of malware, the
application of dynamic malware analysis in order to automate the monitoring of mal-
ware behavior has become increasingly important. For this purpose, so-called sandboxes
are used which provide the functionality to execute malware in a secure, controlled en-
vironment and observe its activities during runtime. The result of this analysis process
is a comprehensible report that shows the behavior of the observed malware sample.

While a variety of sandbox software, such as the GFI Sandbox (formerly CWSandbox)
or the Joe Sandbox, is available, all solutions are closed-source. Therefore, the task of
this thesis is to describe the implementation of an open-source sandbox which uses the
techniques API hooking as well as DLL injection. API hooking is applied to intercept
and to log function calls to the APIs provided by the Windows operating system. For
this purpose, customized code in the form of a dynamic link library (DLL) is injected
into the malware sample’s process.

Considering the growing number of attacks on mobile devices, such as smartphones
running Google’s Android operating system, the thesis also provides an outlook as to
how the implemented solution can be ported to a Linux operating system.

Zusammenfassung

In Anbetracht der Herausforderungen, die sich durch die wachsende Komplexität und
Vielfalt von Schadsoftware ergeben, werden Methoden der dynamischen Malwareanalyse
eingesetzt, um automatisiert das Verhalten und die Auswirkungen einer Schadsoftware
bestimmen zu können. In diesem Rahmen werden sogenannte "Sandboxen" eingesetzt.
Hierbei wird die Schadsoftware in einer kontrollierten Umgebung ausgeführt und zur
Laufzeit beobachtet, welche Aktionen diese ausführt. Das Resultat ist ein für Menschen
verständlicher Bericht, der die Verhaltensweise der Schadsoftware aufzeigt.

Es existieren mit GFI Sandbox (ehemals CWSandbox) oder Joe Sandbox bereits
Beispiele solcher Sandboxen. Jedoch sind all diese closed-source. Daher besteht die Auf-
gabe meiner Diplomarbeit darin, eine open-source Sandbox zu implementieren. Diese
wird die Techniken API Hooking und DLL Injection verwenden. API Hooking wird ver-
wendet, um die Aufrufe von APIs in Windows zu unterbrechen und zu dokumentieren.
Hierzu wird eigener Programmcode in Form einer DLL mittels DLL Injection in dem
Prozess der Schadsoftware eingeschleust.

Aufgrund der größer werdenden Bedrohung von mobilen Geräten, wie z.B. Smart-
phones, mit dem Betriebssystem Android von Google, durch Schadsoftware, soll im
Rahmen der Diplomarbeit weiterhin ein Ausblick auf eine mögliche Portierung der Py-
Box nach Linux dargestellt werden.

Contents

Listings xi

List of Figures xiii

List of Tables xv

1. Introduction 1
1.1. Motivation . 2
1.2. Task . 2
1.3. Results . 2
1.4. Outline . 3
1.5. Acknowledgement . 3

2. Prerequisites 5
2.1. Malware . 5

2.1.1. Malware Types . 6
2.1.2. Detection . 9

2.2. Windows Fundamentals . 10
2.2.1. Memory Management . 11
2.2.2. Kernel Mode vs. User Mode . 11
2.2.3. Application Programming Interfaces 11
2.2.4. The Windows Executable Format 14

2.3. Techniques of Analyzing Executables . 16
2.3.1. Malware Analysis . 16
2.3.2. Hooking . 18
2.3.3. DLL Injection . 24

2.4. Related and Concurrent Work . 26
2.4.1. Related Work . 27
2.4.2. Concurrent Work . 29

2.5. Summary . 29

3. Implementation 31
3.1. Design Goals . 31
3.2. System Overview . 32
3.3. Sandbox Environment . 34
3.4. Hook Library . 34

3.4.1. Hook Library Overview . 35
3.4.2. Function Hooking . 36
3.4.3. Callbacks and Trampolines . 38

vii

3.4.4. Callback Examples . 40
3.4.5. Detection Prevention . 49
3.4.6. Installation . 50

3.5. Analysis Tool . 52
3.5.1. Analysis Framework Overview . 52
3.5.2. Setup and Configuration Files . 54
3.5.3. Target Process Creation and DLL Injection 56
3.5.4. XML Report . 60

3.6. Inter-Process Communication . 63
3.6.1. IPC Methods . 64
3.6.2. IPC in PyBox . 65

3.7. Summary . 72

4. Outlook on Portability of PyBox towards Linux 73
4.1. Linux Fundamentals . 74
4.2. Hooking in Linux . 77
4.3. Monitoring System Calls . 81

4.3.1. Hooking Targets . 81
4.3.2. Tools and Alternative Methods to Observe an Executable’s Exe-

cution Flow . 81
4.4. Summary . 83

5. Evaluation 85
5.1. Analysis Procedure . 85
5.2. Analyses of Executable Samples . 86

5.2.1. PyBox Test Application . 86
5.2.2. Analyses of Malware Samples . 93

5.3. Summary . 98

6. Conclusion and Future Work 99
6.1. Summary . 99
6.2. Limitations . 100
6.3. Future Work . 101
6.4. Conclusion . 102

A. Hooked API Functions 103
A.1. File System Interfaces . 103
A.2. Registry Interfaces . 103
A.3. Process Interfaces . 103
A.4. Network Interfaces . 104

Bibliography 105

Listings

3.1. Inline hooking . 36
3.2. Callback function structure . 39
3.3. The NtCreateFile callback function . 41
3.4. The NtSetValueKey callback function . 44
3.5. The NtCreateProcessEx callback function 48
3.6. DLL entry point . 51
3.7. The configuration file pybox.cfg . 54
3.8. The configuration file hooks.cfg . 55
3.9. Target process creation . 56
3.10. DLL injection . 59
3.11. XML document generation . 62
3.12. XML report structure . 63
3.13. File mapping creation . 66
3.14. Log entry creation . 70
3.15. Log thread . 71

4.1. A function call . 78
4.2. Runtime dynamic linking in Linux . 78
4.3. A simplified inline hooking implementation 79
4.4. Ptrace call structure . 82

5.1. Monitored call tree . 88
5.2. Monitored file management API functions 89
5.3. Monitored registry API functions . 90
5.4. Monitored process API functions . 91
5.5. Monitored network API functions of WinSock-Server.exe 92
5.6. Monitored network API functions of WinSock-Client.exe 92
5.7. Malware sample 1 - file management section - extract 1 94
5.8. Malware sample 1 - file management section - extract 2 94
5.9. Malware sample 1 - registry section . 95
5.10. Malware sample 1 - process section - Extract 3 95
5.11. Malware sample 2 - call tree . 96
5.12. Malware sample 2 - process section of binary 96
5.13. Malware sample 2 - file management section of binary 97
5.14. Malware sample 2 - file management section of binary 98

xi

List of Figures

2.1. The Windows interface DLLs and their relation to the kernel components
according to Eilam [Eil05, p. 89] . 13

2.2. Portable Executable (PE) file format according to Microsoft [Mic10] . . . 15
2.3. The IMAGE_BASE_DESCRIPTOR data structure according to Pietrek [Pie02b] 21
2.4. Inline hooking (cf. Engelberth [Eng07, p. 33]) 22
2.5. Joe Sandbox analysis procedure according to Joe Security [joe11] 28

3.1. PyBox analysis procedure . 33
3.2. Hook library layout . 36
3.3. PyBox detection prevention procedure 50
3.4. PyBox analysis tool layout . 53
3.5. PyBox data analysis classes . 60
3.6. PyBox XML generation procedure . 62
3.7. PyBox IPC procedure for log entries . 69

4.1. Executable and linkable file format (ELF) structure 77

5.1. Test application structure . 87
5.2. Test application output . 88

xiii

List of Tables

2.1. Malware characteristics according to Aycock [Ayc06] 6
2.2. The SetWindowmsHookEx interface . 25
2.3. The CreateRemoteThread interface . 25

3.1. The NtCreateFile Interface . 40
3.2. The NtSetValueKey Interface . 43
3.3. The NtQueryKey Interface . 46
3.4. The NtQueryInformationProcess Interface 48
3.5. The CreateProcessA Interface . 58
3.6. The PyBox file mapping data structure for common settings 67
3.7. The PyBox file mapping data structure for hook settings 67
3.8. The PyBox file mapping data structure for log entries 68

xv

Chapter 1.

Introduction

In the early 1990s, the Internet started its triumph with the development of the World
Wide Web (WWW). This has caused tremendous worldwide changes and has influenced
nearly every aspect of modern life. Based on the created infrastructure many new
technologies such as Voice-Over-IP, Peer-to-Peer, Online Gaming, Social Networks and
Smart Phones, have been developed. In particular, new means and ways to distribute
data have emerged. However, despite the large number of possibilities and advantages
that the new technologies offer, they have also caused another less desirable development.

Developers of malware have used the new communication channels to spread their
viruses, worms, and Trojan horses causing major damages and data losses, resulting in
financial losses every year. At first, these attacks were the attention-driven actions of
individuals who wanted to show their skills, but with the growing economic significance
of the Internet and its platforms, the motives of malware creation and utilization have
changed. Soon thereafter, organized crime discovered the potential of this field.

As a consequence, the authors of malware became profit-oriented and professionally
trained. According to Ollman [Oll08, p. 1], whole conglomerates have evolved offering
highly complex malware products in a very competitive market. However, these attacks
are not exclusively financially driven; also, political motives must not be underestimated.
This became increasingly obvious last year during the events concerning Wikileaks when
various companies such as MasterCard and Visa terminated their cooperation with the
whistle-blowing website. Due to their association, they fell victim to so-called Dis-
tributed Denial of Service (DDoS) attacks by a collective of hackers who call themselves
“Anonymous” [Vij10]. Another example are the attacks against the Egyptian govern-
ment websites during the revolution in late January [Som11]. Thus, hackers do not only
use their abilities for profit-related reasons, but also for protest. This form of protest is
also referred to as Hacktivism (cf. Francie Coulter [CE10, p. 3]). In July 2010, according
to Falliere et al. [FMC10, p. 2], the virus Stuxnet was discovered, which had affected
some of Iran’s nuclear program computers causing a huge media impact. Stuxnet can
target industrial control systems, and therefore demontrates the high level of malware
quality and complexity present these days. In particular, Sophos [Whi11, p. 11] refers to
Stuxnet as “military-grade malware” indicating that countries also utilize malware tech-
niques for military reasons. With these incidents in mind, politicians are increasingly
concerned with topics like cyberwar and malware in general. This also recently became
apparent, at the Munich Security Conference (MSC)1 in February 2011, the world’s

1http://www.securityconference.de

1

Chapter 1. Introduction

most important conference concerning security policy, when several politicians acknowl-
edged the major importance of these issues. For example, according to the Frankfurter
Allgemeine Zeitung [FAZ11], the German chancellor Angela Merkel mentioned that a
cyberwar would be as much of a threat as a “regular” war.

In any case, the amount, complexity, and quality of malware are higher than ever.
The McAffee Security Labs [BDG11, p. 2] reports increases in targeted attacks, in
sophistication, and in the number of attacks on new devices. And this trend is not
slowing down. Thus, for the foreseeable future, it will not get easier to keep one’s IT
environment clean from malware infections.

1.1. Motivation

The growing amount, variety and complexity of malware poses major challenges for
today’s IT security specialists. Key factors in this battle are understanding the func-
tionality of malware as well as the ability to predict threats to the security of information
systems. Therefore, it is necessary to analyze the different types of malware in order
to protect critical systems. However, since manual methods, such as disassembly and
reverse engineering, can be time consuming, automization of the process of analyzing
malware behavior is key to this problem. For this purpose, the means of Dynamic Mal-
ware Analysis are utilized. In this context, so-called sandboxes, such as GFI Sandbox 2

and Joebox 3 are offered to execute malware samples in a controlled environment, observe
their actions during runtime, and create machine-readable reports. However, to date all
existing solutions are closed-source.

1.2. Task

The task of this thesis is to describe the creation of an open-source sandbox. This
entails providing a secure environment in which malware samples can be safely executed
by preventing the propagation of critical processes through network devices. During
runtime, the processes of malware samples are monitored, logged, and documented. The
result of this process is a generated machine-readable report displaying all events.

1.3. Results

In this thesis, we describe the development of the PyBox analysis environment. PyBox is
short for Python Sandbox. It is developed and executed in a virtual machine running the
operating system Microsoft Windows XP4 in order to provide a secure environment. The
Python-based application provides the functionality to run a malware process and mon-
itor its behavior by controlling its usage of Application Programming Interfaces (API).

2http://www.sunbeltsoftware.com/Malware-Research-Analysis-Tools/Sunbelt-CWSandbox/
3http://www.joebox.ch/
4http://www.microsoft.com/windows/windows-xp/default.aspx

2

1.4. Outline

Therefore, the techniques of dynamic malware analysis, API hooking and DLL injection
are combined. PyBox injects a dynamic-link library (DLL) file into the created process,
which installs its functionality and redirects all API calls to its own code. Whenever a
hooked API is called, the original execution flow is intercepted and the corresponding
information is sent to PyBox. Subsequently, the execution flow can either be resumed or
aborted depending on the provided settings. The latter are defined in a configuration file
of PyBox. Finally, an XML-based report is created containing the information logged
during runtime.

1.4. Outline

This thesis is structured as follows: In Chapter 2, we introduce the prerequisites required
for the implementation of PyBox. After providing some Windows fundamentals, we
discuss the concepts of hooking and injection methods. In Chapter 3, we describe the
implementation of PyBox. More specifically, we present the three components, which are
used to monitor the malware behavior: the PyBox virtual machine, the hook library and
the analysis tool. In Chapter 4, we provide an outlook as to how the PyBox functionality
could be extended to work on Linux operating systems. Finally, Chapter 5 concludes
this thesis by summarizing its contents and presenting major findings.

1.5. Acknowledgement

First of all, I want to express my deepest gratitude to Prof. Dr. Felix C. Freiling for
giving me the opportunity to work on such an interesting topic for my thesis. Further-
more, I wish to thank Prof. Dr. Wolfgang Effelsberg for being my second examiner. I
also want to thank my advisors Jan Göbel and Markus Engelberth for their incessant
support and very valuable feedback. I also would like to thank my cousin, my friends,
and my cohabitants for their support, the interesting discussions and the great time we
had. Last but not least, I want to thank my family for giving me constant backup and
support throughout my thesis and studies.

3

Chapter 2.

Prerequisites

Throughout this thesis, we use analysis techniques to study the behavior of malware.
Like any other application, malware needs an infrastructure in which it can be executed.
Furthermore, every program is implemented to interact with its environment receiving
input and sending output. Malware also uses and manipulates its environment exploiting
provided system functionality for its malicious purposes. Therefore, these two topics,
malware and operating system, are closely related to each other and it is essential to
be familiar with both the characteristics of malware and the infrastructure in which the
malware is run. As a result of this information, the appropriate analysis techniques can
be derived.

As malware is the center of attention in this thesis, this chapter starts with an introduc-
tion to basic information about malware. Afterwards, fundamental concepts concerning
the Windows NT -based operating systems are described providing a basic understand-
ing of how they use and provide their resources as well as how applications are run.
Finally, appropriate techniques that are used by PyBox to analyze malware samples are
introduced.

In this chapter, we focus on the Windows operating system because it is still the target
system for most existing malware. However, with the increasing usage of mobile devices,
there are more and more occurrences of attacks on their predominant operating systems
such as the Linux-based Android. Therefore, we take a look at possible ways to port the
functionality of PyBox to Linux in Chapter 4 as well.

2.1. Malware

The term malware is an abbreviation for malicious software. It includes all kinds of
software that perform or add unwanted functionality to a system or program without
the user’s consent. The purpose as well as the caused damage varies from malware
sample to malware sample. While some programs do not cause much damage but instead
aim for annoyance by for example permanently launching pop-ups, others can be very
harmful. For example, there are various malware samples which spy on secret data such
as passwords or delete files thus potentially causing a much greater extent of damage.

Although malware is just one aspect concerning IT Security that implies all means to
protect a system from external influences, ranging from unauthorized access to natural

5

Chapter 2. Prerequisites

Malware Type Self-replication Population Growth Parasitism
Computer Virus yes positive yes
Computer Worm yes positive no
Trojan Horse no zero yes
Spyware no zero no
Adware no zero no
Back Door no zero possibly
Logic Bomb no zero possibly

Table 2.1.: Malware characteristics according to Aycock [Ayc06]

disasters, it is nonetheless an increasingly important topic with new variants emerging
each day.

Since we develop PyBox with the intention to analyze these threats, it is helpful
to know about the characteristics of malware. Therefore, in what follows we briefly
introduce different malware types. Subsequently, we present possible mechanisms to
detect malware.

2.1.1. Malware Types

It is becoming increasingly difficult to divide malware into certain categories or malware
types since nowadays most malware has a modular structure combining the functionality
of various types. Furthermore, there are also samples which include an update function-
ality even offering the possibility to extent their capabilities. As an example, a Trojan
horse can use backdoor functionality to load malicious code, spyware functionality to log
a user’s behavior and can connect to a bot network in order to be remotely controlled.

According to Aycock [Ayc06], malware can be characterized using three attributes:
self-replication, population growth, parasitism. In Table 2.1 we provide an overview of
some basic malware types regarding these attributes. In the following, we explain these
and other basic malware types in more detail.

Computer Virus

A biological virus is only able to replicate itself inside living cells of an organism. It
cannot exist without a host. Computer viruses are named after biological viruses because
they show an analogous behavioral pattern. They are parasitic programs which infect
computers by attaching themselves to a host program and changing its behavior via
modification of its code. More specifically, it injects itself into the host object, infects its
code which, if executed, replicates itself again and infects further objects. Potential host
objects include files or boot sectors. Thus, the key-defining characteristic of computer
viruses is that they are self-replicating.

In order to fulfill its purpose, a virus usually consists of three parts: the infection
mechanism, a trigger, and the payload. The infection mechanism describes the exact

6

2.1. Malware

means used by the virus to modify the target’s code in order to infect it. The trigger
represents the event which has to occur in order to cause the execution of the malicious
code residing in the payload. As the primary characteristic of computer viruses is self-
replication, the trigger and the payload are optional components.

A computer virus usually spreads to other objects that are located on a single com-
puter. It does not propagate through computer networks which instead is the main
characteristic of a computer worm. However, they often propagate to other computers,
too. This is usually the case if human-transportable media are used to transfer data
from one computer to another one.

Computer Worm

A computer worm is quite similar to a computer virus. In particular, its key-defining
characteristic also is self-replication. However, there are also some differences: A com-
puter worm is not parasitic, it does not require a host program and therefore does not
modify other code in order to replicate itself. Instead, it is a standalone program that
exists independently and replicates itself. It uses computer networks for propagation.
Thus, it spreads from one computer to another by infecting them through network de-
vices.

Trojan Horse

The term Trojan horse is based on Greek mythology. More precisely, this type of malware
is named after an incident of the Trojan War narrated in Homer’s epos Ilias in which
the Greek defeat the Trojans by a ploy. Having besieged the Trojan city for a long time
without the prospect of victory, the Greek construct a huge wooden horse in which their
men are hidden. The Trojans – thinking the horse is a present of the gods – transport
the horse into their city. In the following night, the Greek are finally able to open the
gates and defeat the Trojans.

Akin to this tale, Trojan horses in computing are programs which incorporate secret
and unwanted functionality. After installation, the program executes everything as de-
sired while at the same time secret tasks are performed without the consent of the user.
A classic example is the situation in which the user executes a program which requires
a username as well as a password as user input. The Trojan horse secretly captures the
user input and obtains the login information. In contrast to computer viruses and com-
puter worms, they do not replicate themselves, but only pursue their own tasks without
infecting other programs.

Spyware

Spyware is the catchall term for software designed to spy on a user. Its purpose is to
observe the user’s activities and gather information. The obtained information can be
of various types. For instance, it may contain user input, screen shots, or the content of
certain directories in the file system. Finally, the spyware either stores the information

7

Chapter 2. Prerequisites

somewhere or transmits it to a third party using a network connection. All of this
happens without the consent or knowledge of the user.

Adware

Adware can be seen as a special case of Spyware: Both are used to capture information
about a user and his or her activities. In general, adware is a piece of software which is
used for advertising purposes. It downloads special advertisement features and displays
them on the local computer. Usually, the adware tries to match the advertisement to the
context of the user’s activities. For example, if a user is searching for a certain product
the advertisement may display similar goods which might appeal to the user. Adware
is promoted as free software which offers a special purpose, but secretly changes the
behavior of software installed on the computer.

Salomon [Sal10, p. 248] mentions the software PurityScan as an example for adware.
PurityScan is a free software that claims to provide the functionality to scan one’s
computer for content which is not desired by the user. However, at the same time, it
provides undesired content by placing advertisement in pop-ups, window bars, text links,
and even manipulates search results for advertising purposes.

Back Door

Back doors refer to code that is used to bypass security mechanisms. They can either
infiltrate into other code or run as independent programs. Back doors are often used
in order to avoid authentication processes. For example, Remote Administration Tools
(RTA) that allow users to access their computers remotely. If a malware succeeds in
installing a RTA access, it has successfully created a back door.

Logic Bombs

A logic bomb is code that can either be parasitic, i.e. that it can be placed in existing,
legitimate code, or it can also be found as standalone software. The code usually consists
of two parts: a trigger and the payload. These elements are analogous to those of the
computer virus. The trigger is a condition. It decides whether or not to activate the
payload. The payload is the actual code which is executed in the event of the trigger
being activated. There are no restrictions regarding the payload’s code in order to be
classified as a logic bomb. During its non-active presence, a logic bomb is placed such
that it is difficult to detect.

Rootkits

In contrast to the malware types presented so far, rootkits do not entail one piece of
software only. Instead, they consist of a number of useful tools, and the entirety of
these tools is referred to as a kit. The tools can be either solely code or entire programs
enabling access to a computer with the maximal access rights of a system adminstrator.

8

2.1. Malware

This type of access is also called root access. This is why this collection of tools is called
a rootkit.

The goal of a rootkit is its enduring and non-detectable presence in the system. For this
reason, its main functionality is to hide its presence by preventing all of its components
from being detected. In addition, rootkits can provide other functionalities. Common
examples of these enhanced tools are functions that enable remote access to the system
as well as spying functionality such as the sniffing of network traffic.

In spite of the potential threat rootkits pose, they are not necessarily a technology
which is exclusively applied for malicious reasons. There are also several legitimate
fields of application such as the application for spying purposes by the police for public
interest.

Bots

Bot is an abbreviation for the word robot. The name is derived from its functionality.
A bot is a program which is able to pursue certain tasks autonomously. Bots are not
necessarily applied for malicious reasons. An example of a legitimate field for the appli-
cation of bots is the usage of so-called web crawlers such as the Googlebot [Goob]. Web
crawlers are sent in order to scan websites for keywords. Thus, they enable their search
engines to list the scanned websites appropriately when a corresponding keyword has
been entered as a search term. However, bots also offer much potential to be employed
for malicious purposes. A bot can for example incorporate functions such as sending
emails, spying data, communicating with other bots, or even infecting other computers
and turning them into bots. They can also be remotely controlled. Thus, large crowds
of bots can be controlled by a single person. This collective of bots is called a botnet
which is often used for DDoS attacks or sending spam.

2.1.2. Detection

In the previous section, we have described various malware types. They usually exploit
certain software vulnerabilities to execute their payload and infect information systems
and networks. In recent years, the number of cyberattacks that make use of more or
less complex manifestations of these types has grown rapidly. In order to address this
problem, we first must be able to detect such attacks. One possibility to detect them
that has proved effective is the utilisation of Intrusion Detection Systems (IDS). In the
following, we take a closer look at the characteristics of such systems.

Intrusion Detection Systems

An IDS is no complete defense system preventing all attacks but rather represents an
element of the process chain to achieve this. However, it plays an important role when
it comes to identifying and defending attacks on an information system or network. An
IDS determines all possible attack manifestations in order to detect all potential attacks.
At the same time, it tries to avoid false alarms.

9

Chapter 2. Prerequisites

An IDS can be applied for various reasons. Sometimes, it is used to obtain forensic
information. This information can for example enable the police to locate and prosecute
attackers attempting to intrude into a certain system. Another reason for their usage
is their usage in combination with certain defence mechanisms that aim to prevent or
destroy the malicious activity. In such a scenario, the IDS triggers a certain mechanism
based on the activity which has been monitored. Furthermore, an IDS can be used to
monitor all activities to reveal insights on the vulnerability of a system. Thus, the new
information provided by the IDS allows administrators to fix these vulnerabilities and
make the system or network more robust to attacks.

According to McHugh et al. [MCA00, p. 44], an IDS generally consists of computers
which are set up as sensors collecting information of system or network resources. The
monitored information is subsequently sent to a network-specific analysis station. In
case an intrusion is detected, a warning signal is triggered. As for the analysis, there
are different techniques to decide whether the current activity is an attack or not. On
the one hand, signature-based detectors can be used which match the current activity
to known malicious behavior. On the other hand, anomaly-based detectors can be used
which observe the current activity and check if it conforms to the specified rules. Based
on these techniques, an IDS can monitor user and system activity, protect the integrity
of critical system and data files, match activity patterns to known attacks, and check
for abnormal activities on a system (cf. Rozenblum [Roz03]).

IDSs are usually categorized according to their fields of application:

• Network Intrusion Detection System (NIDS)
A NIDS is used to monitor a certain network subnet. It scans all traffic and matches
all activities to known attack patterns. If a suspicious behavior is detected, an alert
is triggered.

• Network Node Intrusion Detection System (NNIDS)
In contrast to a NIDS, a NNIDS does not monitor a whole subnet, but the traffic
between a network and a single specific host which is connected to the network.

• Host Intrusion Detection System (HIDS)
A HIDS only monitors activity on a single host in order to detect intrusive activity.
It checks critical system and data files by observing various system snapshots
or logs. Furthermore, it can audit the interaction between applications and the
operating system in order to look for suspicious behavior.

The various IDS types are often combined to increase resistance to attacks.

2.2. Windows Fundamentals

The ability to reverse engineer and to reveal the behavior of a program such as a malware
sample requires knowledge of the respective operating system’s characteristics. This is
due to the fundamental functionalities of software: Programs are designed to interact
with the system, whether they write to or read from files, request user input, or display
something on the screen. Since thus far PyBox is implemented in Windows, this sec-

10

2.2. Windows Fundamentals

tion provides some general information about the 32-Bit Windows NT-based operating
systems. In particular, we detail how processes are created and managed, and how they
interact with the operating system.

2.2.1. Memory Management

One of the most important features of modern operating systems is the concept of
virtual memory. Programs do not have direct access to physical memory, but instead
each running process has its own virtual memory encapsulating physical memory access.
The considered Windows operating systems in this thesis use 32-bit memory addresses
and, therefore, can at most address 232 bytes (= 4 gigabytes). This design guarantees
that all programs are isolated from each other. Only the operating system is allowed
to access physical memory. Thus, the system is responsible for loading and unloading
memory blocks of a fixed size called pages. This process is referred to as paging. There
is an address space for each running program, which is basically a page table telling
the program’s process which physical memory to use. Thus, the address space realizes
virtual memory by granting access only to those parts of memory that belong to the
program.

2.2.2. Kernel Mode vs. User Mode

Another important concept is the distinction between the CPU modes kernel mode and
user mode. All Windows versions since Windows NT use these access modes in order to
ensure that user applications do not overwrite system data. Additionally, each process’s
address space is divided into two separate parts of two Gigabytes: kernel memory and
user memory. Thus, the operating system allows access to kernel memory only if the
processor is in kernel mode, which presents the privileged mode. While in user mode –
the non-privileged mode – only user-mode code can be run and only user memory can
be accessed whereas the use of any other code or data is prohibited. Consequently, it is
a security concept guaranteeing that in case of misuses or mistakes the system stability
will not be affected.

2.2.3. Application Programming Interfaces

Application Programming Interfaces (API) are a set of functions provided by a software.
Applications may use these functions in order to interact with the API provider obtaining
data structures or executing required functions. Operating systems, control programs
such as database management systems (DBMS), or communication protocols make APIs
available in order to provide applications with necessary functionality. In this thesis,
we focus on the APIs which are provided by the operating systems of the Windows NT
family, particularly the Windows API 1 and the native API.

1http://msdn.microsoft.com/en-us/library/cc433218(VS.85).aspx

11

Chapter 2. Prerequisites

The Windows API

As mentioned before, processes are limited by their address space and cannot directly
communicate with another. Furthermore, the application code is in user-mode and
therefore cannot access system resources. In both cases system functionality is required.
The Windows API, which was formerly called Win32 API, serves this purpose. It is
a set of API functions included in dynamic link libraries (DLL) which can be used by
Windows-based applications. It represents the interface for low-level programming pro-
viding services such as access to system resources like memory and devices, displaying
graphics and formatted texts, and the integration of audio, video as well as network-
ing services. Furthermore, usage of the Windows API ensures compatibility with all
Windows versions.

According to Eilam [Eil05], the core Windows API can be divided into three categories:
GDI, user, and kernel. GDI APIs (in gdi32.dll) are the system’s graphic interface and
provide low-level graphics services which offer various objects such as pens and brushes
for drawing lines or displaying bitmaps. GDI APIs are also used by the graphical user
interface-related (GUI) services and objects which can be accessed through the user APIs
(in user32.dll). Examples of User API objects are controls, menus, and dialog boxes.
While these two categories contain services for displaying content and user interaction,
the kernel APIs (in kernel32.dll) make kernel-related services such as memory, object,
process and thread management as well as file input and file output available to user
applications. Yet, the kernel APIs do not process direct system calls into the Windows
kernel. Instead, they make use of yet another set of APIs: the native APIs. We take a
closer look at the native APIs in the next section.

Since we are dealing with IT security matters throughout this thesis, we focus on the
kernel category. Further APIs which are in the focus of interest are those providing
network services through sockets (in wsock32.dll, ws2_32.dll) as well as the APIs for
advanced system management (in advapi.dll) which for example enable programs to
query and edit the values of the windows registry.

Most often, application developers make little to no use of the Windows API. This
is because it is considered as rather inconvenient to use as one usually needs many
function calls and the initialization of data structures to perform single operations. Other
interfaces like theMicrosoft Foundation Classes (MFC) or the .NET Framework simplify
the usage of those operations. But in the end, these are just wrappers around the API
functions. Thus, the applications still use the Windows APIs although they do not access
them directly.

The native API

The native API is the most basic and direct yet incompletely-documented interface into
the kernel existing a layer below the Windows API (cf. Eilam [Eil05, p. 90]). Whenever
an application calls an API exported by the kernel32.dll in order to access a specific
system resource, the kernel API calls a native API which in turn validates the passed
parameters and then uses a system call to switch to kernel mode and access the desired
item or functionality. The reason for these double interface calls is to provide com-

12

2.2. Windows Fundamentals

Figure 2.1.: The Windows interface DLLs and their relation to the kernel components
according to Eilam [Eil05, p. 89]

patibility with the older Windows Versions before NT. Therefore, Microsoft encourages
developers to use the Windows API in order to ensure compatibility.

According to Eilam [Eil05], the native API consists of two files: ntdll.dll and
ntoskrnl.exe. While the ntdll.dll provides kernel functions to user-mode appli-
cations, services exported by ntoskrnl.exe can only be accessed from kernel mode. A
further characteristic of the native APIs is that for each exported API there are two
versions with two different name prefixes: “Nt” and “Zw” , as in NtCreateProcess and
ZwCreateProcess. Functions with the prefix “Nt” are designed for user-mode callers,
whereas the APIs beginning with “Zw” are designed for kernel-mode calls. If a user-
mode caller uses a “Zw” function, the call will output the same result as with the “Nt”
function. This is, because in user-mode both versions point to the same address. This
is a security mechanism ensuring that no user-mode code can execute a call requiring
kernel-level privileges.

It should be noted that neither the user APIs nor the GDI APIs make any use of
the native API, because it only provides kernel-related and, thus, no graphics-related
functionality. Figure 2.1 depicts the relation between the different interface DLL files
and the associated kernel components.

While most applications use the Windows API, there are some exceptions: Some Win-
dows services such as the chkdsk 2 application use native API services directly [Rus06].
However, there is also the possibility of malware using the native API in order to hide
from anti-malware programs.

2http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/chkdsk.mspx

13

Chapter 2. Prerequisites

2.2.4. The Windows Executable Format

The file format of executable files on Windows operating systems such as .exe files or
.dll files is called Portable Executable (PE). It is derived from the Common Object
File Format (COFF). PE files are called “portable” because they can be executed on
different architectures. It is intended that they can be run on all Windows versions and
are independent of the CPU type used. Another characteristic is that they are relo-
catable, which means that they can be loaded at different addresses in virtual memory.
There is a reason for that. Whenever a main PE file (which is usually an .exe file) is
executed, it has to load further executable files such as several Windows APIs including
the kernel32.dll. Since a lot of executable files can be loaded into a single address
space, it is required that each has its own space in memory. Therefore, their memory
addresses have to be dynamically assigned. If not, it would be possible that two or more
executables are located at the same virtual addresses. Whenever an executable is loaded
into memory, the Windows loader does not map the whole file but only those ranges
which are needed. It reads the PE file and takes solely the corresponding parts. The
mapped object in memory is then referred to as a module.

The structure of a PE file is outlined in Figure 2.2. Basically, the file consists of a
couple of headers and various sections.

While the headers instruct the operating system how to handle the file, the sections
contain the actual content of the executable’s program. But these contents which have
to be mapped into memory can be of different types. There are for example some which
contain the executable’s code which has to be executed and there are others which store
its data. Furthermore, access rights for each section have to be specified which determine
whether the content is read-only, writable, or executable. The most important section
types are code sections and text sections containing the program code and data sections
including essential data. Thus, based on a section’s type the operating system can use
the corresponding content accordingly and prevent misuses.

As mentioned above, apart from the executable’s sections a PE file contains different
headers within its structure. These headers are implemented as simple data structures
which are defined in the WINNT.h file of Microsoft’s Windows Software Development
Kit3.

TheMS-DOS header (Structure: IMAGE_DOS_HEADER) serves the purpose of backward-
compatibility with MS-DOS systems. Yet, in spite of this feature no PE file will actually
run on a DOS system. Instead, the system will display the following error message:
“This file cannot be run in DOS mode”. Therefore, each Windows executable contains
a small MS-DOS stub code wich outputs this message in case it is executed on a DOS
system. Since there are probably very few people using MS-DOS in the meantime, there
are only two fields in the MS-DOS header which are actually important: The values of
the fields e_magic and e_lfanew. The value of e_magic has to be set to 0x5A4D which
is the ASCII representation for the letters “MZ” being the initials of Mark Zbikowski,
a former Microsoft developer and architect of the MS-DOS file format. The e_lfanew

3http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6b6c21d2-2006-4afa-9702-
529fa782d63b

14

2.2. Windows Fundamentals

Figure 2.2.: Portable Executable (PE) file format according to Microsoft [Mic10]

field contains an offset pointing to the PE header.

The PE header (Structure: IMAGE_NT_HEADER) is the executable’s actual header con-
taining information which is relevant for the operating system. It consists of three
fields: PE signature, file header, and optional header. The PE signature is usually set to
0x00004550 which is “PE00” in ASCII. The second and third member are data structures
describing the file’s contents and its basic information. Also, in spite of its name, the
optional header is not at all optional to an executable because it provides information
used in order to load the file. Among other things, the optional header contains an array
of IMAGE_DATA_DIRECTORY structures which provide information regarding the address
and size of important sections including certain .idata sections containing information
about the module’s import table and export table. These tables are used for dynamic
linking. As described earlier, Windows applications do not have to consist of one single
executable file. DLL files such as the various APIs mentioned above can be imported
and used within the program. Thus, using the functionality of dynamic linking provides
modularity and results in a reduction of program memory consumption. Yet, as the used
functions of those modules are not imported until the application is executed no infor-
mation concerning the memory addresses of the imported functions can be stored in the

15

Chapter 2. Prerequisites

PE file. Therefore, each module has an import table listing the imported modules and
used functions and an export table which stores the names and relative virtual addresses
(RVA) of its exported functions. In case a module is loaded, all functions of the import
table are mapped and their addresses are identified and stored in the import address
table (IAT). The memory addresses can be calculated by adding the current function’s
RVA from the export table to the module’s base address.

Finally, the section table is an array of data structures immediately following the
PE header. The structures are of the type IMAGE_SECTION_HEADER. There is a data
structure for each section in the PE file describing the associated section’s character-
istics such as its location and size. The number of sections and thus the number of
IMAGE_SECTION_HEADERs in the array is defined in the field NumberOfSections in the
file header of the PE header.

For more information about PE files, please refer to the Microsoft Portable Executable
and Common Object File Format Specification [Mic10] or the WINNT.h. Further insights
into the PE files are provided by Pietrek [Pie02a] [Pie02b].

2.3. Techniques of Analyzing Executables

In the previous section, we discussed the different processes of a system and the way they
are managed, the usage of APIs, and how executables are structured and treated by the
Windows operating system. This information is crucial in order to analyze and under-
stand the behavior of executables. This section outlines the techniques used by PyBox
in order to reveal and monitor an executable’s actions and describes possible ways to
implement them. As the usage of sandboxes is a means of dynamic malware analysis, the
term “dynamic malware analysis” is first defined and two different concepts of realization
are depicted. Furthermore, the techniques of API hooking and DLL injection which in
combination represent a way of analyzing executables are explained including possible
implementation alternatives.

2.3.1. Malware Analysis

The process of malware analysis is an important step in order to design efficient detection
techniques. When analyzing malware in order to determine its functionality and purpose,
there is usually no source code available and if it is there is no guarantee that the
compiled version is really based on this source. Various solutions for this problem exist.
According to Bayer et al. [BMKK06, p. 68-70] and Willems et al. [WHF07, p. 33],
they are classified into two categories: static malware analysis and dynamic malware
analysis.

Static Malware Analysis

When using static malware analysis the malicious code is not executed. Instead, it
must be disassembled and thus converted into assembler instructions. Then, analysis

16

2.3. Techniques of Analyzing Executables

techniques can be used to reveal the control and data flow. Advantages of this solution
are that it is easier to implement and that it inspects the whole content of a malware
sample. However, there are also some drawbacks. For instance, attackers can use code
obfuscation and byte obfuscation techniques in order to impede the analysis process.
The idea behind obfuscation is to change the code or execution flow in a way that makes
it very hard to analyze while keeping the intended functionality. Furthermore, there
are also types of malware for which a static malware analysis would be rather useless
because they change dynamically and therefore will not execute the code which has been
analyzed. Examples of these types are polymorphic and metamorphic worms which are
basically self-modifying programs that change their appearance during runtime.

Dynamic Malware Analysis

Another way to learn about the actual behavior of a malware sample or an application in
general is to actually run the software and observe the changes it causes to the system.
This type of analysis is called dynamic malware analysis.

Of course, it is usually not advisable to execute the malware on a native system.
Depending on the malicious code, it would be cumbersome to undo the changes to the
system every time a malware sample has been analyzed. Furthermore, the computer
might be connected to the internet or a local network, which, say in case of computer
worms, could lead to the outbreak and infection of further computers. As a solution,
various means exist to simulate the target system. A popular choice is to use virtual
machines such as VMware4 or VirtualBox 5. The advantage is that a virtual machine
provides a secure environment preventing malware escapes as well as the ability to use
snapshots of the virtual machine allowing an analyst to restore the system to a infection-
free state after the analysis process. Another possibility of simulating an operating
system are emulators such as Wine6. While both methods can simulate the target
system, they differ in the usage of computer resources. Within virtualization, virtual
machines can directly run instructions on the CPU and access devices. In contrast to
this, emulators simulate every system and hardware interaction through the emulation
software.

By applying the functionality of either virtualization or emulation, we are able to run,
observe, and analyze malware samples in a secure environment. There are two different
concepts of dynamic malware analysis that can be applied for this purpose. The first
concept entails running the malware to be analyzed and examine the system snapshots
before and after the run. The advantage of this method is that it is quite relatively easy
to implement. However, the analysis only reveals the results of the malware sample’s
execution, but not the activity during the execution. If the malware has undone its
changes and left no marks, the actions will remain unnoticed. The second concept is
analyzing the executable’s activity during runtime, which also reveals those types of
activities. Again, there exist two ways of analyzing executables during runtime. One
way of system-wide scope is to implement windows kernel drivers that intercept system

4http://www.vmware.com
5http://www.virtualbox.org
6http://www.winehq.org

17

Chapter 2. Prerequisites

calls. This way, all process, registry and filesystem activity can be monitored. The
methods using this concept are hidden from malware. This presents a major advantage
as some malware samples check for software that might inspect them. However, these
methods are only able to monitor all system calls. They cannot observe calls within the
malicious code. For this purpose, another approach is used that is of executable-level
scope meaning that only the activity of the corresponding malware sample is observed
but not the entire system activity. More precisely, certain functions of the executable
such as used APIs are intercepted and redirected to infiltrated monitoring functions. The
interception and redirection of functions is described in more detail in the next section.
The disadvantage of this method is that in certain situations, the malware might detect
the changes caused in memory or the executable file. To avoid such situations, solutions
using this approach require mechanisms that prevent their detection. This can be done
by hiding the added functionality and careful implementation.

Since we focus on single malware samples in this thesis, we apply dynamic malware
analysis with a VirtualBox virtual machine simulating the target system, and monitor
the sample’s activities during its runtime by using the latter concept described above.

2.3.2. Hooking

Hooking is a concept used to gain control of a program’s execution flow without changing
and recompiling its source code. This is achieved by intercepting function calls and
redirecting them to infiltrated customized code. By the provision of customized code,
any operation can be executed. Afterwards, the function’s original functionality can be
executed and the result can be either simply returned or changed and returned in order
to transfer control back to the code which has called the hooked function. Therefore,
hooking provides a perfectly suitable means that can be used for dynamic malware
analysis.

Fields of Application

Hooking enables us to add customized functionality to an application. Hence, it is a
useful technique which can be applied under various circumstances. Its main purposes
are threefold:

• Extending functionality:
Very often applications are considered nice and useful but lack a few features that
would make them more complete. In such situations, one might consider developing
one’s own application based on the desired needs assuming although this often is
time-consuming and cumbersome. Instead, we can use hooks in order to append
the desired functionality to the existing application.

• Debugging and reverse engineering:
Hooking techniques are often used for debugging purposes. They are a popular
mechanism for unfolding details about what an application does in the background
and how certain functionalities are implemented. In particular, these mechanisms
can be used to reveal the purpose and behavior of a malware sample.

18

2.3. Techniques of Analyzing Executables

• Malicious reasons:
Another field of application for hooks is malware. More precisely, some malware
types use this concept to add unwanted functionality to applications or systems.
For instance, rootkits can use hooks in order to obtain privileged access to a system
and to hide its presence (cf. [HB08, p. 99 ff.]). Another example are so-called
wallhacks that apply hooking techniques in order to put oneself in advantage in
computer games.

Classification of Hooks

According to Hoglund and Butler [HB08, p. 99 ff.], there are two major categories of
hooks: kernel hooks and userland hooks. As we have mentioned before, the virtual
memory of a process is divided into user memory and kernel memory. Thus, kernel
hooks are stored in kernel memory and userland hooks in user memory.

Kernel hooks are very well hidden because programs run in user mode and thus usually
do not have access to kernel memory. Consequently, these hooks are very difficult to
detect which explains their usage in rootkits. However, it is not easy to place them
in this memory portion. Kernel hooks are often implemented through device drivers.
Hoglund and Butler [HB08, p. 105 ff.] describe two different methods of using device
drivers to place kernel hooks. One way is the manipulation of the so-called System
Service Dispatch Table (SSDT), which stores the memory addresses of native system
services providing the Windows API with access to system resources. Thus, there is
the possibility to change addresses of the SSDT to a customized system service. The
second method of implementing kernel hooks is to modify the Interrupt Descriptor Table
(IDT) so that it points to an own-implemented interrupt handler, which is executed if
the corresponding interrupt is triggered.

In contrast to kernel hooks, userland hooks are relatively easy to implement because a
target process’s user-level memory can be modified as long one has access to its address
space. Yet, there is the drawback that these hooks can be detected by the target process.
Techniques of implementing userland hooks are described in 2.3.2.

In this thesis, we apply userland hooks for the purpose of dynamic malware analysis.
In order to counteract the drawback of being detectable, we use certain mechanisms in
order to hide the analysis environment. Thus, in the following, we focus on characteristics
and implementation methods of userland hooks.

API Hooking

In Section 2.2.3, we have seen that APIs are functions provided by a piece of software
that enable a developer to use the software’s resources or functionality. API hooking is
the concept used to intercept those API functions. Like other DLLs, APIs are loaded
into user memory when the executable is started. Thus, API hooking is a special type of
hooking, or more precisely, an API hook is a special type of userland hook. Using API
hooks, the code of API functions or entries pointing to their memory addresses can be
modified in such a way that the corresponding API calls are intercepted and redirected

19

Chapter 2. Prerequisites

to the hook functions, which then can perform their own functionality.

API Hooking Methods

As mentioned before, in order to hook an API function, the original execution flow has
to be intercepted and redirected to the hook function in order to take over control.
There are different points in a process or system where such an interception can take
place. Based on these points, various hooking methods exist. Examples are presented by
Ivanov[Iva02] and Engelberth[Eng07, p. 31 ff.]. In this section, several of these methods
are outlined.

Proxy DLL One possible hooking method is to use so-called Proxy DLLs or Trojan
DLLs. Here, the original DLL which contains the API functions to be hooked is replaced
by the Proxy DLL. This way, when an executable using the respective library is started,
the modified library is loaded into the process’s address space. Then, stub calls can
be used in order to not only replace the original DLL but also to intercept the calls
and additionally provide the ability to use the original functionality. One technique of
realization entails the following steps:

1. Backup the original file by renaming or copying.

2. Replace it with our modified DLL by using the original DLL file name.

3. Execute our own code.

4. Forward calls to the original DLL, or reject them and transfer control back to the
calling operation.

Thus, this technique is rather simple to implement. However, it also comes with some
considerable disadvantages:

• One major drawback is that all functions that are exported in the original library
have to be exported in the Proxy DLL as well. Otherwise, it would cause linking
errors which could reveal the Proxy DLL’s existence. This is especially inconvenient
if there are a lot of exported functions in the original library but we only want to
hook a small number of them.

• Furthermore, one has to be careful when implementing the stub calls. Each one of
them has to use exactly the same amount and types of arguments as the functions
in the original DLL. Otherwise, this would also lead to errors disclosing the hooking
environment.

• Another major disadvantage is that this type of hook is very easy to detect as
the DLLs are simply replaced by other files. Therefore, proxy DLL and original
DLL almost certainly have different file sizes, which could reveal the proxy DLL’s
existence. In particular, checksums can be used in order to detect this kind of
hooks.

IAT Hooking The IAT hook is derived from the layout of the PE file format, which
we discussed in Section 2.2.4. According to Ivanov [Iva02], the idea of using the IAT for

20

2.3. Techniques of Analyzing Executables

Figure 2.3.: The IMAGE_BASE_DESCRIPTOR data structure according to Pietrek [Pie02b]

hooking was first published by Pietrek [Pie94].

As mentioned before, API functions are provided in other executable files. If an ap-
plication uses APIs, the DLL files containing the APIs functions are loaded into the
process’s address space as soon as the application is started. The information about
all imported modules and functions is stored in the .idata section of the importing
executable containing an array of IMAGE_IMPORT_DESCRIPTOR data structures. For each
imported module, there is one IMAGE_IMPORT_DESCRIPTOR data structure providing in-
formation such as the name of the imported DLL file and also two pointers to arrays,
one of them being the IAT. The IMAGE_IMPORT_DESCRIPTOR’s layout is depicted in Fig-
ure 2.3. During startup, the PE loader parses through all IMAGE_IMPORT_DESCRIPTOR
structures and loads all relevant executables into memory, parses their export tables,
and inserts the resulting address information about the imported functions into the ex-
ecutable’s IAT. Consequently, when an API is used by the application, an indirect call
using the IAT is executed in order to get to the function’s actual address.

The IAT hook uses this layout by modifying the addresses stored in the IAT in
order to redirect these calls to its own hook functions. In doing so all calls to the
API functions are redirected to the respective hook function. In order to manipulate
the IAT, we have to discover the location of the IAT by parsing the PE file format
for the right IMAGE_IMPORT_DESCRIPTOR structure, locate the IAT array, and change
the corresponding function’s address information. However, the .idata section is not
necessarily writable. In such a situation, the hook has to use the kernel32.dll’s
VirtualProtect API in order to change the section’s access rights. The technique of
IAT hooking is described in more detail by Richter[Ric99], Robbins[Rob00], and Hoglund
and Butler[HB08, p. 97-98].

Thus, IAT hooks are relatively simple to implement but they also have various disad-
vantages (cf. Hoglund and Butler[HB08, p. s98]):

• IAT hooks can be detected very easily.

• These type of hooks does not always work. If an application uses late binding,

21

Chapter 2. Prerequisites

Figure 2.4.: Inline hooking (cf. Engelberth [Eng07, p. 33])

i.e. the referring function’s memory address is not looked up at the application’s
initialization but during runtime, the IAT hook will be ineffective because the
customized address information in the IAT is changed again to the correct address.

• If the API function is called dynamically during runtime by usage of the APIs
LoadLibrary and GetProcAddress, the IAT hook will proof ineffective as well.
This is because in this case the IAT is not used.

Inline Hooking The third and last hooking method described in this thesis is inline
hooking. As we will see, it is more powerful than IAT hooking. Inline hooking can
also be used for kernel hooks but is more commonly applied in userland hooks. Instead
of modifying table entries or manipulating information that leads to the target API
function, inline hooks directly overwrite the function’s code bytes in memory. Of course,
it would not be useful to simply overwrite the entire API function with own code.
Instead, only the first instructions are overwritten with a five byte jump instruction to
the hook function. Figure 2.4 illustrates the inline hook mechanism in more detail.

1. Somewhere in the application’s code, the hooked API function is called with its
parameters. This way, the instruction pointer is set to the address of the first
instruction of the original API function.

2. However, the first instructions of the API function have been overwritten. Instead,
an unconditional jump instruction is executed. The offset of the jump command is
added to the instruction pointer. The consequence is that the instruction pointer
is set to the address of the hook function.

3. Now, the hook can perform its own functionality and execute its instructions. In
order to use the API function’s original functionality, it is not possible to simply
call the API because this function has been hooked, and doing so would end up
in an infinite loop. Instead, the hook function can use the trampoline function
in order to execute the actual API function. For this purpose, the trampoline
function is called with a regular function call and with all its arguments. As the
API is not called directly, the call of the trampoline function is also referred to as

22

2.3. Techniques of Analyzing Executables

detour.

4. The trampoline function executes the instructions, that have been backed up in
Step 1. Subsequently, an unconditional jump to the rest of the original function
after the overwritten bytes is used to perform its remaining instructions. After the
function has completed its task, the result is returned to the hook function.

5. The hook function can now either return the received result to the application code
which has called the API in the first place, or return an appropriate customized
value.

6. Finally, the application code receives the result and can proceed.

In order to use inline hooking, we have to perform the following steps:

1. In a first step, we back up the first bytes of the API function to be hooked which
will be overwritten, and store them in another memory area of the trampoline
function. However, since instructions can be of different size, we have to make
sure that no instructions are split. This would lead to a crash of the application
and could reveal the hook’s existence.

2. We have to insert an unconditional jump command to the address following the
stored bytes in the trampoline function in order to ensure that the trampoline
function will return to the original function and execute its remaining instructions.
Thus, the target of the jump is the memory address after the backed up bytes in
the original function.

3. Then, we overwrite the mentioned first bytes of the original API function code with
an unconditional jump instruction. For this purpose, memory space of five bytes
is needed. One byte is used for the jump instruction represented by the opcode
0xE9 and the remaining four bytes are required to determine the offset to the hook
functions.

After these three steps, the hook function can perform all desired instructions and
even call the original function by using the trampoline.

The advantages of this kind of API hook is that in contrast to IAT hooks, every
type of function can be hooked and not only functions that are imported from other
executables. Furthermore, it is irrelevant which type of command is used in order to
call the API function. It does not matter whether the IAT or the APIs LoadLibrary
and GetProcAddress are used to call the function. Neither does it matter whether late
binding is used or not. This is why inline hooks are more effective than IAT hooks.

However, there are also a few disadvantages. Firstly, one has to be careful that no
instructions are split when overwriting the original function. For instance, this problem
can be solved by disassembly of the corresponding instructions. Another solution is to
compare the byte pattern to familiar ones in order to determine how many bytes have
to be overwritten. Moreover, there must not be any unconditional jumps in the bytes
which are overwritten. This would cause the application to crash.

In this thesis, we use inline hooks in order to intercept API functions and determine
the purpose and behavior of malware.

23

Chapter 2. Prerequisites

2.3.3. DLL Injection

So far, we discussed different types of malware analysis and different methods to in-
tercept functions via hooks for the purpose of malware analysis. However, in view of
our goal to use hooks in order to determine a malware’s behavior there is one problem
left. We covered how the hooks work but not how to place the hook functions in the
target process’s address space and how to initialize the hook installation process. The
mechanism we apply for this purpose is called DLL injection. Subsequently, we have to
ensure that the modifications of the code bytes in memory are performed in order to
install the hooks.

Injection Methods

In the following, we three different DLL injection methods . According to Hoglund and
Butler [HB08, p. 101], these methods were first introduced by Richter [Ric94].

Injection via Windows Registry The injection via Windows registry uses a certain
registry key of the Windows registry in Windows Versions NT, 2000, XP, and 2003 in
order to inject an arbitrary DLL file into the target process’s address space. The key’s
registry path is HKEY_LOCAL_MACHINES\Software\Microsoft\WindowsNT\CurrentVers
ion\WindowsAppInit_DLLs. If a DLL file’s path is added to this key, all applications
using the user32.dll and thus using a GUI will load the DLL into its memory.

This injection method is very easy to implement but also entails several major disad-
vantages:

• As the registry key to be modified is only available in the Windows Versions NT,
2000, XP, and 2003, the injection technique is limited to those versions.

• This type of injection is dependent of the usage of the user32.dll. Therefore, it
is not possible to inject a DLL into arbitrary processes but only those using a GUI.

• Using the injection via Windows registry, the customized DLL is loaded into all
processes which import the user32.dll. Thus, it is not possible to select only
certain processes or applications for injection.

Injection via Windows Hooks In the Windows operating system, if a key or a
button is pressed, this causes a Windows event about which all running applications
using a GUI are notified by messages. Microsoft provides so-called Windows hooks by
which these messages can be intercepted. Thus, these hooks can be used in order to load
a DLL into the address space of a remote process. Table 2.2 displays the function used
to install a Windows hook.

The first argument idHook is an identifier that defines the hook’s type depending on
the triggered event. Altogether, there are fifteen different available hook types. The
second argument lpfn points to the hook procedure to be executed if the corresponding
event is triggered. hMod is a handle determining the module and thus the DLL containing
the procedure. The last argument dwThreadId identifies the thread to which the hook
is attached. If it is defined as NULL, the hook is attached to all threads thus representing

24

2.3. Techniques of Analyzing Executables

Argument Type Comment
idHook int
lpfn HOOKPROC
hMod HINSTANCE
dwThreadId DWORD
Return Type HANDLE

Table 2.2.: The SetWindowmsHookEx interface

Argument Type Comment
hProcess HANDLE
lpThreadAttributes LPSECURITY_ATTRIBUTES
dwStackSize SIZE_T
lpStartAddress LPTHREAD_START_ROUTINE
lpParameter LPVOID
dwCreationFlags DWORD
lpThreadId LPDWORD out
Return Type HANDLE

Table 2.3.: The CreateRemoteThread interface

a system-wide hook. The return value of the API function is a handle, which can later
be applied to uninstall the hook using the API UnhookWindowsHookEx.

Consequently, injection via Windows hooks offers some advantages in comparison to
the injection via Windows registry:

• There are no limitations regarding Windows versions.

• The hooks can be uninstalled as soon as they are not required any more.

• By using the last argument of SetWindowsHookEx it is possible to solely hook a
certain thread and use the DLL focused on the target.

However, there is also the drawback that Windows hooks can have a significant impact
on the system performance since for each event message, the system’s list of Windows
hooks has to be parsed.

Injection via Remote Thread The last DLL injection method described in this
thesis is the injection via remote thread. In contrast to the methods described above,
this technique does not make use of any Windows settings. Instead, a small program has
to be written that creates an additional thread in the target process. Subsequently, the
created thread loads the DLL file. For this purpose, two Windows API functions which
are provided by kernel32.dll are required: CreateRemoteThread and LoadLibrary.

CreateRemoteThread displayed in Table 2.3 takes 7 arguments. We focus on the
the three most ones important regarding DLL injection. The first argument hProcess
takes the process handle of the target process, in which the new thread is created. The

25

Chapter 2. Prerequisites

handle can be obtained via the OpenProcess API. OpenProcess only needs the target
process identification number¿7 The second important argument is the fourth parame-
ter lpStartAddress. This argument takes a pointer to the function, which is executed
as soon as the thread is created. In order to load a DLL file into the process address
space, the memory address of the LoadLibrary API has to be passed to this argument.
The memory address of LoadLibrary can be located by examining the injecting pro-
gram’s virtual memory since Windows applications usually store this API at the same
address due to performance reasons. Therefore, the API functions GetProcAddress and
GetModuleHandle can be used to locate LoadLibrary. As LoadLibrary requires the
DLL file’s path as an argument, the path has to be stored as a char array in the tar-
get process’s virtual memory. This can be done by applying the VirtualAllocEx and
WriteProcessMemory APIs. The memory address must be passed to the fifth argument
of CreateRemoteThread, the so-called lpParamater.

In comparison to the DLL injection methods mentioned above, the injection via remote
thread performs considerably better. Also, it is possible to focus on a single target
process. Consequently, there are no redundant injections into further processes. On the
other hand, there is the drawback that this method does not work for older Windows
versions before Windows NT. Furthermore, we have to note that in order to inject
executables into system processes using this method, one has to obtain debug privileges.
Otherwise, there might be access violations.

In this diploma thesis, we use DLL injection via remote thread because this method
has a relatively low impact on the system performance, and it can be used to inject our
code into all processes, no matter whether they use a GUI or not.

Post-Injection: Hook Installation Initialization

As soon as the modified executable is loaded into the target process address space, our
analysis environment is almost complete. The DLL containing the hooking environment
is already loaded but the hooks are not yet installed. For the installation process, we have
to ensure that the DLL uses its main entry point. This means that the code compiled to
our DLL has to implement the function DllMain executing all required tasks to install
the hook library. Further implementation details concerning this issue can be found in
Section 3.4.6.

2.4. Related and Concurrent Work

In this section, we briefly describe selected publications that are related to this diploma
thesis.

7The process identification numbers of all running processes can for example be listed by the Windows
Task Manager.

26

2.4. Related and Concurrent Work

2.4.1. Related Work

The increasing amount and diversity of malware has caused IT security researchers to
move towards automating the analysis of malware samples. Therefore, dynamic malware
analysis and automation are no new topics in this field. In particular, there exists an
array of publications and tools on this topic. In this section, we review some of this
work.

CWSandbox / GFI Sandbox

CWSandbox 8 is a research tool developed by the Chair for Practical Informatics 1 at
the University of Mannheim. Licensed by the company Sunbelt9, it is now sold as a
commercial product called GFI Sandbox. GFI Sandbox is said to be the industry’s
leading tool concerning dynamic malware analysis.

It can be used to run a behavioral analysis of a malware sample during its runtime
and thus reveal its activities. In particular, it provides information about

• executed applications,

• caused system changes such as changes to the Windows registry or to the file
system, and

• generated network traffic.

It also emulates user interaction in order to create an environment for the malware
sample that is as authentic as possible while not jeopardizing system security. More
precisely, security is ascertained by running the analysis in a virtual machine. For
this purpose, GFI Sandbox supports VMWare10 as virtualization software. After the
monitoring process, a detailed analysis about the monitored actions is created. This
analysis is written to an XML file and can be used for further analysis. Moreover, it can
be compared to multiple other reports and one may derive the threat and severity posed
by the observed object.

Much like PyBox, CWSandbox monitors API calls in order to draw conclusions of the
malware sample’s activities. Also, according to Willems et al. [WHF07], CWSandbox
makes use of inline hooking as the API hooking method as well as DLL injection via a
remote thread in order to intercept, observe, and log every relevant API call with all its
arguments. Like PyBox, the hooks are installed in user-mode allowing the environment
to focus on the observed executables. Thus, every single action performed by the malware
sample is inspected and revealed to the security researcher.

8http://mwanalysis.org/
9http://www.sunbeltsoftware.com/

10http://www.vmware.com/

27

Chapter 2. Prerequisites

Figure 2.5.: Joe Sandbox analysis procedure according to Joe Security [joe11]

Joe Sandbox

Joe Sandbox is another another tool that enables fully automated analyses of malware
samples. Like CWSandbox and PyBox, it executes malware in a secure, controlled
environment and provides detailed reports as output. The analysis procedure of Joe
Sandbox is depicted in Figure 2.5.

As we can see, Joe Sandbox consists of two basic elements: a controller and a set
of analysis machines. The controller manages the analysis process, whereas the analy-
sis machines provide the secure environments in which the objects to be observed are
executed and monitored.

The analysis process requires six steps:

1. The binary to be monitored is submitted to Joe Sandbox and is stored in a
database.

2. An analysis machine is created. It incorporates a so-called behavior engine which
provides the monitoring functionality.

3. The submitted binary is copied to the analysis machine.

4. The binary is executed and monitored. During the execution, each observed event
is sent to the controller and evaluated.

28

2.5. Summary

5. The analysis machine is restored to a clean system state.

6. The report containing all observed behavior is created and sent to the user.

The primary difference between Joe Sandbox and PyBox or CWSandbox lies in the
behavior engine. While PyBox and CWSandbox use hook libraries installing user-mode
hooks, the behavior engine of Joe Sandbox is implemented as a Windows driver and
therefore runs in kernel mode. This implies two advantages. Firstly, it can also detect
malware running in kernel mode. Secondly, it is much more difficult for malware to
detect the analysis environment.

Based on the monitored information, Joe Sandbox tries to detect known behavioral
schemes that are typical for malware. For this purpose, it compares the received data to
known signatures in its signature engine. Furthermore, Joe Sandbox provides support
for several operating schemes. It can be run in combination with either a virtualization
software such as VirtualBox or VMWare, or with a emulator. However, the operating
systems on which the analysis has to occur are limited to the Windows Versions XP,
Vista, and 7.

2.4.2. Concurrent Work

Due to the benefits of automated dynamic malware analysis solutions and the easy
extendability of such solutions developed in Python, there are currently several projects
addressing the implementation of Python-based sandboxes. Apart from this thesis, there
is a further project which has been named “PyBox” and pursues the same goal (cf.
Leder and Plohmann [LP10]). However, they pursue a different approach: While in our
approach a separate hook library is implemented and compiled providing the monitoring
functionality, Leder and Plohmann inject a Python interpreter into the process to be
monitored and provide their monitoring functionality within external Python scripts.
This provides more flexibility and a higher degree of configurability.

2.5. Summary

At the beginning of this chapter, we discussed malware in its various forms and how
samples can be detected. Like on any other operating system, these threats affect the
behavior of Windows. Hence, in order to be able to analyze, monitor and predict the
caused changes to the system, it is important to provide a basic understanding of the
system’s functionality. This is why in the second part of this chapter, we outlined some
major fundamentals of the Windows operating system such as memory management,
the formats of executable files and how processes are created out of these executable
files. Based on these fundamentals, different hooking and injection methods have been
introduced which serve the purpose of injecting customized code into other processes,
intercepting functions and redirecting them to the infiltrated functionality which in turn
can report the malware’s activity.

29

Chapter 3.

Implementation

In this chapter, we describe the functionality of PyBox, how it works, and how it is
implemented. In particular, we detail to what purposes PyBox can be used, how one
can make use of its functionality, and what happens inside PyBox when it is executed.

In the first section, we define the design goals PyBox has to meet. For this purpose, we
specify functional design goals that have to realized in order to provide a suitable malware
analysis environment as well as non-functional design goals that have to considered.

In Section 3.2, we outline the setup of PyBox including all of its components. In
particular, we provide an overview of these components’ purposes and describe how
they work together and communicate with each other. Additionally, the various steps to
produce and output the required information in the form of an XML-based report are
outlined.

Based on this overview of the PyBox setup, the subsequent sections outline the im-
plementation details concerning different components of the analysis environment. In
Section 3.3, we describe the applied software simulating the target system. The imple-
mentation of the hook library including the hook installation and callbacks is covered
in Section 3.4. In Section 3.5, we detail the implementation of the analysis tool that
processes the monitored information of the hook library and writes them to an XML
file. Finally, we discuss the communication methods used by the hook library and the
analysis in order to exchange information such as the monitored activites or the settings
defining which functions have to be intercepted.

3.1. Design Goals

Considering the task of this thesis and the described prerequisites, we can derive sev-
eral design goals which can be divided into functional and non-functional goals. The
functional design goals concern the required features of PyBox which are listed in the
following.

Secure Environment A sandbox has to provide a secure environment in which an
executable such as a malware sample can be executed. Therefore, we have to ensure that
the malware finds no opportunity to replicate itself by means of a network device or any
other device. Furthermore, it is important to provide a feature that allows to undo the

31

Chapter 3. Implementation

changes caused by the observed executable guaranteeing that an analysis does not have
any influence on a subsequent one.

Monitoring System Interaction In order to draw conclusions about the behavior
of the observed executable, we have to monitor its interaction with the operating system.
Thus, the analysis environment has to control all specified system interaction activities
of the executable.

Traceability Some malware samples use detection mechanisms, which can tell when
they are scanned. Therefore, we have to implement functionality that hides the analysis
environment as well as possible in order to not be detected.

Machine-readable Report Finally, the program’s output has to provide a machine-
readable report containing all relevant information. The report has to be exported to a
file so that it can be put to further use.

Apart from the functional design goals, there are some non-functional design goals
that have to be considered before focusing on the implementation details. These non-
functional design goals mainly concern the usage and further development of PyBox.

Usability PyBox is an open-source sandbox, which is implemented for usage and
further development in teaching and research. Hence, it should be easy to use. A
potential analyst should not have difficulties when trying to configure and utilize the
functionality of PyBox. Also, the output report has to provide its information in a
understandable way allowing to draw valueable conclusions from it.

Extendability The analysis environment serves the purpose of observing the behavior
of executables in Windows. However, in view of the development concerning malware
attacks on other platforms such as mobile devices, future developers might consider to
extend the functionality of PyBox in order to analyze executables on other operating
systems as well. Therefore, PyBox should be extendable.

3.2. System Overview

The analysis process consists of four components: the PyBox virtual machine, the PyBox
analysis tool, the hook library, and the target process.

PyBox is a sandbox and serves the purpose of analyzing malware. In order to prevent
the malware from causing permanent changes to the analysis system, we run the analysis
in a virtual machine. A snapshot of the original system state ascertains a clean system
state for each analysis process. Thus, we can perform the analysis uninfluenced by earlier
changes through prior analyses.

During the ordinary execution of an executable, a large part of the activity happens
in the background and is not shown to the user. The user only perceives the result of
these activities. In particular, malware usually is designed to hide its execution. Usually,
neither the user nor other software such as virus scanners are supposed to detect the

32

3.2. System Overview

Figure 3.1.: PyBox analysis procedure

malware so that it can serve its malicious purpose as long as possible. Therefore, PyBox
has to reveal these actions in the target process, specifically those which make use of
system functionality. In PyBox, we achieve this through monitoring the calls to the
native API by using API hooking and DLL injection. For this purpose, two components
are necessary: the hook server and the hook library.

The PyBox analysis tool PyBox.py acts as hook server. It adjust the setup according
to the settings defined in the configuration files, creates the target process, injects the
hook library into the target process, receives and processes the log data, and generates a
report. The hook library, which is the file pbMonitor.dll, implements the hooking and
monitoring functionality. It is responsible for installing the specified hooks, monitoring
the system calls, and the creation of log entries. As the two components are closely
related and have to interact with each other, a means of inter-process communication
(IPC) is implemented that allows the two processes to communicate with each other and
exchange information.

The necessary steps of the analysis process are depicted in Figure 3.1 and described
in the following:

1. As soon as the PyBox virtual machine is up and running, and a malware sample to
be observed is provided, the user configures the two configuration files pybox.cfg
and hooks.cfg, which belong to the PyBox analysis tool. In pybox.cfg, we can
configure the main settings such as the file path to the hook library (pbMonitor.dll)
to be injected, the file path to the target application as well as the path to the
folder into which the report is written. In hooks.cfg we can specify the native
API functions to be hooked including customized return values if the result of the

33

Chapter 3. Implementation

original functions shall not be returned.

2. Having configured the settings, we are able to execute the PyBox analysis tool
(PyBox.py). In doing so, we pass the path the to created pybox.cfg file as an
argument and run the analysis process.

3. The PyBox analysis tool reads all configuration files and adjusts all settings.

4. It creates the target application’s process and uses DLL injection in order to inject
the hook library pbMonitor.dll into the target’s address space. The hook library
installs itself and hooks all API functions specified in hooks.cfg by redirecting
them to the corresponding callback functions also included in pbMonitor.dll.

5. With the hooks being installed, the hook library creates a log and sends it to
the PyBox main application each time a hooked API function is called during the
execution of the target process.

6. As soon as the execution of the observed object is terminated, the logged data are
written to a XML file. Thus, the information of the analysis process can be stored
and exported for further use.

Following this procedure, the virtual machine can be restored to the original system
state by usage of the snapshot mentioned above.

3.3. Sandbox Environment

In the previous section, we mentioned that we use a virtual machine in order to provide
a secure environment in which an arbitrary malware sample can be executed. For this
diploma thesis, we use VirtualBox1 (version 4). VirtualBox is a virtualization software
for x86, AMD64, and Intel64 architectures. According to Oracle [Ora11a, p. 11], it can
be run on various operating systems such as Windows, Linux, Mac OS and OpenSolaris
to run various guest operating such as all NT-based Windows versions and Linux ver-
sions using kernel 2.4 or 2.6. The virtual machine used for PyBox runs a Windows XP
operating system. All network devices are disabled in order to prevent the propagation
of malware. Also, VirtualBox offers a snapshot functionality. This enables us to restore
a clean system state for each new analysis process. The VirtualBox SDK [Ora11b] pro-
vides an API with a set of functions allowing to control virtual machines via console or
programming languages such as Python and C++.

3.4. Hook Library

The hook library implements the hooking and monitoring functionality. As we have
described in 2.2.1, each process has only access to its own address space and thus can
only execute code that is located within its memory. However, since we want our own

1http://www.virtualbox.org

34

3.4. Hook Library

customized code to be executed in the context of the target process, we have to implement
the code as a DLL and must load it into the target process’s address space.

In Chapter 2.2.4, we have described the executable file format of Windows. Other
operating systems such as Linux use different formats such as the ELF format which we
will outline in Chapter 4.1. Obviously, executables are system-specific. They can only
run on the system they are compiled for. Therefore, we have to use the respective file
format and cannot generate a common hook library for different operating systems. In
order to use PyBox on different operating systems, a seperate new hook library has to
be implemented for each one.

Thus far, PyBox is limited to Windows NT-based operating systems and thus only
provides a hook library for Windows which is named pbMonitor.dll. Hook libraries for
different operating systems are beyond the scope of this diploma thesis.

In this section, we discuss the implementation details of the hook library. First, we out-
line the hook library’s structure and the order in which its components are used. Then,
the various components are described. We depict how the function hooking method is
implemented and how the callback and trampoline functions are realized. Additionally,
callback examples demonstrate their utilization. Subsequently, we describe some special
detection prevention hooks that hide the analysis framework. Finally, we demonstrate
how the hooks are installed.

3.4.1. Hook Library Overview

pbMonitor.dll is implemented in Visual C++. C++ was chosen as programming lan-
guage since we cannot use Python to create a DLL and we have to make much use of
various API functions provided by Windows, which often require the use of specific C
data structures. Therefore, C++ is an appropriate choice to implement the required
functionality.

The structure of pbMonitor.dll is depicted in Figure 3.2. The file dll-injection.h
provides the functionality to inject the hook library into other processes that are created
by the currently observed target process ensuring that all executed processes of called by
a malware sample are monitored. The specified settings concerning all hooks are defined
in an array in settings.h. The array specifies which functions have to be hooked.
Furthermore, it provides data required for hooking them such as module information
of each function as well as the corresponding memory addresses of the callback and
trampoline functions. The information concerning the settings of PyBox is retrieved
from the PyBox analysis tool and filled in as soon as the target process is started. log.h
implements the functions and required data structures to create a log entry. The retrieval
process of the settings, their structure as well as the creation of logs are described in
more detail in Chapter 3.6.

While apiHook.h implements a class providing the functionality to install single
hooks, the files callback.h and trampoline.h implement the callback and trampoline
functions containing the added customized code. Additional native API data struc-
tures, which are required by the callback and trampoline functions, are defined in

35

Chapter 3. Implementation

Figure 3.2.: Hook library layout

apiStructures.h.

All the functionality provided by the various headers mentioned are applied in main.cpp
in the DLL main entry point initializing the hook installation.

3.4.2. Function Hooking

In PyBox, we make use of API hooking in order to intercept specific functions by redi-
recting them to our customized code that implements the monitoring functionality. In
Chapter 2.3.2, we have described three different hooking methods which can be used for
API hooking. In our hook library, we use inline hooking as our chosen method. There-
fore, we have to overwrite the first few code bytes in memory of the functions which
we want to intercept. The overwritten code bytes are stored in a trampoline function
and are replaced with a jump instruction to the callback function running our own code.
We have to store the original bytes because we do not necessarily want to prevent the
execution of all API functions which are covered by PyBox. Instead, we just want to
intercept those functions in order to observe the execution flow and still be able to call
the original functionality as if nothing happened.

We choose inline hooking because it seems to be the most appropriate userland hook-
ing method regarding our objective to monitor malware. According to Willems et al.
[WHF07, p. 33], inline hooking is one of the more efficient and effective methods. There-
fore, this method is applied in CWSandbox as well. Furthermore, it is not as easy to
detect as other hooking methods, and it is not specific to a certain function type.

170 void __stdcal l apiHook : : i n s t a l lHook ()
171 {
172 s e tDebugPr iv i l e g e s () ;

36

3.4. Hook Library

173 HANDLE h_process = GetCurrentProcess () ;
174 i f (h_process != 0)
175 {
176 unsigned char byte ;
177 DWORD jump_distance , dwOldProtect ;
178 short o f f s e t =

ca lcu lateBytesToOverwr i te (h_process , this−>address_api) ;
179

180 // Backup f i r s t b y t e s o f o r i g i n a l API func t i on
181 DWORD temp_api = this−>address_api ;
182 DWORD temp_trampoline = this −>address_trampol ine ;
183 Vir tua lPro t e c t ((void ∗) this−>address_trampoline , o f f s e t +5,

PAGE_WRITECOPY, &dwOldProtect) ;
184 for (int i =0; i<o f f s e t ; i++)
185 {
186 byte = readByteFromMemory (h_process , temp_api) ;
187 writeByteToMemory (h_process , temp_trampoline++, byte) ;
188 byte = 0x90 ;
189 writeByteToMemory (h_process , temp_api++, byte) ;
190 }
191 Vir tua lPro t e c t ((void ∗) this−>address_trampoline , o f f s e t +5,

PAGE_EXECUTE, &dwOldProtect) ;
192

193 // Write JMP opera t ion back to o r i g i n a l API func t i on
194 byte = 0xE9 ;
195 jump_distance = temp_trampoline − (temp_api + 5) ;
196 writeByteToMemory (h_process , temp_trampoline++,byte) ;
197 writeOffsetToMemory (h_process , temp_trampoline , jump_distance) ;
198

199 // Writing hook to the o r i g i n a l f unc t i on address
200 Vir tua lPro t e c t ((void ∗) this−>address_trampoline , 5+o f f s e t ,

PAGE_EXECUTE, &dwOldProtect) ;
201 temp_api = this−>address_api ;
202 Vir tua lPro t e c t ((void ∗) this−>address_api , 5 , PAGE_WRITECOPY,

&dwOldProtect) ;
203 byte = 0xE9 ;
204 jump_distance = this−>address_api − (this−>address_ca l lback + 5) ;
205 writeByteToMemory (h_process , temp_api++, byte) ;
206 writeOffsetToMemory (h_process , temp_api , jump_distance) ;
207 Vir tua lPro t e c t ((void ∗) this−>address_api , 5 , PAGE_EXECUTE,

&dwOldProtect) ;
208

209 FlushInst ruct ionCache (h_process , NULL, NULL) ;
210 CloseHandle (h_process) ;
211 }
212 }

Listing 3.1: Inline hooking

The implementation of the inline hooking method used in PyBox is depicted in Listing
3.1. At first, we determine how many bytes we have to backup and copy to the tram-
poline function. We cannot simply copy the first five bytes which required for the jump
instructions because not all instructions use exactly five bytes. Some are shorter whereas
some need more space. Therefore, we have to ensure that no instructions are split up
and that we only copy full instructions to the trampoline. Otherwise, the hook would

37

Chapter 3. Implementation

crash the whole target process and would reveal its presence. One way to determine the
required byte number is to disassemble the byte codes at this memory address. Here, we
use another approach by exploiting a certain characteristic of API functions: Most API
functions have a similar or even the same byte patterns. Thus, we simply have to scan
the first bytes of a target function and match it to the byte patterns we know. From
these patterns we can derive the number of bytes which we have to copy and overwrite.
This is done by the function calculateBytesToOverwrite (line 178).

Now that we know the number of the corresponding bytes, we can copy them to
the trampoline function before they are replaced with the jump instruction. As these
bytes represent code that has to be executed, we have to change the page protection
setting of this memory region from PAGE_EXECUTE to PAGE_READWRITE using the API
VirtualProtect (line 183) in order to manipulate the bytes at these memory addresses.
As soon as we have placed our code, we have to change the protection settings back
to PAGE_EXECUTE (line 191) so that the code can be executed. In order to backup and
replace the bytes, we have to read each byte, replace it with a NOP byte, and write the
read byte to the trampoline. We use the API functions ReadMemory and WriteMemory to
edit the memory at the specified addresses. NOP bytes are represented by the byte code
0x90 and tell the CPU to do nothing and skip over them. Here, we use NOP bytes because
we do not necessarily need all the overwritten bytes in order to place the five-byte jump
instruction.

In the next step, we write a jump instruction to the end of our trampoline function
(lines 196, 197), which directs the execution flow of the trampoline instruction back to
the original function after the backed up bytes have been executed so that the untouched
rest of the original function can be executed. Thus, by calling the trampoline function,
the full original functionality of the hooked API is provided.

Finally, we can calculate the jump distance from the original function to the hook
function (line 135) and write the jump instruction 0xE9 combined with the calculated
jump offset to the created NOP array (lines 136, 137) at the first memory address of the
original function. Having set the page protection settings back to being executable, the
function is ready to install hooks.

3.4.3. Callbacks and Trampolines

In the previous section, we have seen how inline hooking is implemented in our hook
library. The result of placing a hook is that the execution flow is redirected through
the callback and trampoline function. In this section, we describe the implementation
of these two functions.

The callback function provides our own customized code. Within this function, we
can practically do anything we want. As our goal is to observe the behavior of an
executable, we implement the monitoring functionality in the callback function. Hence,
this is where we create log entries and send them to the PyBox analysis tool. In case we
still want to execute the hooked API function, we cannot simply call the original API
function. This would lead us into an endless loop. For this purpose, we have to call the
trampoline function, which contains the backed up first bytes of the original function

38

3.4. Hook Library

and then directs the execution flow to the untouched rest of the original function.

return_type ca l l ing_convent ion ca l lback_funct i on (arg1 , . . . , argn)
{

return_type s t a tu s ;
i n f o = obta in_i format ion (arg1 , . . . , argn) ;
i f (prevent_execut ion == fa l se)
{

s t a tu s = trampol ine_funct ion (arg1 , . . . , argn) ;
}
else
{

s t a tu s = customized_return_value ;
}
create_log_entry (i n f o) ;
return s t a tu s ;

}

Listing 3.2: Callback function structure

The structure of a callback implementation is depicted in Listing 3.2. In such a
function, all we do is either calling the original function via the trampoline function,
or preventing its execution returning a customized value, and creating a log entry. The
variables prevent_execution and customized_return_value represent settings that
are defined in the settings.h header file for all hooks. The value of prevent_execution
determines whether or not the trampoline function is called in order to execute the actual
API function. If it is not called, we have to specify a customized value that returns an
appropriate value to the caller. The function create_log_entry notifying the analysis
environment of the API call and providing it with all relevant information about the call’s
parameters is called at the end of the callback function before the result is returned.

In contrast to the callback functions, we do not have to implement any logic in the
trampoline functions because the content of the trampoline function is filled in by the
hook installation described in the previous section. We only have to ensure that the
trampoline provides enough space for the bytes that have to be copied from the original
function. Therefore, we insert an NOP array of an appropriate size. For PyBox, we do not
need to copy more than ten bytes, so that it suffices to use ten NOPs for each trampoline.

Other important aspecs are the consideration of the correct return value and argument
types of each callback and trampoline function as well as the correct calling convention.
If we do not take these aspects carefully into account, the application will crash since,
as soon as the hook becomes effective and redirects the execution flow to the callback
function, the stack is already aligned. The calling convention, however, defines how a
function is called. In particular, it specifies how arguments are pushed on the stack,
and in what order, and whether the caller or the callee manages the stack. According
to Microsoft [Neta], Windows supports different calling conventions: the C calling con-
vention Cdecl, the standard calling convention StdCall as well as ThisCall and FastCall.
As the Windows API functions are implemented in the standard calling convention, we
have to implement the callbacks and trampolines accordingly. Moreover, we have to use
the same number and types of arguments as in the original API functions. If we did

39

Chapter 3. Implementation

Argument Type Comment
FileHandle PHANDLE out
DesiredAccess ACCESS_MASK
ObjectAttributes POBJECT_ATTRIBUTES
IoStatusBlock PIO_STATUS_BLOCK out
AllocationSize PLARGE_INTEGER optional
FileAttributes ULONG
ShareAccess ULONG
CreateDisposition ULONG
CreateOptions ULONG
EaBuffer PVOID optional
EaLength ULONG
Return Type NTSTATUS

Table 3.1.: The NtCreateFile Interface

not consider this aspect, the stack would no longer be aligned and the arguments could
not be accessed. Consequently, this would affect the execution of the application and
eventually lead to a crash. For these reasons, we use exactly the same arguments and
return values as the original functions for our callback and trampoline functions.

3.4.4. Callback Examples

In the previous section, we discussed the structure of callback functions and what as-
pects we need to consider when implementing them. However, although this structure
remains more or less the same, the exact implementation varies from callback function
to callback function. Therefore, it is instrumental to demonstrate the actual code of
different callback functions implemented in pbMonitor.dll. More precisely, we present
three different examples of native API function callbacks, each one being from a different
category. At first, we show NtCreateFile_callback from the category of file manage-
ment APIs, secondly NtSetValueKey_callback from the registry category, and finally
NtCreateProcessEx_callback from the process management category.

The NtCreateFile Callback Function

The function NtCreateFile2 is provided by the native API. It is usually called in order
to create a new file or to open an existing one. Its structure is depicted in Table 3.1. Like
all native API functions, it has the Windows return type NTSTATUS, which is basically
the type long in C/C++, and it uses the standard calling convention.

The interface requires eleven arguments that all have to be passed for a function call.
In the following, we describe the individual arguments and their purpose:

2http://msdn.microsoft.com/en-us/library/ff566424(v=vs.85).aspx

40

3.4. Hook Library

1. FileHandle is a pointer to a file handle corresponding to the created or opened
file after the function has been executed.

2. DesiredAccess defines the requested access rights concerning the file.

3. ObjectAttributes is a pointer to a structure containing information about the
requested file such as the file name and its path.

4. IoStatusBlock is a pointer to a structure providing information about the com-
pletion status of the called function. For instance, it could return the values
FILE_OPENEND or FILE_CREATED.

5. AllocationSize is an optional pointer to the size of the initial allocation in case
a file is created or overwritten. This pointer can also be NULL implying that no
allocation size is specified.

6. FileAttributes contains flags specifying the file’s attributes. Such attributes can
for example mark a file as read-only or hidden.

7. ShareAccess determines if a file can be accessed by different threads and how they
can access it.

8. CreateDisposition provides information about how to react if the corresponding
file already exists or if it does not exist.

9. CreateOptions determines additional options that become active as soon as the
file is created.

10. EaBuffer is an additional argument used by drivers.

11. EaLength is an additional argument used by drivers.

As mentioned before, if we want to implement the callback function, we must use
the same calling convention and the same arguments in the same order as the original
function. Therefore, the callback function has to be implemented as depicted in Listing
3.3.

16 NTSTATUS NTAPI NtCreateFi l e_ca l lback (
17 __out PHANDLE FileHandle ,
18 __in ACCESS_MASK DesiredAccess ,
19 __in POBJECT_ATTRIBUTES ObjectAttr ibutes ,
20 __out PIO_STATUS_BLOCK IoStatusBlock ,
21 __in_opt PLARGE_INTEGER Al l o ca t i onS i z e ,
22 __in ULONG Fi l eAt t r i bu t e s ,
23 __in ULONG ShareAccess ,
24 __in ULONG CreateDi spos i t i on ,
25 __in ULONG CreateOptions ,
26 __in_opt PVOID EaBuffer ,
27 __in ULONG EaLength
28)
29 {
30 NTSTATUS s ta tu s ;
31 . . .

57 i f (hook_sett ings [0] . preventExecut ion == FALSE)

41

Chapter 3. Implementation

58 {
59 // Ca l l t rampol ine func t i on
60 s t a tu s = NtCreateFi le_trampol ine (Fi leHandle , Des iredAccess ,

ObjectAttr ibutes , IoStatusBlock , A l l o ca t i onS i z e ,
F i l eAt t r i bu t e s , ShareAccess , CreateDi spos i t i on , CreateOptions ,
EaBuffer , EaLength) ;

61 executed = 1 ;
62 }
63 else
64 {
65 // Get customized re turn va lue
66 s t a tu s = (NTSTATUS) hook_sett ings [0] . returnValue ;
67 }
68

69 // Create l o g entry and re turn
70 SOCKET_ADDRESS_INFO sa i = {0} ;
71 createLog (0 , object , L"" , "" , executed , Des iredAccess ,

F i l eAt t r i bu t e s , ShareAccess , CreateDi spos i t i on , CreateOptions ,
sa i , s t a tu s) ;

72 return s t a tu s ;
73 }

Listing 3.3: The NtCreateFile callback function

As we can see, we use exactly the same arguments for the callback function that are
also required for the actual API. Furthermore, the attribute NTAPI in line 16 defines the
appropriate calling convention. NTAPI is defined as __stdcall informing the compiler
to use the standard calling convention.

Having gathered all information regarding the passed arguments, the hook settings
have to be checked to determine whether or not to call the actual API function. If not, a
customized return value has to be returned. This check is implemented in line 57 using
a value specified in the hook_settings array. This array contains a structure for each
hook providing the respective hook information. The hook information structure for
NtCreateFile is the first one in the array, i.e. it carries index value zero. If the hook
settings determine to execute the hooked API function’s orginal functionality in case
it is called, the preventExecution value of the corresponding settings is set to FALSE.
As a consequence, the trampoline function is called. To do this, the callback forwards
the received arguments to the trampoline function (line 60). The trampoline’s output
value is stored in the variable status, which is eventually returned to the object that
has called the API function (line 72). If preventExecution is set to TRUE, on the other
hand, the trampoline function will not be called. Instead, the status variable is set to a
customized value (line 66) defined in the settings with the key returnValue beforehand.
After the return value has been determined, the callback creates a log entry notifying the
analysis environment of the called API function and providing all relevant information.
For this purpose, all relevant data obtained from the arguments passed to the callback
function are forwarded to the log entry (line 71). Finally, the callback returns the value
of status to the object that has called the API function.

Considering the creation of the log entry, a few aspects are important to note. As
mentioned before, the function createLog receives various data providing detailed in-

42

3.4. Hook Library

Argument Type Comment
KeyHandle HANDLE
ValueName PUNICODE_STRING
TitleIndex ULONG optional
Type ULONG
Data PVOID optional
DataSize ULONG
Return Type NTSTATUS

Table 3.2.: The NtSetValueKey Interface

formation about the respective API call. For instance, an analyst can derive valuable
insights from the arguments DesiredAccess and CreateDisposition. More specifi-
cally, these arguments entail information about the purpose of an API call, such as an
attribute indicating whether the associated file has been opened, created, or overwritten.
Another important piece of information that is passed to the log entry is the file path
of the target file associated with the API call. All information concerning the target file
of a NtCreateFile call can be found in the argument ObjectAttributes. As described
above, ObjectAttributes is a pointer to a data structure of type OBJECT_ATTRIBUTES3.
This structure contains the two fields providing the information we are looking for:
RootDirectory and ObjectName. In order to obtain the complete path to a target file,
we simply have to combine these two parts. While ObjectName is an object of type
UNICODE_STRING4 storing the file path in its member Buffer, RootDirectory is a file
handle and, therefore, does not provide the information directly in the form of a text
string. Hence, we first have to resolve this handle to the associated file name. For this
purpose, we have to use another native API function: NtQueryInformationFile5. Hav-
ing obtained the required information, both strings are combined in order to provide a
complete file path. The resulting string is stored in the variable object and finally used
to create the associated log entry.

The NtSetValueKey Callback Function

Another example of an implemented callback function is NtSetValue_callback. The
interface NtSetValueKey6 is applied to change the value of a registry key in Windows.
Its interface is outlined in Table 3.2.

The interface receives six arguments:

1. KeyHandle is a handle to the registry key that contains the value to be changed.

2. ValueName is a pointer to a structure including the name of the value.

3. TitleIndex is a reserved parameter, which is usually set to NULL.

3http://msdn.microsoft.com/en-us/library/ff557749(v=vs.85).aspx
4http://msdn.microsoft.com/en-us/library/aa380518(v=vs.85).aspx
5http://msdn.microsoft.com/en-us/library/ff567052.aspx
6http://msdn.microsoft.com/en-us/library/ff567109(v=vs.85).aspx

43

Chapter 3. Implementation

4. Type determines the type of the value that is created or changed. Possible val-
ues are REG_DWORD, which represents the unsigned integer type or REG_SZ, which
represents a null-terminated unicode string.

5. Data is a pointer to the memory address with the data that is supposed to be
written to the key value.

6. DataSize determines the size of the data in bytes.

As described in Section 5.2, hooking this API function is quite important in order
to reveal the behavior of a malware sample, because this interface is almost certainly
used in case the target process causes changes to the Windows registry. Akin to the
previous example, we have to retrieve all relevant information, execute the requested
functionality with regard to the specified hook settings defined in settings.h, create a
log entry providing the information required to determine the API call’s purpose, and
return an appropriate return value. The implementation of this callback is presented in
Listing 3.4.

370 NTSTATUS NTAPI NtSetValueKey_callback (
371 __in HANDLE KeyHandle ,
372 __in PUNICODE_STRING ValueName ,
373 __in_opt ULONG Tit le Index ,
374 __in ULONG Type ,
375 __in_opt PVOID Data ,
376 __in ULONG DataSize
377)
378 {
379 NTSTATUS s ta tu s ;
380 wchar_t ob j e c t [MAX_STR_BUFFER] = L"" ;
381 ob j e c t [MAX_STR_BUFFER−1] = ’ \0 ’ ;
382 wchar_t value_name [MAX_STR_BUFFER] = L"" ;
383 value_name [MAX_STR_BUFFER−1] = ’ \0 ’ ;
384 unsigned char executed = 0 ;
385

386 //Determine o b j e c t name
387 i f (KeyHandle != NULL)
388 {
389 KEY_NAME_INFORMATION kni = {0} ;
390 ULONG rec_s i z e ;
391 i f (NtQueryKey (KeyHandle , KeyNameInformation , &kni , s izeof (kni) ,

&rec_s i z e) == STATUS_SUCCESS)
392 i f (kni . NameLength > 0)
393 wcsncat_s (object , kni .Name, MAX_STR_BUFFER−1) ;
394 }
395

396 // Determine va lue name
397 i f (ValueName != NULL)
398 i f (ValueName−>Length > 0)
399 wcsncat_s (value_name , ValueName−>Buffer , MAX_STR_BUFFER−1) ;
400

401 // Ca l l t rampol ine or determine customized re turn va lue
402 i f (hook_sett ings [7] . preventExecut ion == FALSE)
403 {
404 s t a tu s = NtSetValueKey_trampoline (KeyHandle , ValueName ,

Tit l e Index , Type , Data , DataSize) ;

44

3.4. Hook Library

405 executed = 1 ;
406 }
407 else
408 {
409 s t a tu s = (NTSTATUS) hook_sett ings [7] . returnValue ;
410 }
411

412 // Create l o g entry and re turn
413 SOCKET_ADDRESS_INFO sa i = {0} ;
414 createLog (7 , object , value_name , "" , executed , 0 , Type , 0 , 0 , 0 ,

sa i , s t a tu s) ;
415 return s t a tu s ;
416 }

Listing 3.4: The NtSetValueKey callback function

We use the same arguments as for the API function and define the correct calling
convention analogous to the previous callback example. In line 370, we check whether
or not the trampoline function is used in order to provide the API’s functionality. If
the preventExecution member of the corresponding hook settings is set to FALSE, the
trampoline function is called (line 404). Otherwise, the customized return value defined
in the returnValue member of the hook settings is retrieved. Obviously, the implemen-
tation of this callback function is quite similar to the previous example. However, there
are also some noteworthy differences.

In order to create or edit a registry key’s value, two pieces of information are required:
The name of the key and the name of the value. These two strings have to be passed to
createLog. The value of object passed as the second argument specifies the registry
key, the other one value_name passed as the third argument contains the name of the
key’s value.

While the value name can be simply retrieved by reading the member Buffer of the
argument ValueName, the key name is not passed as a string to the NtSetValueKey
API function. Instead, a handle associated with the key is provided. However, a han-
dle is a process-specific numeric identifier, which means that we cannot pass the key
handle to the log entry because the analysis tool will not be able to resolve the handle.
Hence, the handle would provide no additional information. The solution to this prob-
lem is a resolution of the handle to the key’s name within the callback function. For
this purpose, we can use the native API function NtQueryKey7 applied in line 391 to
obtain the key’s name. The interface is depicted in Table 3.3. It can provide various
information about a registry key. In order to obtain the name, we have to initiate an
empty KEY_NAME_INFORMATION structure and call the interface passing the handle as
first argument and the created structure as third argument. Furthermore, we need to
specify which kind of information we are looking for. Since we are interested in the key’s
name, KeyNameInformation is passed as the second argument. KeyNameInformation is
defined as a named constant in an enumeration representing the value 3. The output
is stored in the KEY_NAME_INFORMATION structure which is defined as kni. Finally, the
requested string can be found in its member kni.Name. Based on this information, we

7http://msdn.microsoft.com/en-us/library/ff567060(v=vs.85).aspx

45

Chapter 3. Implementation

Argument Type Comment
KeyHandle HANDLE
KeyInformationClass KEY_INFORMATION_CLASS
KeyInformation PVOID out, optional
Length ULONG
ResultLength PULONG out
Return Type NTSTATUS

Table 3.3.: The NtQueryKey Interface

are able to complete the required log information of this callback function, and to call
createLog (line 414) and return.

The NtCreateProcessEx Callback Function

The NtCreateProcessEx_callback function is the last example of a callback function
presented here. The NtCreateProcessEx API is used in Windows XP to create a new
process. The Windows API provides only one interface for the process creation through-
out all Windows versions: CreateProcess8. In contrast to this, the native API entails
different interfaces for different system versions: NtCreateProcess for Windows 2000,
NtCreateProcessEx for Windows XP, and NtCreateUserProcess for Windows Vista
and 7. The problem with these functions is that they are not documented by Microsoft,
i.e. there is no official resource we can refer to. As the test environment is developed
and tested in a Windows XP operating system, we focus on NtCreateProcessEx in this
thesis.

533 NTSTATUS NTAPI NtCreateProcessEx_cal lback (
534 OUT PHANDLE ProcessHandle ,
535 IN ACCESS_MASK DesiredAccess ,
536 IN POBJECT_ATTRIBUTES Objec tAtt r ibute s OPTIONAL,
537 IN HANDLE ParentProcess ,
538 IN BOOLEAN Inher i tObjectTable ,
539 IN HANDLE Sect ionHandle OPTIONAL,
540 IN HANDLE DebugPort OPTIONAL,
541 IN HANDLE ExceptionPort OPTIONAL,
542 IN HANDLE Unknown
543)
544 {
545 // I n i t i a t e re turn va lue
546 NTSTATUS s ta tu s ;
547 wchar_t ob j e c t [MAX_STR_BUFFER] = L"" ; ob j e c t [MAX_STR_BUFFER−1] = ’ \0 ’ ;
548 unsigned int wcRemaining = MAX_STR_BUFFER − 1 ;
549 unsigned long object_pid = 0 ;
550 unsigned char executed = 0 ;
551

552 i f (hook_sett ings [1 0] . preventExecut ion == FALSE)
553 {

8http://msdn.microsoft.com/en-us/library/ms682425(VS.85).aspx

46

3.4. Hook Library

554 // Ca l l t rampol ine func t i on
555 s t a tu s = NtCreateProcessEx_trampoline (ProcessHandle , Des iredAccess ,

ObjectAttr ibutes , ParentProcess , Inher i tObjectTable ,
SectionHandle , DebugPort , ExceptionPort , Unknown) ;

556 executed = 1 ;
557

558 i f (∗ ProcessHandle != NULL)
559 {
560 // Determine o b j e c t PID
561 PROCESS_BASIC_INFORMATION pbi = {0} ;
562 i f (NtQueryInformationProcess (∗ProcessHandle ,

ProcessBas ic In format ion , &pbi ,
s izeof (PROCESS_BASIC_INFORMATION) , NULL) == STATUS_SUCCESS)

563 object_pid = pbi . UniqueProcessId ;
564

565 // Determine o b j e c t name
566 UNICODE_STRING ∗pImageFileName = 0 ;
567 int nS i z eA l l o c = s izeof (UNICODE_STRING) + s izeof (wchar_t) ∗

MAX_STR_BUFFER , nDispose=0;
568 pImageFileName=(UNICODE_STRING ∗) mal loc (nS i z eA l l o c) ;
569 i f (NtQueryInformationProcess (∗ProcessHandle ,

ProcessImageFileName , pImageFileName , nS izeAl loc , NULL) ==
STATUS_SUCCESS)

570 i f (pImageFileName−>Length > 0)
571 wcsncat_s (object , pImageFileName−>Buffer , wcRemaining) ;
572 }
573 else i f (Objec tAtt r ibute s != NULL)
574 {
575 // Determine o b j e c t name
576 i f (ObjectAttr ibutes−>RootDirectory != NULL)
577 {
578 IO_STATUS_BLOCK ioS ta tu s = {0} ;
579 FILE_NAME_INFORMATION f n i = {0} ;
580 i f (NtQueryInformationFi le (ObjectAttr ibutes−>RootDirectory ,

&ioStatus , &fn i , s izeof (f n i) , Fi leNameInformation) ==
STATUS_SUCCESS)

581 {
582 i f (f n i . FileNameLength > 0)
583 {
584 wcsncat_s (object , f n i . FileName , wcRemaining) ;
585 wcRemaining = wcRemaining − wcslen (ob j e c t) ;
586 wcsncat_s (object , L"\\" , wcRemaining−−) ;
587 }
588 }
589 }
590 i f (ObjectAttr ibutes−>ObjectName != NULL)
591 i f (ObjectAttr ibutes−>ObjectName−>Length > 0)
592 wcsncat_s (object , ObjectAttr ibutes−>ObjectName−>Buffer ,

wcRemaining) ;
593 }
594 }
595 else
596 {
597 // Get customized re turn va lue
598 s t a tu s = (NTSTATUS) hook_sett ings [1 0] . returnValue ;
599 // Determine o b j e c t name

47

Chapter 3. Implementation

600 . . .

620 }
621

622 // Create l o g entry
623 SOCKET_ADDRESS_INFO sa i = {0} ;
624 createLog (10 , object , L"" , "" , executed , Des iredAccess , object_pid ,

pid , 0 , 0 , sa i , s t a tu s) ;
625 return s t a tu s ;
626 }

Listing 3.5: The NtCreateProcessEx callback function

The NtCreateProcessEx_callback is very similar to the two previous examples. It
checks whether or not the trampoline function has to be applied (line 552). If the
trampoline function is called, a handle represents the created process. For the same
reasons as in the previous example, we have to resolve the handle in order to obtain
relevant information so that we can forward it to the analysis environment. In partic-
ular, we need to know the corresponding process identification number as well as the
file path to the executable of the created process. Akin to the NtQueryKey interface,
there is also an API function for resolving process handles. The wanted function is
the NtQueryInformationProcess9 interface, which is depicted in Table 3.4. It provides
information about a specific process.

Argument Type Comment
ProcessHandle HANDLE
ProcessInformationClass PROCESSINFOCLASS
ProcessInformation PVOID out
ProcessInformationLength ULONG
ReturnLength PULONG out, optional
Return Type NTSTATUS

Table 3.4.: The NtQueryInformationProcess Interface

In order to retrieve the two required items, the callback calls this interface twice in
line 562 and in line 569. The API call can provide quite different types of information
based on the value of the second argument ProcessInformationClass. According to
this argument, an appropriate data structure has to be created for each call and passed as
the third argument ProcessInformation. The API function then writes the requested
data to this data structure.

In line 562, the callback queries basic process information including the process identi-
fication number. A PROCESS_BASIC_INFORMATION data structure serves as container for
the requested data. The received process handle, the ProcessBasicInformation enu-
merator constant, the created data structure as well as its size are passed as arguments.
After the function has been successfully executed, the process identification number can
be found in the structure’s UniqueProcessID member.

9http://msdn.microsoft.com/en-us/library/ms687420(v=vs.85).aspx

48

3.4. Hook Library

In order to obtain the filepath of the executable associated with the observed process,
the callback makes use of the same API function. The query is analogous to the query
above, but uses two different arguments. Instead of ProcessBasicInformation, the API
call receives the enumerator constant ProcessImageFileName argument. Therefore, the
callback also has to use another data structure (UNICODE_STRING) as container for the
requested information. Having called the interface with the mentioned arguments, the
data structure entails the file path in the member Buffer.

If for some reason the process could not be created, the handle is set to 0 and cannot be
used in order to retrieve any information concerning the specified executable. However,
an analyst is not only interested in the successfully executed API calls, but also in
those that caused errors. Therefore, the callback also implements another mechanism
to provide the required data (lines 573 - 593). In this scenario, the callback uses the
optional argument ObjectAttributes analogous to NtCreateFile_callback, described
in the first callback example, in order to determine the executable’s file path.

Having gathered all relevant data, the callback can finally create a log entry and return
the appropriate value. (lines 624, 625)

3.4.5. Detection Prevention

As we have detailed in the previous sections, the main purpose of the hook library is
to install hooks for the purpose of monitoring functionality. However, there is also an-
other aspect when using the hook library: Various malware samples implement methods
inspecting the system environment in order to detect anti-malware software or analysis
software. If such a piece of software is detected, different scenarios can occur. For exam-
ple, the malware sample could kill the corresponding process or delete the detected files.
Another scenario is that the malware might behave differently. Therefore, we must try
to avoid the detection of our analysis environment.

Possible techniques applied by malware in order to examine the system are to list all
running processes or to scan the file system. Often, certain API functions are applied in
order to implement the required detection techniques. In PyBox, we consider two differ-
ent methods. The first method is to use the API function CreateToolhelp32Snapshot
in order to create a snapshot containing a list of all running processes and to parse this
list using the API functions Process32First and Process32Next. The second method
considered is to use the API functions FindFirstFile and FindNextFile in order to
scan the filesystem.

Since we want to prevent the detection of our analysis environment by such meth-
ods, we have to hide the analysis tool’s process from being scanned and to avoid the
inspection of the PyBox folder in the filesystem. Once again, we can use the already im-
plemented hooking functionality in order to intercept these API functions and hide the
corresponding files and processes. Analogous to the other hooks, we have to implement
further callback and trampoline functions. As we have already described in detail how
to implement these functions, we do not list their exact implementation here. Instead,
we focus on their functional principle which is depicted in Figure 3.3.

49

Chapter 3. Implementation

Figure 3.3.: PyBox detection prevention procedure

Since the API functions are used to iterate through the list of items to be scanned,
the callback implementations are relatively simple. At first, the function call to the
hooked API function is redirected to the callback function, which immediately calls
the trampoline function. The trampoline function returns an object. Based on this
object, we can tell whether it belongs to the analysis framework or not. In case of
Process32First or Process32Next, the object is compared to the process identification
number of the analysis tool. In case of FindNextFile, the filename of the returned object
is compared to the folder name of PyBox and the hook library’s filename. If the object
belongs to the analysis framework, the trampoline function will be called again until it
returns an object which does not belong to the analysis framework or until there is no
more object left in the list to be queried. This object is finally returned.

3.4.6. Installation

Thus far, we have described how function hooking and the corresponding callback and
trampoline functions are implemented in pbMonitor.dll as well as how to hide the
hooking and monitoring functionality. However, even if the hook library has been in-
jected into the target process’s address space, the hooks are not yet installed. We first
have to notify the hook library that it has to obtain the hook settings data, and install
all specified and required hooks after it has been loaded. For this purpose, we use the
library’s main entry point DllMain10 which is outlined in Listing 3.6.

10http://msdn.microsoft.com/en-us/library/ms682596(v=vs.85).aspx

50

3.4. Hook Library

82 BOOL WINAPI DllMain (HANDLE hDll , DWORD dwReason , LPVOID lpReserved)
83 {
84 switch (dwReason)
85 {
86 case DLL_PROCESS_ATTACH:
87 r e adSe t t i ng s () ;
88 i n i t i a l i z e L o g () ;
89 i n i t i a l i z eNa t i v eAp iFunc t i on s () ;
90 s e tCa l lbackAddres se s () ;
91 setTrampol ineAddresses () ;
92 i n s t a l lHook s () ;
93 s e t In j e c t i onT ime () ;
94 break ;
95

96 case DLL_PROCESS_DETACH:
97 break ;
98

99 case DLL_THREAD_ATTACH:
100 break ;
101

102 case DLL_THREAD_DETACH:
103 break ;
104 }
105 return TRUE;
106 }

Listing 3.6: DLL entry point

There are four different situations in which DllMain is called automatically. The
argument dwReason specifies the respective situation. Therefore, this argument can be
used in order to perform appropriate operations in case any of the four situations occurs.
In the following, the four different scenarios are outlined.

1. DLL_PROCESS_ATTACH: The DLL is loaded by a process.

2. DLL_PROCESS_DETACH: The DLL is unloaded by a process.

3. DLL_THREAD_ATTACH: The current process creates a new thread.

4. DLL_THREAD_DETACH: A thread exits.

We can use the DLL_PROCESS_ATTACH scenario in order to perform the required instal-
lation steps rendering the hooks to become effective. For this purpose, DllMain executes
several functions. At first, it reads all specified settings (line 87). The settings include
the information, particularly which API functions to hook and to monitor. Subsequently,
the logging environment has to be set up (line 88) allowing the callback functions to cre-
ate log entries. The logging process is described in more detail in Section 3.6. In line 90,
the native API functions required by the hook library are located in the process’s virtual
memory. This is necessary in order to be able to call them. Subsequently, the memory
addresses of all callback and trampoline functions are written to the hook settings (lines
91, 92). This has to be done during runtime as these addresses required for hooking the
corresponding functions cannot be determined beforehand. Finally, all specified hooks
are installed (line 93) and the initial timestamp is set (line 94). Timestamps are required

51

Chapter 3. Implementation

in order to provide the log entries with the time interval that has passed since the hook
library has been injected.

3.5. Analysis Tool

Apart from the hook library, which resides inside the target process and sends infor-
mation about the observed activities, we need to provide an analysis environment that
initiates the required monitoring and information processing functionality, and produces
the output. Within PyBox, these services are provided by the PyBox analysis tool. It
has various tasks that we already rudimentarily described in Section 3.2. In this section,
we discuss these tasks in more detail and outline their implementation.

We start by providing an overview of the PyBox analysis tool and describe the func-
tionality of its modules as well as their application. Subsequently, we describe the
configuration management of PyBox. Then, we take a closer look at the creation of the
target process and how the hook library is placed inside this process. Finally, we explain
the processing of the logged information and the generation of the final XML-based
report.

3.5.1. Analysis Framework Overview

In contrast to the hook library, the PyBox analysis tool has to be controlled by the
user. Therefore, we have to provide means of user interaction enabling an analyst to
configure the analysis environment according to one’s analysis goals. As soon as PyBox
is configured and executed, the target executable’s process has to be created, and the
hook library needs to be injected and installed according to the configured settings.
While the hook library sends log entries from the hooked target process, the analysis
tool receives the logged information. After the monitored process is terminated, the
analysis tool processes the required data. Finally, the result of this process is written
into a machine-readable report, which can be put to further use. All-in-all, the analysis
framework must provide the following functionality:

• configuration management;

• process creation;

• library injection;

• log data processing;

• report generation.

The PyBox analysis framework is implemented using the Python programming lan-
guage.11 According to Seitz [Sei09], Pyhton is one of the most popular programming
languages when it comes to hacking and reverse engineering. Another reason that makes

11http://www.python.org/

52

3.5. Analysis Tool

Figure 3.4.: PyBox analysis tool layout

it appealing in the context of this thesis is its simplicity with regards to writing and un-
derstanding its code, which makes it suitable for teaching purposes. Furthermore, it
provides low-level support and enables us to produce C compatible code. The latter is
important since we create and use C data types in order to communicate and interact
with the hook library or Windows API functions in general.

In order to fulfil these requirements, PyBox includes various packages, modules and
configuration files. Figure 3.4 illustrates all components and their relationships.

In the upper part of the Figure 3.4, the five packages belonging to the PyBox analysis
tool are depicted. The package setup is responsible for reading the provided configu-
ration files extracting their information. Furthermore, it converts this information into
objects that can be used by the analysis tool. The package process allows to execute
process-related operations such as the creation of the target process. Additionally, it pro-
vides required process-specific information. The DLL injection method is implemented
in the package injection. The final report generation operations are made available
by the package report. More precisely, it offers the functionality to process the data
received from the monitored process and turn them into a XML-based report. The
communication and interaction with the target process is implemented in the package
ipc. Basically, it sends the acquired settings to the observed process and receives the
corresponding log messages. This package is not part of this chapter. We describe it in
detail in Chapter 3.6.

In the lower part of Figure 3.4, we display the two configuration files pybox.cfg and
hooks.cfg. Using these files, an analyst is able to configure PyBox. Thus, he or she
can for example determine the used hook library and the hooks to be installed.

All the described packages and configuration files are applied by the Python module
PyBox.py combining the various functionalities. It first reads all settings defined in
the configuration files pybox.cfg and hooks.cfg. Then, the module creates the target
process using the package process and injects the hook library installing all specified
hooks via the package injection. During the execution of the target process, PyBox.py
receives all sent log information using the package ipc. After the observed process has

53

Chapter 3. Implementation

been terminated, all data are processed and captured in an XML file by applying the
functionality of package report.

3.5.2. Setup and Configuration Files

As mentioned in the last section, there are two configuration files that enable the analyst
to adjust the PyBox configuration. The files are separated from each other because they
serve different purposes. While pybox.cfg provides basic information required by the
analysis framework, hooks.cfg defines settings concerning the implemented hooks to be
loaded into the target process. In the following, both the layout and the configuration
of the two files are outlined.

The Configuration File pybox.cfg

The file pybox.cfg contains five pieces of information required by the analysis frame-
work. PyBox cannot be executed without these information. The layout of pybox.cfg
is shown in Listing 3.7.

Path to t a r g e t e x e cu t a b l e o f t h i s ana l y s i s
EXE_TARGET = "C:\ path_to_binary\ binary . exe "

Path to the hook l i b r a r y
LIB_PBMONITOR = "C:\ path_to_hook_library\pbMonitor . d l l "

Path to con f i g f i l e con ta in ing in format ion about a l l hooks
CFG_HOOKS = "C:\ path_to_hook_settings\hooks . c f g "

Output f o l d e r to which the repor t w i l l be wr i t t en
LOG_FOLDER = "C:\ path_to_output_folder_of_logs "

Timeout i n t e r v a l a f t e r which the observed e x e cu t a b l e i s terminated (in
seconds)

TIMEOUT = "120"

Listing 3.7: The configuration file pybox.cfg

The target executable that has to be monitored is specified via EXE_TARGET while the
value of LIB_PBMONITOR has to be set to the path of the hook library, which is called
pbMonitor.dll in this thesis. This parameter is required by the analysis tool for the
ability to inject the specified hook library into the target process. In CFG_HOOKS, we
have to specify the file path to the configuration file hooks.cfg defining the settings
concerning all API functions that have to be hooked. We describe this file in more detail
below. The LOG_FOLDER has to be set to the folder into which the analysts wants PyBox
to export its analysis reports.

These information are read using the package settings and stored into a Python
dictionary object with the keys LIB_PBMONITOR, CFG_HOOKS, and LOG_FOLDER. Thus,
all required information is obtained by using the dictionary with the corresponding key.

54

3.5. Analysis Tool

The Configuration File hooks.cfg

In contrast to the pybox.cfg configuration file, hooks.cfg does not have any effect on
the execution of the PyBox analysis tool. Instead, it influences the execution of the hook
library inside the target process. More specifically, it affects the installation process of
the hook library, particularly which hooks to install and, thus, which API functions to
monitor. The structure of this configuration file is outlined in Listing 3.8.

Fi l e Management APIs
DLL=n td l l . d l l , API=NtCreateFi le , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtOpenFile , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtReadFile , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtWriteFile , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtDeleteFi le , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0

Reg i s t ry Management APIs
DLL=n td l l . d l l , API=NtCreateKey , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtOpenKey , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtSetValueKey , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtQueryValueKey , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0

Process Management APIs
DLL=n td l l . d l l , API=NtCreateProcess , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtCreateProcessEx , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtOpenProcess , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtTerminateProcess , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtCreateSect ion , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=n td l l . d l l , API=NtCreateThread , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0

Network/ Socket APIs
DLL=wsock32 . d l l , API=connect , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=wsock32 . d l l , API=send , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=wsock32 . d l l , API=recv , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=getHostByName , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=connect , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=send , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=sendto , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=recv , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=recvfrom , In t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=WSAConnect , I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=WSASend, I n t e r c ep t =1,PreventExecution=0,ReturnValue=0
DLL=ws2_32 . d l l , API=WSARecv, I n t e r c ep t =1,PreventExecution=0,ReturnValue=0

Listing 3.8: The configuration file hooks.cfg

Each non-empty line and not starting with a # represents another hook. For each
hook five settings have to be defined. The API to be hooked is identified by its name
and the name of the module it can be found in. The setting DLL specifies the module
name and the setting API the name of the API function to be hooked. If the analyst
wants to hook the API, he or she has to set the setting Intercept to 1. Otherwise, it
has to be set to 0. In case, the analyst wants to prevent the API from being executed
and to return a customized value he or she can set the settings PreventExecution to
1 and specify a customized return value in the setting ReturnValue. Since we almost

55

Chapter 3. Implementation

exclusively hook native API functions, the return value specified has to be a value of
type NTSTATUS. All possible values can be looked up in the Microsoft MSDN library.12

For all hooks defined in this configuration file, there have to be callback and trampoline
implementations in the hook library. The API hooks defined in Listing 3.8 are all
available hooks at the time of writing this thesis. Moreover, all functions that can be
monitored by PyBox are listed in Appendix A.

During the start of the execution of PyBox.py, all hooks are read and each one is
mapped to a C structure MMF_SETTINGS_ITEM. All hooks are stored as an array of such
structures. This hook settings array is present both in the PyBox main application and
the hook library. Thus, each hook has a specific identification number, and the module
name and API name are mapped to its identification number. Once, the array is created
out of the configuration file, the hook library can obtain the array and install all specified
hooks.

3.5.3. Target Process Creation and DLL Injection

In the previous section, we described how the configuration files are read, and how the
configured settings are used, and how they are made available. The next step is to start
the target process with the installed hook library and monitor its behavior. To do this,
yet again three steps are necessary. First, we have to create the process but at the same
time make sure that no instruction is executed until the installation process of the hook
library is completed. Otherwise, we would risk that API calls are executed without being
monitored. Therefore, the second step is to inject the hook library into the suspended
process followed by the third step: resuming the process. In the following, we take a
closer look at each of these steps.

Step 1: Create the Target Process

In order to start the target process, we first have to know the path to the executable
file which we want to monitor. This path is specified in the configuration file pybox.cfg
and therefore stored in a settings object. Having gathered all the relevant information,
we are able to create a process for the target executable. This is done by applying the
Windows API CreateProcessA13. The implementation of the process creation used in
PyBox is outlined in Listing 3.9.

4 class process_manager :
5 . . .

13 def pcreate (s e l f , path_to_exe) :
14 s e l f . exe = path_to_exe
15

16 # I n i t i a l i z e parameters f o r CreateProcessA
17 c r e a t i on_ f l a g s = CREATE_SUSPENDED

12http://msdn.microsoft.com/en-us/library/cc704588(v=PROT.10).aspx
13http://msdn.microsoft.com/en-us/library/ms682425(v=vs.85).aspx

56

3.5. Analysis Tool

18 s t a r t up i n f o = STARTUPINFO()
19 s t a r t up i n f o . cb = s i z e o f (s t a r t up i n f o)
20 process_informat ion = PROCESS_INFORMATION()
21

22 # Create Process in suspended mode
23 i f kerne l32 . CreateProcessA (s e l f . exe ,
24 None ,
25 None ,
26 None ,
27 None ,
28 c r ea t i on_f l ag s ,
29 None ,
30 None ,
31 byre f (s t a r t up i n f o) ,
32 byre f (process_in format ion)) :
33 s e l f . pid = process_informat ion . dwProcessId
34 s e l f . t i d = process_in format ion . dwThreadId
35 s e l f . h_process = process_in format ion . hProcess
36 s e l f . h_thread = process_in format ion . hThread
37 print "Process s u c c e s s f u l l y launched with PID %d . " % s e l f . pid
38 return True
39 else :
40 print "Process could not be launched ! "
41 raise WinError ()
42 return False

Listing 3.9: Target process creation

The process creation is implemented in the class process_manager in the package
process. Like most Windows API functions, CreateProcessA requires the input of
several arguments displayed in 3.5. However, many of them are optional and we do
not need to specify all of them. Therefore, the other ones do not concern us in this
thesis and will not be described here. For more information on this API call, refer
to the Microsoft Developer Network (MSDN) website. The arguments we need are
lpApplicationName, dwCreationFlags, lpStartupInfo, and lpProcessInformation.
The first argument receives the file path to the executable file whereas the last two are
pointers to structures of type STARTUPINFO and PROCESS_INFORMATION which have to be
initialized (lines 18 - 20). The STARTUPINFO structure specifies how the process has to be
started. In the PROCESS_INFORMATION structure important process information such as
the process handle are stored. The argument dwCreationFlags plays an important role
in our scenario. This parameter can be assigned certain flags that dictate how a process
is created. Here, we use the flag CREATE_SUSPENDED (line 17). As mentioned before,
we have to ensure that the process is created, but not executed until the hook library
is injected and all hooks are installed. For this purpose, we use the CREATE_SUSPENDED
flag. This way, the process is created, but its main thread is not yet started.

Step 2: Inject the Hook Library

Having created the target process, we possess all relevant process information. Hence,
we are ready to inject the hook library into its memory and install all hooks. We have

57

Chapter 3. Implementation

Argument Type Comment
lpApplicationName LPCSTR optional
lpCommandLine LPSTR optional
lpProcessAttributes LPSECURITY_ATTRIBUTES optional
lpThreadAttributes LPSECURITY_ATTRIBUTES optional
bInheritHandle BOOL
dwCreationFlags DWORD
lpEnvironment LPVOID optional
lpCurrentDirectory LPCTSTR optional
lpStartupInfo LPSTARTUPINFO
lpProcessInformation LPPROCESS_INFORMATION
Return Type BOOL

Table 3.5.: The CreateProcessA Interface

already described the various DLL injection methods in Section 2.3.3. In this thesis, we
use the injection via remote thread.

In order to load the hook library into the target process’s memory, we have to make it
call the Windows API LoadLibrary. This interface receives only one argument which is
the path to the library to be loaded. Therefore, we need to execute the LoadLibraryA14

function and a pointer to the string that contains the path to the hook library. The
implementation of the DLL injection method is depicted in Listing 3.10.

First, we have to allocate some space (line 6) in the remote process’s memory in order
to store the path to the DLL (line 15) to be loaded. The API function VirtualAllocEx
used to allocate the required memory space returns a pointer to the address of the
string in which the library path is stored. Then, we have to find out the memory
address of LoadLibraryA. By using the API functions GetModuleHandle (line 18) and
GetProcAddress (line 24), we actually search the memory address of LoadLibraryA in
the address space of the analysis tool and not inside the remote process. Here, we benefit
from the fact that this interface is present in all Windows processes and is located at
the exact same location in all of them. Therefore, we can use the acquired address for
the remote process as well. Finally, we have to create a new thread inside the remote
process in order to call the LoadLibraryA function. To do this, we have to use the API
CreateRemoteThread15 (line 32) with the first parameter hProcess being the handle
to the created process, the third argument lpStartAddress being the address of the
LoadLibraryA function, and the fourth argument lpParameter being the pointer to the
file path of the hook library. If this procedure is completed successfully, the hook library
has been loaded into the remote process’s address space. At this point, the DLL’s main
entry point is executed installing all specified hooks as described in Section 3.4.6.

14http://msdn.microsoft.com/en-us/library/ms684175(v=vs.85).aspx
15http://msdn.microsoft.com/en-us/library/ms682437(v=vs.85).aspx

58

3.5. Analysis Tool

3 def i n j e c t_d l l (h_process , dl l_path) :
4 # Al l o ca t e some space f o r the DLL path
5 d l l_ len = len (dl l_path)
6 arg_address = kerne l32 . Vir tua lAl locEx (h_process , 0 , d l l_len ,

VIRTUAL_MEM, PAGE_READWRITE)
7 . . .

13 # Write the DLL path in t o the a l l o c a t e d space
14 wr i t t en = INT(0)
15 kerne l32 . WriteProcessMemory (h_process , arg_address , dll_path ,

d l l_len , byre f (wr i t t en))
16

17 # Resolve the address o f LoadLibraryA
18 h_kernel32 = kerne l32 . GetModuleHandleA (" kerne l32 . d l l ")
19 . . .

24 h_loadl ib = kerne l32 . GetProcAddress (h_kernel32 , "LoadLibraryA")
25 . . .

30 # Create remote thread
31 thread_id = DWORD(0)
32 h_remoteThread = kerne l32 . CreateRemoteThread (h_process , None , 0 ,

h_loadl ib , arg_address , 0 , byre f (thread_id))
33 . . .

42 print " I n j e c t i o n s u c c e s s f u l . "
43 return h_remoteThread

Listing 3.10: DLL injection

Step 3: Resume the Target Process

After injecting the hook library, we have to wait for the created thread to finish the hook
installation process and to resume the suspended main thread subsequently. We use the
API function WaitForSingleObject16 in order to wait for the thread to terminate. The
interface only receives one argument which is the handle to the remote thread. After
that, we can resume the main thread by calling the API function ResumeThread17 with
the thread handle to the main thread of the remote process. This handle is provided
in the PROCESS_INFORMATION structure of the CreateRemoteProcess instruction which
we have described in Step 1. Having resumed the thread, the target process executes as
usual while all hooked API calls are logged until the process terminates. Therefore, the
analysis tool has to wait for the remote process to terminate in order to proceed. This is
done by usage of WaitForSingleObject and the handle to the remote process which is
also stored in the PROCESS_INFORMATION structure. In case further processes have been
injected by the hook library, we have to wait for them to terminate as well.

16http://msdn.microsoft.com/en-us/library/ms687032(v=vs.85).aspx
17http://msdn.microsoft.com/en-us/library/ms685086(VS.85).aspx

59

Chapter 3. Implementation

Figure 3.5.: PyBox data analysis classes

3.5.4. XML Report

In the previous section, we have described how the monitored process is created and
injected. As soon as all observed process have terminated, the logged data can be
retrieved. The data is stored as a Python list of C data structures. How this list is
created is part of Section 3.6. The goal of this section is to describe, how we store this
data in a form that enables the flexible creation of a structured, understandable XML
document and how to create the XML file. For this reason, this section is divided into
two parts: the processing of the log data and the generation of the final XML document
from this data.

Data Processing

Although we could use the logged data directly and simply display them, we choose
another solution. The analysis report is supposed to provide structured information as
well as a structured overview of the activities of the observed executable. To do this,
we have to distinguish the various log entries into different categories of the monitored
APIs: file management, registry management, process management, and networking.

In order to structure the data, we use three different classes: analysis, process, and
log_item. Their attributes, methods and relationships are displayed in Figure 3.5. The
class analysis contains the main attributes of the report, such as the executable file
observed by PyBox, the log file as well as the report’s creation time. It also contains a
dictionary object which includes all observed processes. We can access these processes
by using the dictionary with the respective process identification number. The observed
processes are represented by the second class process. It contains all process-relevant
details as attributes such as the process identification number and the image name of the
process. Each process object also has four different lists which represent the four different
categories of monitored API calls mentioned above. These lists contain the actual log
data that have been monitored by the hook library. The log data are represented by the
class log_item. For each entry in the log, a log_item object is created which includes
all information associated with the monitored entry.

The class analysis provides a method entry which allows us to insert log data entries

60

3.5. Analysis Tool

into the created report. The analysis object then checks the process identification number
and function identification number of the log data. The function identification number
is the position in the hook settings array which we have described in Section 3.5.2. After
the log_item object is created, it is inserted into the corresponding process object by
using the process identification number and into the corresponding category list object
by using the function identification number.

XML Generation

Once, the data is processed and all information is represented by entities of the classes
described above, we can generate the XML report from this data. Python provides three
different alternatives in order to handle XML files: DOM, SAX, and ElementTree. The
three alternatives are briefly described in the following.

• DOM
DOM is short for Document Object Model. The DOM interface18 has been stan-
dardized by the World Wide Web Consortium and provides functionality to parse
and edit XML files. For this purpose, DOM loads the entire file into memory and
generates a tree structure out of the read data.

• SAX
In contrast to DOM, the Simple API for XML19 (SAX), which is also a standard
does not load the entire file into memory, but parses it sequentially. Therefore, it
needs much less memory but is less flexible at the same time.

• ElementTree
While the first two alternatives are standards, ElementTree is a Python-specific
feature and not available in other languages. It is integrated since Python version
2.5 and offers the functionality to write and parse XML files.

We prefer to stay flexible in order to create a well-structured report. SAX, however,
is relatively inflexible due to its sequential approach and therefore rather represents an
alternative to read XML files. Hence, we have to choose between DOM and ElementTree
in order to implement the XML file generation. Both alternatives are similar and equally
suited for the required purpose. For this reason, DOM is chosen here for personal
preference.

Since DOM uses a hierarchic tree structure, we can use the classes of the previous
section and implement a method, which creats an individual subtree, for each. Thus, we
only have to combine the various subtrees to the final XML document. This makes the
creation process of the report simple and comprehensive. Hence, both the class process
and the class log_item must provide a method generate_xml_element, which creates
the respective XML subtree. In order to create the entire XML report, we have to call
the generate_xml method of the analysis class instance, which is depicted in Listing
3.11.

18http://www.w3.org/DOM/
19http://www.saxproject.org/

61

Chapter 3. Implementation

306 class ana l y s i s :
307 . . .

391 def generate_xml (s e l f) :
392 . . .

400 # Create XML document
401 root = dom. Document ()
402 tag_ana lys i s = dom. Element ("PyBox−Analys i s ")
403 tag_ana lys i s . s e tAt t r i bu t e ("Executable " , s e l f . executab l e)
404 tag_ana lys i s . s e tAt t r i bu t e (" LogFi le " , l o g_ f i l e)
405 tag_ana lys i s . s e tAt t r i bu t e ("Time" , xml_time_string)
406 tag_ana lys i s . s e tAt t r i bu t e ("MD5" , s e l f . f i l e_ i n f o ["md5"])
407 tag_ana lys i s . s e tAt t r i bu t e ("SHA1" , s e l f . f i l e_ i n f o [" sha1"])
408 tag_ana lys i s . s e tAt t r i bu t e (" F i l e S i z e " , s e l f . f i l e_ i n f o [" s i z e "])
409

410 # Ins e r t c a l l t r e e
411 t a g_ca l l t r e e = dom. Element (" c a l l t r e e ")
412 t a g_ca l l t r e e . appendChild (s e l f . xml_sub_cal ltree (s e l f . f i r s t_p i d))
413 tag_ana lys i s . appendChild (t a g_ca l l t r e e)
414

415 # Ins e r t a l l monitored proce s s e s i n c l u d i n g a l l monitored a c t i v i t y
416 tag_processes = dom. Element (" p r o c e s s e s ")
417 for p in s e l f . p r o c e s s e s . va lue s () :
418 tag_processes . appendChild (p . generate_xml_element ())
419 tag_ana lys i s . appendChild (tag_processes)
420

421 # Ins e r t a l l running proce s s e s
422 tag_ana lys i s . appendChild (s e l f . xml_running_processes ())
423 root . appendChild (tag_ana lys i s)
424

425 # Write XML t r e e to l o g f i l e
426 with open (l o g_ f i l e , "w") as f i l e :
427 root . writexml (f i l e , "" , "\ t " , "\n" , " utf−8")

Listing 3.11: XML document generation

Figure 3.6.: PyBox XML generation procedure

62

3.6. Inter-Process Communication

The create_xmlmethod of the class analysis creates the root tag <PyBox-Analysis>
(line 402) and inserts its subtags <calltree> (line 413), <processes> (line 419) as well
as <running_processes> (line 422). For each process instance obtained by the analysis
instance, the generate_xml_element method is called and returns its XML subtree.
Each process in turn iterates through the log_item instances in the lists of every category
calling their generate_xml_element methods. This way, the entire XML tree is created
which can be finally written to a file (line 427). The XML report generation process is
depicted simplified in Figure 3.6 regarding the different class instances. The resulting
XML structure is outlined in Listing 3.12.

1 <?xml version=" 1 .0 " encoding="utf−8"?>
2 <PyBox−Analys i s Executable=" ta r g e t . exe " LogFi le=" . . . " . . .>
3 <c a l l t r e e>
4 . . .
5 </ c a l l t r e e>
6 <proc e s s e s>
7 <proce s s>
8 <f i l e s y s t em_se c t i on>
9 . . . l og item tags . . .

10 </ f i l e s y s t em_se c t i on>
11 <reg i s t r y_s e c t i on>
12 . . . l og item tags . . .
13 </ r e g i s t r y_s e c t i on>
14 . . . l og item tags . . .
15 <proce s s_sec t i on>
16 . . .
17 </ proce s s_sec t i on>
18 </ proce s s>
19 . . .
20 </ pro c e s s e s>
21 <running_processes>
22 . . .
23 </ running_processes>
24 </PyBox−Analys i s>

Listing 3.12: XML report structure

3.6. Inter-Process Communication

Thus far, we have described the hooking functionality of the hook library as well as the
configuration and data processing functionality of the analysis tool. Obviously, for every
analysis at least two processes are executed: the analysis tool as well as the observed
target process. As mentioned before, these processes have to communicate and interact
with each other. On the one hand, the hook library has to transfer several settings data
to the hook libraries inside the target processes specifying the path to the hook library,
the process identification number of the analysis tool which has to be hidden, and the
hooks to be installed. On the other hand, the hook library has to send all created log
entries to the analysis tool in order notify the analysis environment of the occurred
events.

63

Chapter 3. Implementation

However, as described in Section 2.2.1, processes cannot simply access the memory
of another process. This is an important security feature of modern operating systems.
Instead, we have to use functionality provided by the operating system. For this purpose,
inter-process communication mechanisms are used.

Inter-process communication (IPC) comprises all methods which enable communi-
cation and data sharing between different threads, processes, and applications. In this
section, we take a closer look at IPC. At first, we outline several methods of IPC in Win-
dows and their purposes and derive suitable alternatives for our scenario. Subsequently,
we describe the method implemented in PyBox and how it is applied.

3.6.1. IPC Methods

The need to transfer data between processes is not rare. There are various scenarios
in which the usage of IPC methods can be applied. Consequently, many methods exist
based on different conditions and different needs. When choosing an IPC method, one
must be aware of the purpose it has to serve and the conditions it has to meet. This
raises some questions:

• Does the communication concern processes on different computers, and if so, do
they use the same operating system?

• What actions are performed on the data?

• Do the processes implicitly know the other processes?

• Does performance play a key role?

Based on the answers to these questions, different methods can be applied. Typically,
these methods use a client-server model. One process acts as a client requesting a
particular service which is offered by another process, the server process. The service
can either be a function or data. In the following, several different IPC methods available
on Windows operating systems (cf. MSDN [Netb]) are outlined.

• Dynamic Data Exchange (DDE) is a protocol used for the communication
between applications. The communication is realized via transmission of messages
and shared memory in order to share data. DDE can be used for both one-time
and continuous communication. It also provides a mechanism to signal updates to
the other processes. Yet, it is an older technology and not efficient.

• Data Copy can be used to send data from a sender to a receiver. This method is
realized using WM_COPYDATAmessages. In order to apply this method, pointers must
not be used. This method is very quick but rather used for one-way communication.

• Pipes are basically shared memory used for the communication between a parent
process and a child process by redirecting the standard input and output. There
are two types of pipes: anonymous pipes and named pipes. Anonymous pipes
are used for the communication between processes on a single computer whereas
named pipes are used to transfer data between different computers. This method
is a relatively efficient IPC method.

64

3.6. Inter-Process Communication

• Windows Sockets provide a protocol-independent interface which is used for the
communication between applications. It is commonly used for the communication
over networks.

• Remote Procedure Calls (RPC) allow to call functions of another process and
can be used both on a single computer or on networks. It also supports data
conversion and different operating systems.

• File Mapping is usually a method which loads the content of a file into memory.
Communication between different processes can be realized either through the
contents of a file or via named shared memory. Named shared memory uses the
system swapping file. Different processes can identify the memory by its name and
access it. At the same time, one has to guarantee the consistency of the data by the
means of synchronization. Although this method is very efficient and performant,
it is also restricted to the use on a single computer.

For further information about IPC on Windows operating systems, please refer to the
Microsoft System Developer Network [Netb].

3.6.2. IPC in PyBox

In PyBox, we require a preferably performant IPC method. Therefore, the added func-
tionality in the target process should have as less of an impact as possible. Furthermore,
we only have to communicate between processes which are running on the PyBox’s
virtual machine. Therefore, the IPC method not necessarily has to support the com-
munication between two or more computers. For these reasons, file mapping through
named shared memory is the method of choice in PyBox.

As mentioned in the previous section, IPC uses a client-server model. In PyBox,
the analysis tool acts as file mapping server whereas the hook library represents the
client. Therefore, the analysis tool must create the file mapping and provide the required
data. The hook library’s installation process reads the information contained in the file
mapping and processes the received data. In order to create a file mapping three steps
are necessary:

1. Creation of the file mapping object

2. Mapping of the contents into memory

3. Copying the data to the memory location

The Windows API provides the required API functions CreateFileMapping20 for
Step 1 and MapViewOfFile21 for Step 2. The implementation used in the analysis tool
is located in the module mmf_services of the package ipc and outlined in Listing 3.13.
CreateFileMapping is called with the argument INVALID_HANDLE_VALUE (line 15). This
causes that instead of a regular file in the filesystem the windows paging file is used to
create shared memory. The MapViewOfFile function returns a pointer to the buffer of

20http://msdn.microsoft.com/en-us/library/aa366537(v=vs.85).aspx
21http://msdn.microsoft.com/en-us/library/aa366761(v=vs.85).aspx

65

Chapter 3. Implementation

the shared memory (line 22). This pointer is used to copy the required data to the
shared memory in Step 3 (line 30, 32).

4 class f i le_mapping :
5 . . .

13 def c r e a t e (s e l f , mmf_data , i s S t r i n g=f a l s e)
14 s e l f . data = mmf_data
15 s e l f . __hMapObject =

wind l l . ke rne l32 . CreateFileMappingA (INVALID_HANDLE_VALUE, None ,
PAGE_READWRITE, 0 , s e l f . s i z e , s e l f . name)

16 . . .

22 s e l f . pBuf = wind l l . ke rne l32 . MapViewOfFile (s e l f . __hMapObject ,
FILE_MAP_ALL_ACCESS, 0 , 0 , s e l f . s i z e)

23 . . .

28 memcpy = c d l l . msvcrt .memcpy
29 i f not i s S t r i n g :
30 memcpy(s e l f . pBuf , byre f (s e l f . data) , s i z e o f (s e l f . data))
31 else :
32 memcpy(s e l f . pBuf , s e l f . data , l en (s e l f . data))
33 return True

Listing 3.13: File mapping creation

The steps of accessing the file mapping in the remote process are quite similar. At first,
an appropriate data structure is created to which the transmitted data can be copied.
Subsequently, the API function MapViewOfFile is used to load the shared memory into
the process’s address space. Finally, the data can be copied to the created data structure.

Both the analysis tool and the hook library are provided with the name of the file
mapping. This way, the analysis process as well as the monitored processes can access
the shared memory. We use three different file mappings in order to communicate three
different types of data: the common settings, the hook settings, and the log entries. The
file mappings, the included data and the purposes of the data are described as follows.

The Common Settings File Mapping

The common settings consist of a C data structure which contains two members. The
members are depicted in Table 3.6. The first member PyBoxPid contains the process
identification number of the analysis tool. This information is required by the hook
library in order to hide the analysis tool and prevent its detection. As described in Sec-
tion 3.4.5, some malware samples contain functionality to detect software which might
analyze them or prevent their execution. Therefore, we have to install additional hooks
which hook API functions that can be used to inspect all running processes. In or-
der to avoid the detection of the analysis framework, we have implemented a callback
which prevents this API from listing our analysis tool process. In order to check if the
next process to be listed is the analysis tool’s process we have to compare the process
identification numbers. For this purpose, this member is required. The second member
contained in the common settings file mapping is PbMonitorPath. It specifies the file

66

3.6. Inter-Process Communication

Member Type
PyBoxPid DWORD
PbMonitorPath char[256]

Table 3.6.: The PyBox file mapping data structure for common settings

Member Type
intercept BOOL
preventExecution BOOL
returnValue LONG

Table 3.7.: The PyBox file mapping data structure for hook settings

path of the hook library. This information is required by the hook library in order to
inject the hook library into processes which might be created by the monitored tar-
get process. Thus, this member provides the relevant information in order to monitor
the behavior of all processes which are concerned by the execution of the actual target
process.

The Hook Settings File Mapping

The hook settings file mapping contains the information which have been specified in
the configuration file hooks.cfg described in Chapter 3.5.2. In this configuration file,
the analyst using PyBox has specified all API functions which have to be hooked as well
as whether to use the trampoline functions and which return values have to be returned.
These information are mapped by the analysis tool to a file mapping object and thus can
be obtained and realized by the hook library. In order to represent all hooks we use a C
array of data structures. For each API function which can be hooked a data structure
of type MMF_SETTINGS_ITEM is created. This data structure is depicted in Table 3.7.
The member intercept describes whether to hook the function or not. The member
preventExecution is used in order to specify whether or not the trampoline function is
called. If the trampoline function is not called we have to define the return value of the
API function. This value is contained in the member returnValue. The data structure’s
position in the array defines the concerned API function. This means that there is a
fixed position in the array for each API function which can be hooked by PyBox. The
hook library is implemented accordingly mapping the respective configuration to the
corresponding hook. With these information read, all specified hooks are installed in the
target process.

The Log Entry File Mapping

The log entry file mapping provides the information which has been logged in the callback
functions of the hook library. For each hooked API call a new log entry is created. In
order to provide the analysis tool with as much information as possible a data structure

67

Chapter 3. Implementation

Member Type Size
function unsigned char 1
object wchar_t[256] 512
comment wchar_t[256] 512
executed unsigned char 1
pid DWORD 4
desiredAccess DWORD 4
param1 unsigned long 8
param2 unsigned long 8
param3 unsigned long 8
param4 unsigned long 8
timestamp long long 8
Size 1064

Table 3.8.: The PyBox file mapping data structure for log entries

has been chosen to be used in the file mapping containing the members depicted in Table
3.8. In the following, the members of this data structure are described.

• function contains the identification number of the hooked API function which
has created the log entry.

• object specifies the object name on which the API function has been executed.

• comment is used as a placeholder for another object name. For instance, the hooks
of the registry functions use this member for the value name of a registry key while
the registry key is stored in object.

• executed determines whether or not the trampoline function has been called and
thus whether or not the original functionality has been executed. If the value is
set to 1 the trampoline function has been called. Otherwise, the value is set to 0.

• pid defines the process identification number of the process in which the corre-
sponding API function has been called.

• desiredAccess describes the access attributes used to access the object of the API
call.

• param1, param2, param3, and param4 are placeholders for various data that is
transmitted. The contents of these members vary from API function to API func-
tion. Their interpretation is handled by the report creation in module analysis
of the package report in the analysis tool which has been described in Chapter
3.5.4. The class log_item identifies the meaning of the various values based on
the log entry’s function value.

• timestamp specifies the time passed in milliseconds since the hook library has been
injected.

In contrast to the first two file mappings outlined above, we have to add further
functionality in order to use file mappings for the transmission of log entries. The first

68

3.6. Inter-Process Communication

Figure 3.7.: PyBox IPC procedure for log entries

two file mappings are used only once in order to provide the configuration information
copied and used by the hook library. Subsequently, these file mappings are of no use for
the hook library in the target process anymore. At the same time, they must not be
deleted, as the hook library might have to be injected into further processes which might
be created by the target process. The hook libraries in these new created processes have
to use these file mappings as well.

The log entry file mapping, however, transmits data in the opposite direction, from
the hook client to the hook server. Furthermore, its content is permanently changed.
This means, once a log entry is created and mapped to the file mapping object, the anal-
ysis tool must immediately read and copy the file mapping data. Otherwise, the data is
overwritten by new log entries and information would get lost. As both processes have to
access the file mapping permanently, means of data synchronization are required. How-
ever, the file mapping method, unlike other methods, does not provide the functionality
of updating the communication members about the changes which have been caused.
Thus, we have to add further functionality in order to implement IPC here. Windows
provides so-called synchronization objects22 in order to maintain data consistency of ob-
jects which are accessed by one or more threads or processes. Synchronization objects
comprise mutexes, semaphores, events, and waitable timers. As we have only one file
mapping which is concerned by the IPC, there is no need to use semaphores. Instead,
we use two mutexes in order to guarantee that the data are only accessed by one process
at a time. Furthermore, we have to use two events. One event has to signal to the hook
library that the file mapping has been read and that new log entries can be created.
The other event has to signal to the analysis tool that a new log entry has been created
ensuring that the data are read immediately in order to prevent data loss. The procedure
concerning the transmission of log entries is depicted in Figure 3.7.

The picture outlines six steps. Whenever the target process calls a hooked API func-
tion, the corresponding callback executes the createLog function provided in the hook
22http://msdn.microsoft.com/en-us/library/ms686364(v=vs.85).aspx

69

Chapter 3. Implementation

library. In Step 2 createLog waits for the mutex objects which allow to create the
actual log entry object, access the file mapping, and to write the log data. After the
information has been written, createLog releases the file mapping mutex and sets the
written event in Step 3 which notifies the analysis tool that a new log entry has been
created. In Step 4, the log thread acquires the file mapping mutex and copies the file
mapping data to a new log_item object which is stored in the log list (Step 5). After
the log entry has been read and copied, the mutex is released again and the read event
in Step 6 is set by the log thread notifying the target process to proceed.

In the Listings 3.14 and 3.15, the implementation of the mentioned components is
depicted. At first, we describe the log entry creation implementation of the hook library.
Afterwards, we examine the log thread implementation applied in the analysis tool.

46 int __stdcal l createLog (unsigned char funct ion , wchar_t ∗ object ,
wchar_t ∗comment , const char ∗ bu f f e r , unsigned char executed ,
unsigned int des i r edAcces s , unsigned long param1 , unsigned long
param2 , unsigned long param3 , unsigned long param4 ,
SOCKET_ADDRESS_INFO socket_address , unsigned long return_value)

47 {
48 LOG newLog ;
49 newLog . Function = func t i on ;
50

51 // Copy s t r i n g s
52 wcsncpy_s (newLog .Comment , comment , MAX_STR_BUFFER−1) ;
53 newLog .Comment [MAX_STR_BUFFER−1] = ’ \0 ’ ;
54 wcsncpy_s (newLog . Object , ob ject , MAX_STR_BUFFER−1) ;
55 newLog . Object [MAX_STR_BUFFER−1] = ’ \0 ’ ;
56 strncpy_s (newLog . Buf fer , bu f f e r , MAX_STR_BUFFER−1) ;
57 newLog . Buf f e r [MAX_STR_BUFFER−1] = ’ \0 ’ ;
58

59 // Copy numeric va l u e s
60 newLog . Executed = executed ;
61 newLog .PID = pid ;
62 newLog . Timestamp = getTimeStamp () ;
63 newLog . Des i redAccess = des i r edAcce s s ;
64 newLog . Param1 = param1 ;
65 newLog . Param2 = param2 ;
66 newLog . Param3 = param3 ;
67 newLog . Param4 = param4 ;
68 newLog . socket_address = socket_address ;
69 newLog . ReturnValue = return_value ;
70

71 WaitForSingleObject (h_outer_mutex , INFINITE) ;
72 WaitForSingleObject (h_inner_mutex , INFINITE) ;
73 memcpy(mmf_log , &newLog , s izeof (newLog)) ;
74 ReleaseMutex (h_inner_mutex) ;
75 SetEvent (h_event_w) ;
76 WaitForSingleObject (h_event_r , INFINITE) ;
77 ResetEvent (h_event_r) ;
78 ReleaseMutex (h_outer_mutex) ;
79 return 0 ;
80 }

Listing 3.14: Log entry creation

70

3.6. Inter-Process Communication

In order to create a log entry file mapping, we have to initialize a LOG data structure
newLog and insert the corresponding values to be logged into its fields (lines 51 - 69).
Having created the log entry data structure, we are ready to copy the information to the
file mapping. Before we can actually copy the log entry, we have to acquire the required
mutexes first (lines 71, 72). We have already obtained the required handles in the
initialization sequence of the hook library. The first mutex referenced by h_outer_mutex
ensures that no further log entry overwrites the existing one before the analysis tool has
read the file mapping. The second mutex referenced by h_inner_mutex guarantees that
the file mapping is only accessed by one process or thread at the same time. If only
the inner mutex was applied, it would be possible that another process or thread would
acquire the mutex before the analysis tool, the data would be overwritten and thus be
lost. Having copied the log entry data structure to the buffer of the file mapping (line
73), the inner mutex can be released (line 74). Then, the analysis tool is notified that
a new log entry has been created by using the written event referenced by the handle
h_event_w. While the log thread of the analysis tool reads the provided data, the target
processes waits until the read event is triggered referenced by the handle h_event_r
(line 76). Finally, the outer mutex can be released (line 78) and the target process
proceeds.

30 def log_thread (p_filemapping , h_mutex , h_event_written , h_event_read) :
31 while forrest_gump :
32 # Wait f o r event
33 i f kerne l32 . WaitForSingleObject (h_event_written , INFINITE) i s 0 :
34 # Wait f o r mutex to read l o g
35 kerne l32 . ResetEvent (h_event_written)
36 kerne l32 . WaitForSingleObject (h_mutex , INFINITE)
37 # Read l o g and append i t to the l o g
38 a_lock . acqu i r e ()
39 try :
40 log_entry = MMF_LOG()
41 memcpy(byre f (log_entry) , p_filemapping ,

s i z e o f (log_entry))
42 i f (log_entry . Function == 9) or (log_entry . Function ==

10) :
43 c reated_proces se s . append (log_entry . Param1)
44 pbmonitor_log . append (log_entry)
45 except :
46 print " [ERR] An e r r o r occurred during read ing from the

f i l e mapping . "
47 a_lock . r e l e a s e ()
48 kerne l32 . ReleaseMutex (h_mutex)
49 kerne l32 . SetEvent (h_event_read)

Listing 3.15: Log thread

The log thread of the analysis tool consists of an infinite loop that runs until no process
has to be monitored any more. The thread waits until the write event referenced by the
handle h_event_written is triggered (line 33). Subsequently, the mutex to the inner
handle is acquired (line 36) and the log entry contained in the file mapping is copied
(line 41) to a data structure which is the equivalent to the LOG data structure of the
hook library and added to the list pbmonitor_log in which all log entries are stored (line

71

Chapter 3. Implementation

44). The outer handle is only used for the synchronization of the log creation between
different target processes and therefore does not concern the analysis tool. Additionally,
if the log item contains an entry concerning the CreateProcess or CreateProcessEx
API function, the process identification number of the created process which is stored
in the member param1 is added to the list created_processes (lines 42, 43). This
list is used to ensure that the analysis tool waits for all monitored processes before it
terminates. Having read and copied all relevant data, the mutex is released (line 16)
and the read event is set in order to notify the target process to proceed (line 49).

3.7. Summary

In this chapter, we have detailed the implementation of PyBox. After the description of
several design goals, we have discussed the implementation of the hook library containing
the hooking and monitoring functionality. More specifically, we have seen how the inline
hooking method as well as callback and trampoline functions are implemented. This has
been demonstrated using three different callback functions as examples. Additionally,
we have outlined how the hook library can prevent its detection by using hooking. Apart
from the hook library, we have detailed the implementation of the analysis tool. The
analysis tool serves as the interface for user interaction. An analyst can apply it in order
to configure the the hook library. Hence, we have described its setup and configuration
files, the creation of the monitored target process with the injected hook library as well
as the final report generation. Finally, we have described the implementation of the IPC
method used for the communication and interaction of all concerned processes.

Having described the various implementation-specific details, we are now able to eval-
uate the result of the implementation by testing the framework on various examples.
Thus, we can see the features and benefits of the created sandbox.

72

Chapter 4.

Outlook on Portability of PyBox
towards Linux

In recent years, the usage of mobile devices such as PDAs, and smartphones with in-
ternet access has grown rapidly. Due to their increasing popularity these devices are
also becoming more and more targets of malware attacks. But they don’t run the same
operating systems as desktop or notebook computers. This would be not efficient regard-
ing issues such as battery consumption. Instead, they incorporate customized operating
systems for small mobile devices which are more suited to their needs. Like malware
developers, security specialists also have to focus on attacks on systems designed for
mobile devices. One of the most popular systems is Google’s Android which is based on
the Linux kernel 2.6 according to the Android developer guide [Gooa]. Thus, it would be
convenient, if we could extend the functionality of PyBox to Linux operating systems.

Throughout this chapter, we will address the possibilities of bringing the PyBox anal-
ysis environment to Linux. As we have seen before, dynamically analyzing a malware
sample or any other executable requires basic knowledge about the respective operating
system such as how applications interact with a system and the layout of executables.
Therefore, in the first section, we provide basic information about relevant characteristics
of Linux and derive suitable starting points to observe malware samples.

As described in chapter 2.3.2, we use hooking techniques in PyBox in order to reveal an
executable’s actions. The PyBox analysis tool which injects the customized code into the
target process’s address space and receives and evaluates the results of the monitoring
process is written in Python. Python is available for both Windows and Linux, so this
part of the environment can be used and just has to be extended. However, the hooking
and code injection process is closely related to system characteristics and therefore has
to be reimplemented. Thus, in the second part of this chapter we describe how hooking
methods can be applied on a Linux operating system.

Finally, the third section outlines other alternatives of observing executables during
run-time.

73

Chapter 4. Outlook on Portability of PyBox towards Linux

4.1. Linux Fundamentals

Linux1 is a free unix-like operating system which was originally developed by Linus Tor-
valds. Nowadays, it is a collaborative project of countless software developers throughout
the world. Although, the name “Linux” actually only refers to the kernel and thus to
the core of an operating system, it is usually used for the entirety of various operating
systems implementing the Linux kernel. The variants which are usually put to practical
use are called Linux distributions. There are many different distributions, some of the
most popular being Debian2, Ubuntu3, and Suse4. Due to its open-source kernel, Linux
can be run on various hardware such as super computers, desktop computers, notebooks,
servers, mobile devices, routers etc.

With regard to the different Linux products and the required information about system
functionality for analyzing software, a common basis is needed in order to be able to use
system functionality for the purpose of monitoring executables during runtime. Thus,
in this section we take a closer look at common Linux system functionality. For this
purpose, we explain system calls in Linux, introduce the term ABI, outline existing
APIs used in Linux, describe the Linux executable file format, and derive similarities
and possible starting points to observe malware samples.

System Calls

Virtual memory is separated into two different memory parts in Linux: user space and
kernel space, just as in Windows. Only the kernel can access kernel space. User applica-
tions can only access user space and must not access kernel space in order to protect the
operating system’s integrity and stability and prevent misuse. On the other hand, ap-
plications must be able to somehow call system services in order to access the system’s
resources. For this purpose, system calls are used. System calls are provided by the
operating system and can be called from user space. The user application can cause a
software interrupt instruction and pass a number as argument thus triggering a certain
process in kernel space associated with this number.

In Linux, the sum of system calls can vary from one machine architecture to another.
However, Love [Lov07, p. 3] mentions that more than ninety per cent is implemented in
all of them.

Application Binary Interfaces

Similar to an API, application binary interfaces (ABI) describe interfaces for the purpose
of communication between different pieces of software. In contrast to an API, the ABI
is more low-level defining the binary interfaces for the interaction between applications,
kernel, and libraries. This means that the code which is compiled for one system will

1http://www.linux.org/
2http://www.debian.org
3http://www.ubuntu.com
4http://en.opensuse.org

74

4.1. Linux Fundamentals

work on another system without recompilation if it uses the same ABI. Thus, an ABI
provides compatibility. Examples of ABI characteristics according to Love [Lov07, p.
5-6] are:

• Calling convention

• Byte order

• Register use

• System call invocation

• Linking

• Library behavior

• Binary object format

According to Love [Lov07, p. 5], at the moment there is no uniform architecture-
specific ABI which is valid for multiple operating systems. Instead, each operating
system defines its own ABI. Furthermore, there is a different ABI for each architecture
on Linux. The ABI is usually realized by the so-called toolchain, including system
tools such as the compiler and the linker. Thus, application developers usually don’t
have to care about the ABI as the C compiler and the C library take care in order to
meet the ABI’s standards. Yet, system programmers have to be aware of the respective
architecture’s ABI in order to build proper system software.

APIs in Linux

As described in 2.2.3, an API defines an interface which serves the purpose of commu-
nication. One piece of software offers a set of interfaces which are usually functions
which can be utilized by other software. The provided interfaces can be used in order
to make use of the providing software’s functionality or resources. Thus, the software
which provides an API has to implement it. One example of an API in Linux is the C
standard library.

Standards are used to define APIs. The two main standards in Linux are the Portable
Operating System Interface (for Unix) (POSIX) [IEE], the Single UNIX Specification
(SUS) [Ope]. The POSIX project was created by the Institute of Electrical and Elec-
tronical Engineers5 (IEEE) in the mid-1980s with the goal to harmonize Unix system-
level interfaces. SUS emerged in 1994. Since version 3, SUS combines various standards
including POSIX.16.

According to Love [Lov07, p. 6], Linux seeks to comply with POSIX and SUS. Yet,
there is no official compliance to these two standards. In spite of several attempts to
achieve this, there has not been much success. The difficulties are due to the dynamic
nature of and permanent changes to Linux and the globally distributed collective of
developers. Furthermore, there are very old parts of the system that already existed
before these standards. This is why there are efforts made by some groups to address

5http://www.ieee.org
6http://www.unix.org/version3/apis.html

75

Chapter 4. Outlook on Portability of PyBox towards Linux

these problems by trying to make everything match the official standards in order to
finally achieve full compliance. One of these attempts is the so-called Linux Standard
Base7 (LSB). The LSB is a collaborative group of several distributions headed by the
Linux Foundation8 trying to eliminate differences between the various distributions in
order to match standards such as POSIX and SUS.

The C standard library meets these standards. It is one of the most important libraries
in Linux. Most parts of the Linux kernel as well as most system calls are written in C.
Even if other programming languages are used in order to develop applications, they
are nevertheless dependent on this library. Very often, higher-level libraries use function
wrappers of exported C library functions in order to simplify the use of system calls or
other provided functionality. The most prevalent C standard library in Linux is GNU
libc9 (glibc), but there are also different versions. A major point of criticism of the GNU
C library has been that it is too slow and too extensive especially regarding smaller
devices such as smart phones. This is why on such platforms alternative C libraries are
used. For example, Torvalds [Tor02] has pointed out these drawbacks. As an example
of an alternative C library, Android implements an own BSD-derived standard C library
which is called Bionic according to Maia et al. [CM10, p. 67].

Executlable and Linkable File Format

The current file format of executables files in Unix-like operating systems such as Linux
is the executable and linkable file format (ELF) [TIS95]. It is the Linux equivalent to the
Windows PE file format which has been described in Chapter 2.2.4. ELF has replaced
several other executable file formats because of its extensibility and flexibility.

There are three main types of object files described by ELF:

• Relocatable files

• Executable files

• Shared object files

While relocatable files contain contents which can be linked in order to generate ex-
ecutable files or shared object files, programs are stored in executable files and can be
executed. Shared object files can be linked with other object files in order to create a
new object file or can be linked with an executable file and loaded into its process image
in order to add functionality to the program. All three types are binary representations
of the data and code they contain. This means, that they are already compiled and their
code is directly executed by the processor.

Figure 4.1 depicts the structure of an ELF file. It is divided into a an ELF header, the
program header table, various sections and segments, and finally a section table. The
ELF header is at the beginning of each ELF file. It is a C data structure containing the
main information about the file and how it is organized and structured. It also marks

7http://www.linuxfoundation.org/collaborate/workgroups/lsb
8http://www.linuxfoundation.org/
9http://www.gnu.org/s/libc/

76

4.2. Hooking in Linux

Figure 4.1.: Executable and linkable file format (ELF) structure

itself as an ELF file and describes for which architectures it is designed. Following
the ELF header, there is the program header table. It is basically an array of data
structures each describing a segment or other system information. The program header
table is important for the execution of an application as it contains information about
the creation of the process image. Subsequently, there are various segments described
by the program header table. Each segment in turn can contain one or more sections.
These sections contain the actual content of an object file such as the code to be executed
and the data to be used. This means, there are various types of sections. There are for
example .text sections containing the code to be executed, .data sections containing
required data, or a .got section providing address information about exported functions
of a shared object file which has been linked. At the end of an ELF file there is the
section table which contains information about the file’s sections such as their type and
size.

4.2. Hooking in Linux

In 2.3.2, we have learned about different hooking and DLL injection methods which can
be applied in Windows. Although the concept remains more or less the same, there
are some differences when trying to implement such techniques in Linux. As described
in chapter 3, we have to interact with the respective operating system and make use
of various provided services. There are not necessarily equivalents for all of the API
functions which we have used in Windows. Therefore, different ways have to be found
in order to implement this functionality. In this section, we describe possible methods
of hooking functions and injecting a customized shared object into a target process in
Linux.

77

Chapter 4. Outlook on Portability of PyBox towards Linux

Hooking Methods

In the following, we learn about different hooking methods which can be applied in
Linux. Since the respective implementation of those methods can vary from one Linux
distribution or system to another, for example due to memory page protection issues,
we will focus on their concepts.

Simple Hook One first simple method which can be used to hook function calls is
to analyze the executable process image and manipulate all of these calls in order to
redirect them to our customized code. The nature of a function call is displayed in
listing 4.1. The call instruction with the opcode 0xE8 is followed by a four byte offset
which leads the execution flow to the target function.

. . .
400521: e8 ce f f f f f f ca l l 4004 f4 <some_function>
. . .

Listing 4.1: A function call

So, there is the possibility to examine the whole process image and replace the offsets of
all function calls. Obviously, this method is not very efficient because the whole process
image has to be parsed. Furthermore, we do not usually want to hook all functions of an
executable. Thus, the effort to examine each function call by a whole process scan and
just manipulate the offsets of those which we want to hook bears no relation to benefit.
This method is also quite resource-intensive and is very likely to be detected. In fact,
there are much more appropriate solutions for hooking functions.

GOT Hook An alternative hooking method for functions which are imported from a
shared object in Linux is to modify the corresponding global offset tables (GOT). This
technique was, for example, presented by Damato[Dam] at the Defcon 18 10 conference.
In order to understand these hooks, we need to understand what the GOT is and how
runtime dynamic linking works in Linux. In Listing 4.2 an example of a dynamic linking
procedure is outlined.

08048464 <main>:
8048474: e8 2b f f f f f f ca l l 80483 a4 <newobj@plt>
. . .

0804836 e <.p l t >:
. . .
8048374: e9 25 34 96 05 08 jmp ∗0x8049634
804837a : 68 08 00 00 00 push $0x8
8048380: e9 e0 f f f f f f jmp 8048374
. . .

Listing 4.2: Runtime dynamic linking in Linux

In this example, a regular call instruction calls the imported function. However, the
call is not directed immediately to this function. Instead, the call leads to an instruction
10http://www.defcon.org/html/defcon-18/dc-18-index.html

78

4.2. Hooking in Linux

block in the procedure linkage table (PLT). Usually, this block consists of a jump, a
push and again a jump instruction. The second and third instructions are only required
for the first time the function is called. The first jump instruction has a pointer as
parameter. This pointer points to the corresponding entry in the GOT. The first time
the function is called the entry leads the first jump instruction right to its subsequent
push instruction in the PLT. Then, the runtime dynamic linker is invoked which fills
the right offset to the desired function into the GOT entry. Afterwards, it is possible to
jump to the desired function. The second time the function is called the push instruction
and the second jump instruction are no longer required because the GOT entry directs
the execution flow immediately to the function’s address.

This mechanism provides us with the opportunity to hook these functions by manip-
ulating the GOT entries. At this point, one should note, that every object such as every
imported shared object as well as the main executable has its own GOT table. Thus, we
have to manipulate all of them in order to observe the entire activity of the executable.
The benefit of this characteristic is such that we can hook all GOT tables except the one
of the shared object which we have ideally injected in order to provide our customized
code. Thus, we can still use the functionality of the original functions by just calling
them out of our own shared object containing a not manipulated GOT.

Inline Hook We have already covered the concept of inline hooking in detail in 2.3.2.
It can also be applied in Linux. Therefore, the address of the target function to be hooked
has to be discovered. Then, the first five bytes are copied to a trampoline function and
are then overwritten by a jump instruction with the opcode 0xE9 followed by a four byte
offset leading to the customized hook function. A simplified implementation is depicted
in listing 4.3.

void in l ine_hook (void ∗ o r i g ina l_ func t i on , void ∗hook_function ,
void ∗ trampol ine_funct ion)

{
char ∗buf ;
unsigned int o f f s e t ;

// Backup o r i g i n a l f unc t i on to trampol ine func t i on
memcpy(trampol ine_funct ion , target_funct ion , 5) ;

// Determine o f f s e t to hook func t i on
o f f s e t = (unsigned int) hook_function −

((unsigned int) ta rge t_funct ion + 5) ;

// Overwri te o r i g i n a l b y t e s wi th jump
∗buf = (char ∗) ta rge t_funct ion ;
∗buf = 0xE9
∗(buf+1) = o f f s e t & 0xFF ;
∗(buf+2) = (o f f s e t >> 8) & 0xFF ;
∗(buf+3) = (o f f s e t >> 16) & 0xFF ;
∗(buf+4) = (o f f s e t >> 24) & 0xFF ;

}

Listing 4.3: A simplified inline hooking implementation

79

Chapter 4. Outlook on Portability of PyBox towards Linux

In order to make this code work, further instruction are required which have been ne-
glected here. For example, the corresponding memory page has to be set to be writeable,
otherwise a memory error will show up. The procedure to do this depends on the used
operating system. Another possibility to manipulate a process’s memory during runtime
for the purpose of inline hooks is to fork a process, create a child process executing the
target and use ptrace to edit memory and change the process’s execution flow. Ptrace
is covered in more detail in 4.3.2. Another issue is to find the memory addresses of the
functions involved. For this purpose, there are two system calls. The first system call
is dlopen11 which can load libraries and returns a handle to the object containing the
wanted function. Then the function’s address can be determined by usage of the system
call dlsym12.

A popular rootkit technology is to use inline hooks to redirect system calls. The system
call table is basically an array of function pointers. Although it is usually not exported
there are ways to discover its location according to [WJCN09, p. 550-551]. Consequently,
by manipulation of those pointers kernel-level inline hooking can be realized and thus
monitoring of system calls.

Injection Technique

As mentioned before, we have to find a way to inject our own customized code into the
target process in order to redirect the hook functions to them. As we have seen, in
Windows this is rather simple as we can use specific API functions to allocate memory,
create a remote thread and load libraries in the target process. In Linux, it is much
more difficult. While there are certain services that provide the functionality to load
a library, open a process and write to memory, no functionality is offered to create a
remote thread and to allocate memory in a remote target process. Furthermore, the
dlopen function does not reside at the same memory address in all processes like its
equivalent LoadLibraryA in Windows. The development of a solution to inject shared
objects into a remote process is far from being trivial. Yet, there is a solution. In 2001,
Clowes[Clo] presented a tool called injectso at the Blackhat Briefings in Amsterdam13.
Injectso can be used to inject shared objects into processes during runtime. It attaches
to a process using ptrace, locates the dlopen function by reading the process memory
and locating the relevant information. Since there is no way to create a new thread in
the remote process, injectso stops the main process storing all current registers and an
apropriate portion of the stack. Then, it creates a new fake stack frame and sets up
the registers so that the process will run dlopen with the customized shared library as
argument. Finally, the original registers and the stack are recovered and the process
resumes.

11http://linux.die.net/man/3/dlopen
12http://linux.die.net/man/3/dlsym
13http://www.blackhat.com/html/bh-europe-01/bh-europe-01-speakers.html

80

4.3. Monitoring System Calls

4.3. Monitoring System Calls

4.3.1. Hooking Targets

In PyBox, we use userland inline hooks in order to analyze the behavior of an executable
file. However, we need to know the targets of these hooks in order to apply these methods.
In Windows, we use Native API functions as hooking targets because they process the
system calls, thus offering a direct interface to the Windows kernel. By this approach,
we receive detailed information about the observed executable’s execution flow. But if
we want to hook system calls in Linux we face some difficulties. As mentioned in 4.1
the manner how system calls are called depends on the corresponding ABI. The ABI
in turn varies from one architecture to another. Therefore, unless there is no specific
architecture defined for the objects to be observed, the preferred solution is to focus
on the system call implementations of the C standard library. In order to apply this
solution we have to be aware of the respective C library and its implemented system
calls. However, when hooking imported system call functions of the C standard library,
there is the risk that system calls might not be registered in case the observed target
executable avoids the C standard library and executes the system calls directly.

Thus, the optimal target to be hooked greatly depends on the the specific situation.
This means, we first have to define which operating systems, machine architectures
and C libraries have to be covered by the hooking and analysis environment before
implementing an appropriate solution.

4.3.2. Tools and Alternative Methods to Observe an
Executable’s Execution Flow

So far, we have focused on hooking methods in order to monitor an executable’s behavior.
But hooks are not the only options to do this. Linux also provides utilities which enable
us to observe and control the execution flow of a process. Two of these utilities are
ptrace and strace. In the following, both utilities are briefly described.

ptrace

Ptrace14 is a system call provided by Linux and other Unix-like operating systems. It
is a process tracing tool which allows a parent process to attach to another process as
well as to observe and control it. Thus, it can be also be used to intercept system calls
both at their entry and exit points. Aside from the interception of system calls, ptrace is
primarily used for debugging purposes. The structure of a ptrace instruction is depicted
in listing 4.4.

14http://www.kernel.org/doc/man-pages/online/pages/man2/ptrace.2.html

81

Chapter 4. Outlook on Portability of PyBox towards Linux

long ptrace (enum __ptrace_request request ,
pid_t pid ,
void ∗addr ,
void ∗data) ;

Listing 4.4: Ptrace call structure

The first argument determines the action to be done by ptrace. The second argument
pid receives the process identification number of the process which is controlled. The
third argument addr is used if the ptrace request refers to a specific memory address of
the target process and the last argument data is a pointer to the data which are used
in combination with the defined address.

There are two alternatives to trace a process using ptrace. The first way is to call
ptrace with a PTRACE_ATTACH request and the target’s process identification number as
arguments. The second way makes use of the system call fork which copies the existing
process and creates the additional one as a child process. The child process can then
call ptrace with a PTRACE_TRACEME request in order to be traced. While being traced by
ptrace, the child process stops every time a signal is delivered. During the execution of
the child process, the parent process uses a wait instruction in order to wait for the child
process to stop. If it stops, the parent process executes some arbitrary code and resumes
the execution of the child process. Ptrace not only provides the functionality to stop
and resume a process but also provides mechanisms by which operations can be executed
on the child process in order to modify its data or its execution flow. For example, the
requests PTRACE_POKETEXT, PTRACE_POKEDATA, PTRACE_PEEKTEXT, PTRACE_PEEKDATA al-
low read from and write to the child process’s memory no matter what page protection
the corresponding page is set to. Furthermore, the request PTRACE_SYSCALL provides
the functionality to observe system calls and the arguments passed to them.

Thus, the ptrace utility poses an alternative to hooking methods in order to observe
the execution flow of an executable. But it can also be used within those methods.
Injectso, for example, uses ptrace in order to execute the dlopen instruction inside the
remote process.

Yet, according to Keniston et al. [KMPP07] there are also some disadvantages con-
cerning ptrace.

• Ptrace is not a POSIX system call. The consequence is that its implementation
and behavior can be quite different on various operating systems and architectures.

• Applying ptrace on one process is relatively simple, but if we want to observe more
than one process or even threads it can be very difficult and cumbersome.

• There is a large overhead if the child’s process registers and memory are edited.

strace

All standard Linux distributions provide the command strace. Strace provides the func-
tionality to attach to a specific user application and to trace all system calls including

82

4.4. Summary

its parameters and its return values. It can also be used for multi-threaded applica-
tions. In order to realize its functionality, strace makes use of the ptrace system call and
its request PTRACE_SYSCALL. Therefore, strace suffers from the same disadvantages as
ptrace.

Thus, strace as well as ptrace serve the goal to observe an executable’s behavior. Even
if the functionality of strace proves insufficient for specific details of the malware analysis
process which are needed for PyBox, it is possible to develop an own ptrace-based utility
or even hooking environment in order to meet the requirements.

4.4. Summary

During this chapter, we have learned about fundamentals of the Linux system. It is
difficult to state common characteristics which can be used for the purpose of analyzing
executables during runtime because these characteristics can vary from operating system
to operating system and from architecture to architecture. Furthermore, there can be
different C standard libraries on which the system depends. Based on these fundamen-
tals, three different methods of implementing hooks have been described. Their exact
implementation can depend on the respective Linux system used. Finally, with ptrace
and strace two alternatives of observing the execution flow of executables have been
outlined.

83

Chapter 5.

Evaluation

So far, we have described fundamentals of malware and the Windows operating sys-
tem, we discussed various techniques that enable us to monitor malware samples, and
combined these techniques and implemented a sandbox solution that we have named
“PyBox”. In this chapter, we evaluate the created analysis environment. For this pur-
pose, we test PyBox by performing several analysis processes in order to demonstrate its
functionality and features. At first, we outline the applied analysis procedure in Section
5.1. In Section 5.2, we provide different executables, analyze their behavior and evaluate
the results. In Section 5.3, we conclude the results of the executed test runs and evaluate
PyBox’s functionality.

5.1. Analysis Procedure

In this section, we describe the necessary steps applied in the following sections of this
chapter in order to perform analyses of given executable samples. As starting point of
these analysis processes, we use a VirtualBox VM as sandbox environment. In what
follows, we refer to this VM as “PyBox VM”. The PyBox VM runs a Microsoft Windows
XP operating system with Service Pack 3. It also implements the PyBox analysis tool
as well as the hook library which we have both examined in detail in Chapter 3. A
snapshot of this system provides a clean system state based on which we can start each
analysis process.

The process is divided into six steps:

1. The executable sample to be monitored is copied to the PyBox VM.

2. The PyBox configuration file pybox.cfg is configured as follows. The value of
EXE_TARGET is set to the file path of the target executable file to be monitored.
We also set the TIMEOUT value to “120” in order to avoid the situation of a not ter-
minating process. This way the monitored process is terminated after an time-out
interval of two minutes in case it is still running at this point in time. Further-
more, we set the LOG_FOLDER to the desired output folder and specify the file path
of hooks.cfg in CFG_HOOKS.

3. In the hook configuration file hooks.cfg, all hooks are activated by setting their
values Intercept to 1. We do not prevent their execution and therefore set the
values PreventExecution and ReturnValue to 0 for all available API functions.

85

Chapter 5. Evaluation

4. The actual analysis is initiated by running the analysis tool pybox.py from the
command line and passing the file pybox.cfg as an argument.

5. As soon as the the analysis tool has terminated and has output the report to the
desired folder, we copy the report to the host machine.

6. The VM is shut down and restored to the snapshot providing the clean state.

5.2. Analyses of Executable Samples

Using the six steps outlined in the previous section, we are able to apply and test the
created analysis environment. In this section, we put PyBox to practical use in order to
show its features. Thus, we depict what type of information one can expect from such an
analysis and how this information can be evaluated. We present some executable samples
which are executed and analyzed by PyBox. After each analysis process, we examine
the output XML report in detail. At first, we present a special application which has
been designed to test the functionality of PyBox. By analyzing the test application and
comparing its activities to the result of the analysis process, we can verify the correct
functioning of PyBox. Furthermore, we demonstrate what data is logged in case an API
function is monitored. Additionally, we analyze two malware samples in order to verify
that PyBox reveals malicious behavior and provides useful information for analysts.

5.2.1. PyBox Test Application

The PyBox test application is a command line application which has been written for
the purpose of testing PyBox’s functionality. It calls various API functions that we try
to monitor during the analysis processes. As we want to monitor all activities conducted
by an executable, we have to verify that other processes created by the original target
process are observed as well. Therefore, the test API calls are distributed among several
executables. As in what follows, we take a closer look at the implementation of the test
executables. Subsequently, we run a PyBox analysis process on the test environment
and compare its result to the implemented test API functions.

Figure 5.1 depicts the design of the test environment. The application consists of four
executables. The target executable passed to PyBox is PyBox-Tester.exe. All other
executables are executed by this program. The test functions implemented in these files
can be categorized into four test modules: file management, registry-related, process-
related, and network API calls. Thus, every test module covers a certain test scenario.
The different scenarios are tested subsequently. All functions we want to monitor are
displayed in the different test modules of Figure 5.1.

The test application does not implement any native API calls directly. Instead, the
Windows API is used because it is much easier to implement. Since the Windows API
implements the native API calls, as we have described in Section 2.2.3, this aspect has
no affect on the outcome of the analysis process.

The process running PyBox-Tester.exe invokes the different test modules categories

86

5.2. Analyses of Executable Samples

Figure 5.1.: Test application structure

of API functions. At first, ApiTest_files is called, which calls the different file man-
agement API functions. It creates a file CreateFileW.txt using the API CreateFile.
Subsequently, the module writes a test string to it (WriteFile) and reads it out again
(ReadFile). Finally, the created file is deleted via DeleteFile. Secondly, the test
module ApiTest_registry is called. This module creates (RegCreateKeyEx) and opens
(OpenKeyEx) two registry keys. Subsequently, an integer value is set to one of the cre-
ated keys (RegSetValueKeyEx) and readout again (RegQueryValueKeyEx). After the
test of all registry-related API functions, the test application calls the third test mod-
ule ApiTest_process executing all process-related API functions. It creates a process
running the executable DummyProcess.exe which does not implement any functionality.
It only serves as an object on which we test the process API functions. Since we have
to use the created process, we have to ensure that it does not immediately terminate.
Therefore, we cause the process to sleep for three seconds. Within this time interval, we
open the process (OpenProcess), create a new thread inside via CreateRemoteThread
and terminate it (TerminateProcess). Finally, the test application runs the network
test module by calling the function ApiTest_socket. Socket API functions, however,
serve the purpose of communication between two or more objects. Hence, we do not test
their functionality inside this process. Instead, the test application creates two further
processes: a server process (WinSock-Server.exe) and a client (WinSock-Client.exe)
process. Both associated executables implement three different test modules which estab-
lish three different communication channels between the two processes by applying three
different types of socket API functions. The first channel serves the tests of the socket
API functions connect, send, and recv provided by ws2_32.dll library. The second

87

Chapter 5. Evaluation

Figure 5.2.: Test application output

channel tests the communication via the socket API functions sendto and recvfrom.
The last communication channel establishes a connection via connect, which enables
the communication via the API functions WSASend and WSARecv. In order to verify that
all API functions have been executed properly, the command line console displays their
results. Figure 5.2 provides a screenshot displaying the output of the test environment.

As depicted in Figure 5.2, all API functions which we intend to monitor have been
executed successfully. In order to verify that PyBox keeps track of all relevant function
calls, we run a PyBox analysis monitoring the execution of the test environment as
described in Section 5.1. The resulting report contains more than thousand lines and
thus is far too extensive to be listed entirely here. Therefore, we focus only on the
relevant entries concerning the test API functions called by the test environment. We
depict different parts of the XML report and explain all relevant entries.

2 <PyBox−Analys i s Executable="C:\TestApp\PyBox−Tester . exe " F i l e S i z e="37888
" LogFi le=" . . . \ PyBox−Log_20110425−222852.xml" MD5=" . . . " SHA1=" . . . "
Time=" 25 .04 .2011 22 : 2 8 : 5 2 ">

3 <c a l l t r e e>
4 <proce s s f i l ename="C:\TestApp\PyBox−Tester . exe " index="1" pid="2824"

s t a r t t ime="0">
5 <proce s s f i l ename="C:\TestApp\ProcessDummy . exe" index="2" pid="672

" s t a r t t ime="26"/>
6 <proce s s f i l ename="C:\TestApp\WinSock−Server . exe " index="3" pid="

3264" s t a r t t ime="1057"/>
7 <proce s s f i l ename="C:\TestApp\WinSock−Cl i en t . exe " index="4" pid="

2776" s t a r t t ime="2089"/>
8 </ proce s s>
9 </ c a l l t r e e>

Listing 5.1: Monitored call tree

88

5.2. Analyses of Executable Samples

First of all, we take a look at the root tag <PyBox-Analysis> in Listing 5.1. It contains
the information about log file and the monitored main executable such as its file path,
file size, and hash values. Below this tag, the call tree lists all processes that have
been created during the analysis process. It provides information about which process
has called the other and in what order the processes have been called. Furthermore, it
specifies the time interval between injection of the hook library and process creation in
milliseconds. Listing 5.1 depicts the root tag and the call tree of the report documenting
the activities of the test application.

The call tree lists all created processes of the test environment as well as the correct or-
der that we have described above and depicted in Figure 5.1. At first, PyBox-Tester.exe
is executed creating the processes ProcessDummy.exe, WinSock-Server.exe, and finally
WinSock-Client.exe.

The monitored activities of each process are listed within the tag <processes> ...
</processes> below the call tree. We examine certain entries in order to check whether
or not the executed API calls have been detected.

10 <pro c e s s e s>
11 <proce s s Filename="C:\TestApp\PyBox−Tester . exe " Index="1" PID="2824"

Start t ime="0">
12 <f i l e s y s t em_se c t i on>
13 <NtCreateFi le Crea t eD i spo s i t i on="0x00000005" CreateOptions="0

x00000060" Des i redAccess="0xc0110080" Executed="YES"
F i l eA t t r i bu t e s="0x00000080" Object="C:\TestApp\CreateFileW .
txt " ReturnValue="0x00000000" ShareAccess="0x00000000"
Timestamp="4"/>

14 <NtWriteFi le Executed="YES" Length="10" Object="TestApp\
CreateFileW . txt " ReturnValue="0x00000000" Timestamp="5"/>

15 <NtReadFile Executed="YES" Length="10" Object="TestApp\
CreateFileW . txt " ReturnValue="0xc0000011" Timestamp="5"/>

16 <NtOpenFile Des i redAccess="0x00010080" Executed="YES" Object="C:
\TestApp\CreateFileW . txt " OpenOptions="0x00204040"
ReturnValue="0x00000000" ShareAccess="0x00000007" Timestamp=
"6"/>

Listing 5.2: Monitored file management API functions

In Listing 5.2, all entries concerning the called file management API functions can be
found. Line 13 reveals that the file CreateFileW.txt has been created. Subsequently, 10
bytes are written to the created file (line 14). Afterwards 10 bytes are read (line 15) and
a value of 0xc0000011 is returned. This value represents the flag STATUS_END_OF_FILE
which means that the application could not read all 10 Bytes because it has reached
the end of the file. The last monitored function call concerning the observed file is
NtOpenFile in line 16. The file is opened using the flag DELETE (0x00010000), i.e. this
API function is executed in order to perform our Windows API DeleteFile call.

In Listing 5.3, the monitored API call entries of the registry test module are depicted.
They are listed in the registry section of the PyBox-Tester.exe process. PyBox reveals
that the test application has created two keys PyBox and PyBoxEx (lines 31, 32). More-
over, both keys are opened (lines 33, 34) and a value TestValueEx is assigned to the

89

Chapter 5. Evaluation

key PyBoxEx (line 35). Finally, an entry NtQueryValueKey (line 36) displays that the
assigned value has been queried as well.

30 <reg i s t r y_s e c t i on>
31 <NtCreateKey CreateOptions="0x00000000" Des i redAccess="

MAXIMUM_ALLOWED" Executed="YES" Object="REGISTRY\MACHINE\
SOFTWARE\PyBox" ReturnValue="0x00000000" Timestamp="9"/>

32 <NtCreateKey CreateOptions="0x00000000" Des i redAccess="0
x00020006" Executed="YES" Object="REGISTRY\MACHINE\SOFTWARE\
PyBoxEx" ReturnValue="0x00000000" Timestamp="9"/>

33 <NtOpenKey Des i redAccess="MAXIMUM_ALLOWED" Executed="YES" Object
="REGISTRY\MACHINE\SOFTWARE\PyBox" ReturnValue="0x00000000"
Timestamp="10"/>

34 <NtOpenKey Des i redAccess="0 x000 f003 f " Executed="YES" Object="
REGISTRY\MACHINE\SOFTWARE\PyBoxEx" ReturnValue="0x00000000"
Timestamp="10"/>

35 <NtSetValueKey Des i redAccess="0x00000000" Executed="YES" Object=
"REGISTRY\MACHINE\SOFTWARE\PyBoxEx" ReturnValue="0x00000000"
Timestamp="10" ValueName="TestValueEx" ValueType="4"/>

36 <NtQueryValueKey Des i redAccess="0x00000000" Executed="YES"
KeyValueInformationClass="2" Length="144" Object="REGISTRY\
MACHINE\SOFTWARE\PyBoxEx" ReturnValue="0x00000000" Timestamp
="11" ValueName="TestValueEx"/>

Listing 5.3: Monitored registry API functions

The report entries associated with the test module calling all process-related API
functions are listed in the XML file’s registry section of the PyBox-Tester.exe process
tag and are depicted in Listing 5.4. PyBox reveals these function calls as well: It has
been monitored that the function NtCreateProcessEx (line 138) has been called in order
to create the process for DummyProcess.exe. The new process has the identification
number 672. Remembering this number, we are able to determine the activities which
are performed on this process. In the lines 144 and 145, it is documented that the
process has been opened and a remote thread has been created via NtCreateThread.
The attribute CreateSuspended tells us that PyBox-Tester.exe has created a thread
in suspended mode which means that the thread is created, but not yet executed. In the
Window XP operating system all threads are created using this flag in order to report
the created thread to the Windows subsystem before its execution. Subsequently, the
termination of the created process via NtTerminateProcess is reported. Furthermore,
the creation of the two processes WinSock-Server.exe (line 149) and WinSock.exe (line
154) is displayed before the process terminates (line 157).

137 <proce s s_sec t i on>
138 <NtCreateProcessEx Des i redAccess="0 x 0 0 1 f 0 f f f " Executed="YES"

NewPID="672" Object="C:\TestApp\ProcessDummy . exe" ParentPID=
"2824" ReturnValue="0x00000000" Timestamp="26"/>

139 . . .

144 <NtOpenProcess Des i redAccess="GROUP_WRITE_ACCOUNT" Executed="
YES" Object="" ObjectPID="672" ParentPID="2824" ReturnValue=
"0x00000000" Timestamp="1024"/>

145 <NtCreateThread CreateSuspended="0x00000001" Des i redAccess="0

90

5.2. Analyses of Executable Samples

x001 f 0 3 f f " Executed="YES" Object="" ObjectPID="672"
ObjectTID="2440" ReturnValue="0x00000000" Timestamp="1029"/>

146 <NtTerminateProcess Executed="YES" ExitStatus="0" ObjectPID="
672" ParentPID="2824" ReturnValue="0x00000000" Timestamp="
1031"/>

147 . . .

149 <NtCreateProcessEx Des i redAccess="0 x 0 0 1 f 0 f f f " Executed="YES"
NewPID="3264" Object="C:\TestApp\WinSock−Server . exe "
ParentPID="2824" ReturnValue="0x00000000" Timestamp="1057"/>

150 . . .

154 <NtCreateProcessEx Des i redAccess="0 x 0 0 1 f 0 f f f " Executed="YES"
NewPID="2776" Object="C:\TestApp\WinSock−Cl i en t . exe "
ParentPID="2824" ReturnValue="0x00000000" Timestamp="2089"/>

155 . . .

157 <NtTerminateProcess Executed="YES" ExitStatus="0" ObjectPID="0"
ParentPID="2824" ReturnValue="0x00000000" Timestamp="3112"/

>
158 </ proce s s_sec t i on>

Listing 5.4: Monitored process API functions

Finally, we have to verify PyBox’s monitoring abilities regarding the usage of socket
API functions. As mentioned before, there are two processes, WinSock-Server.exe and
WinSock.exe, which communicate with each other using three communication channels.
In Listing 5.4, we have noticed that both processes are created. Since both processes
have been created by the monitored process PyBox-Tester.exe, they have been mon-
itored and are listed in the report as well. Therefore, we also find two tags inside
<processes> ... </processes> representing them. The report entries concerning
the called socket API functions can be found in their network sections. At first, we
examine the WinSock-Server.exe which is listed in Listing 5.5. Subsequently, we also
consider the report’s entries concerning the WinSock-Client.exe process depicted in
Listing 5.6.

The process WinSock-Server.exe is a small application opening three different sockets
and waiting for incoming connections. The first monitored activity occurs as soon as a
the client is connected: The process receives a message via recv (line 578) and sends
a message in response via send (line 581). This is what we have covered in the test
module for socket API calls of the test environment. The second communication channel
captured in the report is the usage of the API call WSASend (line 587): The process
listens on a socket and waits until a client has connected. As soon as the connection is
established, it sends the depicted test message: “Test buffer sent via WSASend.” (line
588). Finally, the report shows that some data is received via the APIfunction recvfrom
as well. With this logged event, we can tell that the test environment has successfully
transmitted messages using three different methods of communication via sockets and
all corresponding events have been successfully captured by PyBox.

91

Chapter 5. Evaluation

577 <network_sect ion>
578 <recv BufferLength="30" Executed="YES" Flags="0x00000000"

ReturnValue="26" Socket="280" Timestamp="2146">
579 Test bu f f e r sent v ia send .
580 </ recv>
581 <send BufferLength="26" Executed="YES" Flags="0x00000000"

ReturnValue="26" Socket="280" Timestamp="2147">
582 Test bu f f e r sent v ia send .
583 </send>
584 <recv BufferLength="30" Executed="YES" Flags="0x00000000"

ReturnValue="0" Socket="280" Timestamp="2147">
585 Test bu f f e r sent v ia send .
586 </ recv>
587 <WSASend BytesSent="4096" Executed="YES" Flags="0x00000000"

ReturnValue="0" Socket="284" Timestamp="2699">
588 Test bu f f e r sent v ia WSASend .
589 </WSASend>
590 <recvfrom AddressFamily="2" BufferLength="1024" Executed="YES"

Flags="0x00000000" ReturnValue="1024" Socket="288"
SocketAddress=" 1 2 7 . 0 . 0 . 1 " SocketPort="5637" Timestamp="3255"
>

591 Test bu f f e r sent v ia sendto .
592 </ recvfrom>
593 </network_section>

Listing 5.5: Monitored network API functions of WinSock-Server.exe

The counterpart to the server process is the client process. The two processes com-
municate with each other in order to transmit data. The client’s activities are listed in
the process’s network section in the XML report. This section is displayed in Listing
5.6. As displayed in the other sections of the XML report and described above, we
can also derive the network-related activites of WinSock-Client.exe from the PyBox
report: The client establishes two connections using the connect API call (lines 1275,
1285) in order to connect to the respective server process and to transmit data via send
and recv (lines 1276 - 1284) as well as to receive data via WSARecv. Additionally, data
is sent to the waiting recvfrom function in the server process using the sendto API call
(line 1292).

All log entries contain attributes and content providing information about the sent
data. The first 255 bytes of the messages transmitted between the client and the server
are displayed between the tags representing the corresponding API call. Furhermore,
the single entries provide additional information about the transmitted data such as the
length of the buffer, the used socket, as well as certain flags which have been specified.
Thus, we can for example see that all processes connect to the socket address “127.0.0.1”
which is the IP address of the local system.

1274 <network_sect ion>
1275 <connect AddressFamily="2" Executed="YES" ReturnValue="0"

Socket="308" SocketAddress=" 1 2 7 . 0 . 0 . 1 " SocketPort="34665"
Timestamp="1100"/>

1276 <send BufferLength="26" Executed="YES" Flags="0x00000000"
ReturnValue="26" Socket="308" Timestamp="1101">

92

5.2. Analyses of Executable Samples

1277 Test bu f f e r sent v ia send .
1278 </send>
1279 <recv BufferLength="30" Executed="YES" Flags="0x00000000"

ReturnValue="26" Socket="308" Timestamp="1104">
1280 Test bu f f e r sent v ia send .
1281 </ recv>
1282 <recv BufferLength="30" Executed="YES" Flags="0x00000000"

ReturnValue="0" Socket="308" Timestamp="1104">
1283 Test bu f f e r sent v ia send .
1284 </ recv>
1285 <connect AddressFamily="2" Executed="YES" ReturnValue="0"

Socket="312" SocketAddress=" 1 2 7 . 0 . 0 . 1 " SocketPort="34665"
Timestamp="1652"/>

1286 <WSARecv BytesReceived="3435973836" Executed="YES" FlagsIn="0
x00000000" FlagsOut="0x00000000" ReturnValue="4294967295"
Socket="312" Timestamp="1652"> </WSARecv>

1287 <WSARecv BytesReceived="4096" Executed="YES" FlagsIn="0
x00000000" FlagsOut="0x00000000" ReturnValue="4294967295"
Socket="312" Timestamp="1653">

1288 Test bu f f e r sent v ia WSASend .
1289 </WSARecv>
1290 <sendto AddressFamily="2" BufferLength="1024" Executed="YES"

Flags="0x00000000" ReturnValue="1024" Socket="304"
SocketAddress=" 1 2 7 . 0 . 0 . 1 " SocketPort="34665" Timestamp="2209
">

1291 Test bu f f e r sent v ia sendto .
1292 </ sendto>
1293 </network_sect ion>

Listing 5.6: Monitored network API functions of WinSock-Client.exe

Although we have only examined a minor part of the entire XML report, we can
conclude, that we have developed a test environment which successfully executes all
required API functions. Furthermore, we have verified that PyBox has monitored and
logged all required API calls and written the associated information to the XML report.

5.2.2. Analyses of Malware Samples

So far, we have only tested PyBox on the test environment in order to verify the required
functionality. The actual purpose of PyBox, however, is to monitor and reveal the
behavior of malware samples. Therefore, we have to test it on actual malicious binaries
as well in order to complete the evaluation of PyBox. In this section, we present two
different malware samples, evaluate the corresponding reports produced by PyBox, and
try to derive the malware’s behavior.

Malware Sample: Backdoor.Knocker

The first malware sample analyzed in this section can be categorized as back door, trojan
horse, or bot. Information about this threat is provided by VirusTotal [Vir], Prevx [Pre],
and ThreatExpert [Thr]. ThreatExpert refers to it as Backdoor.Knocker. Its purpose

93

Chapter 5. Evaluation

is to frequently send information about the infected system to its home server. This
information may include the operating system version, its IP address, and open ports.

In order to draw conclusions about the malware’s behavior, we run a PyBox analysis
as described in Section 5.1. The corresponding report, again, is far too extensive to
depict all monitored activities in this thesis. Therefore, we focus on certain parts which
indicate malicious behavior. We divide the report evaluation into different analysis parts
according to the four different categories of monitored API calls: file managent, registry,
process, and network. The entire report can be found on the CD-ROM attached to this
diploma thesis. It should be noted, that the analysis process has terminated the target
process after the time-out interval of two minutes.

30 <NtCreateFi le Crea t eD i spo s i t i on="0x00000005" CreateOptions="0x00000060"
Des i redAccess="0x10100080" Executed="YES" F i l eA t t r i bu t e s="0

x00000000" Object="C:\WINDOWS\system32\Hl7fP2 . syz " ReturnValue="0
x00000000" ShareAccess="0x00000003" Timestamp="572"/>

31 <NtWriteFi le Executed="YES" Length="5856" Object="WINDOWS\system32\
Hl7fP2 . syz " ReturnValue="0x00000000" Timestamp="575"/>

Listing 5.7: Malware sample 1 - file management section - extract 1

The report’s call tree shows only one process, that is the binary executed by the
analysis tool. Therefore, we only have to focus on this process’s activites. Its file section
entries reveal that many system files and devices are opened, created, and read. The
first entry that we would like to point out is the creation of a file Hl7fP2.syz in line 30.
The file is created in the Windows system folder C:\WINDOWS\system32. The next entry
documents the next operation on this file. The process writes content of 5862 bytes to
this file. Both entries are depicted in Listing 5.7. In what follows, the file is opened
several times and put to further use. Both the creation of a file in the Windows system
folder and the odd file name are aspects which indicate malicious behavior. The report
of a second analysis run, that can also be found on the attached CD-ROM, reveals that
another file name has been used. This tells us that the process dynamically generates the
file name, probably due to the fact that it tries to prevent the file from being detected.

227 <NtCreateFi le Crea t eD i spo s i t i on="0x00000005" CreateOptions="0x00000064"
Des i redAccess="0x40110080" Executed="YES" F i l eA t t r i bu t e s="0

x00000020" Object="C:\WINDOWS\system32\ c s s r s s . exe " ReturnValue="0
x00000000" ShareAccess="0x00000000" Timestamp="3115"/>

228 <NtWriteFi le Executed="YES" Length="20928" Object="WINDOWS\system32\
c s s r s s . exe " ReturnValue="0x00000000" Timestamp="3116"/>

Listing 5.8: Malware sample 1 - file management section - extract 2

In line 227, the report documents that the target process has created another file in
the Windows system folder and written data to it. This time, the file has been named
cssrss.exe. These entries also indicate malicious behavior as the file name is very
similar to the file name csrss.exe. The latter is the executable of the Client Server
Run-Time Subsystem (CSRSS) which is an important part of the Windows operating
system.

94

5.2. Analyses of Executable Samples

1211 <NtOpenKey Des i redAccess="0x00000002" Executed="YES" Object="REGISTRY\
MACHINE\SYSTEM\Contro lSet001 \ S e r v i c e s \ SharedAccess \Parameters \
F i r ewa l lPo l i c y \ StandardPro f i l e " ReturnValue="0x00000000" Timestamp="
3121"/>

1212 <NtSetValueKey Des i redAccess="0x00000000" Executed="YES" Object="
REGISTRY\MACHINE\SYSTEM\Contro lSet001 \ S e r v i c e s \ SharedAccess \
Parameters \ F i r ewa l lPo l i c y \ StandardPro f i l e " ReturnValue="0x00000000"
Timestamp="3121" ValueName="EnableF i rewa l l " ValueType="4"/>

1213 <NtOpenKey Des i redAccess="0x00000002" Executed="YES" Object="REGISTRY\
MACHINE\SYSTEM\Contro lSet001 \ S e r v i c e s \ SharedAccess \Parameters \
F i r ewa l lPo l i c y \ StandardPro f i l e \Author i zedAppl i cat ions \ L i s t "
ReturnValue="0x00000000" Timestamp="3121"/>

1214 <NtSetValueKey Des i redAccess="0x00000000" Executed="YES" Object="
REGISTRY\MACHINE\SYSTEM\Contro lSet001 \ S e r v i c e s \ SharedAccess \
Parameters \ F i r ewa l lPo l i c y \ StandardPro f i l e \Author i zedAppl i cat ions \
L i s t " ReturnValue="0x00000000" Timestamp="3122" ValueName="binary "
ValueType="1"/>

Listing 5.9: Malware sample 1 - registry section

The report’s registry section also contains many entries which have to considered.
The process queries information about system and network services as well as about the
operating system such as the system’s version. One particularly noticeable part of the
registry section is depicted in Listing 5.9. The report reveals that the target process uses
registry API functions to change the value EnableFirewall (line 1212) and furthermore
to add its executable file to the list of authorized applications (line 1214). These entries
are clear evidence that the application tries to disable security mechanisms and thus
performs malicious behavior unwanted by the infected system’s user.

1709 <NtTerminateProcess Executed="YES" ExitStatus="30343168" ObjectPID="
3435973836" ParentPID="3220" ReturnValue="0x00000000" Timestamp="
3117"/>

1710 <NtTerminateProcess Executed="YES" ExitStatus="4227304" ObjectPID="
3435973836" ParentPID="3220" ReturnValue="0x00000000" Timestamp="
3117"/>

1711 <NtTerminateProcess Executed="YES" ExitStatus="3220" ObjectPID="
3435973836" ParentPID="3220" ReturnValue="0x00000000" Timestamp="
3118"/>

1712 <NtTerminateProcess Executed="YES" ExitStatus="30408767" ObjectPID="
3435973836" ParentPID="3220" ReturnValue="0x00000000" Timestamp="
3118"/>

Listing 5.10: Malware sample 1 - process section - Extract 3

Additionally, the report’s process section lists unusual behavior, too. As documented
in Listing 5.10, the process terminates four different processes. Although the monitored
binary seems to query many pieces of information concerning sockets and other network-
ing services the network section does not reveal any occurrences of network activity. A
possible explanation for this aspect is that the network connection of the VM used for
the analysis runs is disabled. The malware sample may have noticed this aspect and
therefore not tried to connect to a remote server.

95

Chapter 5. Evaluation

Malware Sample: Fake Spoolsv.exe

The second malware sample analyzed in this diploma thesis can also be categorized as
trojan horse and backdoor. Information regarding this malware is provided by VirusTo-
tal. Symantec [Syma] refers to the threat as Backdoor.Trojan. This type tries to provide
remote access to the infected machine enabling an attacker to send commands and thus
misuse the compromised system.

In order to provide more detailed information about the activities of this malware
sample, we run a PyBox analysis. Since the threat’s execution enforces a system reboot
after a time-interval of 60 seconds, we have to reduce the time-out interval. Hence, we
use a time-interval of 20 seconds for this analysis run.

In what follows, we examine various entries of the resulting XML report. As is the
case with the first monitored threat, the report is too extensive to be depicted in this
thesis. Therefore, we draw the reader’s attention to certain particularly noticeable entries
that allow us to draw conclusions about the examination object’s behavior and indicate
malicious code.

3 <c a l l t r e e>
4 <proce s s f i l ename="binary " index="1" pid="3316" s t a r t t ime="0">
5 <proce s s f i l ename="C:\WINDOWS\ spoo l sv . exe " index="2" pid="3336"

s t a r t t ime="1636"/>
6 </ proce s s>
7 </ c a l l t r e e>

Listing 5.11: Malware sample 2 - call tree

The first section to be considered is the report’s call tree that is outlined in Listing 5.11.
We notice that the analyzed binary executes another process spoolsv.exe (line 5). The
file spoolsv.exe is known as the Spooler Subsystem of Windows and is responsible for
print and fax jobs. The actual file provided by Windows is located in the system folder
C:\WINDOWS\System32. The executed file, however, is located in the folder C:\WINDOWS.
This is first evidence for malicious behavior of the target process. This aspect draws
our attention to the process section of the process associated with the target executable
binary, which is depicted in Listing 5.12.

620 <NtOpenProcess Des i redAccess="0 x 0 0 1 f 0 f f f " Executed="YES" Object="C:\
WINDOWS\system32\ spoo l sv . exe " ObjectPID="1384" ParentPID="3316"
ReturnValue="0x00000000" Timestamp="85"/>

621 <NtTerminateProcess Executed="YES" ExitStatus="0" ObjectPID="1384"
ParentPID="3316" ReturnValue="0x00000000" Timestamp="87"/>

622 . . .

631 <NtCreateProcessEx Des i redAccess="0 x 0 0 1 f 0 f f f " Executed="YES" NewPID="
3336" Object="C:\WINDOWS\ spoo l sv . exe " ParentPID="3316" ReturnValue="
0x00000000" Timestamp="1636"/>

Listing 5.12: Malware sample 2 - process section of binary

96

5.2. Analyses of Executable Samples

We can derive from this extract that the process binary terminates the original pro-
cess spoolsv.exe (lines 620, 621) and creates a new process (line 631) using another
executable file with the same file name located in the C:\WINDOWS folder. If we consider
the timestamps of the mentioned entries we realize a significant time span of 1549 mil-
liseconds between these events indicating that a lot of activity has been performed in
between their function calls. Therefore, we proceed by taking a closer look at the target
process’s file management activities.

346 <NtCreateFi le Crea t eD i spo s i t i on="0x00000005" CreateOptions="0x00000064"
Des i redAccess="0x40110080" Executed="YES" F i l eA t t r i bu t e s="0

x00000020" Object="C:\WINDOWS\ spoo l sv . exe " ReturnValue="0x00000000"
ShareAccess="0x00000000" Timestamp="1585"/>

347 <NtReadFile Executed="YES" Length="65536" Object="PyBox\Target
\002049463441289680 a35c595686d8784cbd0862 −268496\ binary " ReturnValue
="0x00000000" Timestamp="1589"/>

348 <NtWriteFi le Executed="YES" Length="65536" Object="WINDOWS\ spoo l sv . exe "
ReturnValue="0x00000000" Timestamp="1591"/>

349 <NtReadFile Executed="YES" Length="65536" Object="PyBox\Target
\002049463441289680 a35c595686d8784cbd0862 −268496\ binary " ReturnValue
="0x00000000" Timestamp="1592"/>

350 <NtWriteFi le Executed="YES" Length="65536" Object="WINDOWS\ spoo l sv . exe "
ReturnValue="0x00000000" Timestamp="1594"/>

351 <NtReadFile Executed="YES" Length="65536" Object="PyBox\Target
\002049463441289680 a35c595686d8784cbd0862 −268496\ binary " ReturnValue
="0x00000000" Timestamp="1595"/>

352 <NtWriteFi le Executed="YES" Length="65536" Object="WINDOWS\ spoo l sv . exe "
ReturnValue="0x00000000" Timestamp="1596"/>

353 . . .

Listing 5.13: Malware sample 2 - file management section of binary

In Listing 5.13, the report reveals that the process creates another file spoolsv.exe
(line 346). The flag CreatePosition is set to 0x5, which represents the creation option
FILE_OVERWRITE_IF, i.e. the file is overwritten and if it does not exist it is created.
Subsequently, it reads data from its executable file and writes them to the created file.
Thus, the process tries to hide the activity executed by the new spoolsv.exe process
by pretending to be a system service.

Akin to this part of the report, it reveals also that four further files are created
or overwritten in the Windows system folder showing the same activity pattern as is
depicted in Listing 5.13: explorer.exe, vcl32.exe, msbot32.exe and concp32.exe.

Knowing that the created spoolsv.exe process is designed to perform hidden func-
tionality, we also have to consider its activity. The report’s entries regarding this process
reveal much registry activity requesting system as well as socket information. For in-
stance, a series of calls queries various catalog entries of the protocol catalog of Windows
Sockets (line 109 ff.). Additionally, its file section reveals write access and read access to
lsass (lines 34, 35). The latter is depicted in Listing 5.14. The Local Security Authority
Subsystem Service (LSASS) is an important system service required for the authentifi-
cation of systems in networks. It has also been a popular target of attacks (cf. Microsoft
[lsa04]). In particular, the worm Sasser [Symb] exploited such vulnerabilities in the past.

97

Chapter 5. Evaluation

34 <NtWriteFi le Executed="YES" Length="72" Object=" l s a s s " ReturnValue="0
x00000000" Timestamp="2038"/>

35 <NtReadFile Executed="YES" Length="1024" Object=" l s a s s " ReturnValue="0
x00000000" Timestamp="2038"/>

Listing 5.14: Malware sample 2 - file management section of binary

Although we have focussed on small extracts of the analysis process’s report, the mon-
itored activity described in this section clearly indicate, that the executable is designed
for malicious purposes. For more details on the monitored behavior, please refer to the
entire XML report that can be found on the CD-ROM attached to this diploma thesis.

5.3. Summary

In this chapter, we have evaluated the functionality and abilities of PyBox. In Section
5.1, we have demonstrated the analysis process procedure applied in this chapter. Sub-
sequently, we have detailed the implementation of a test environment that served as test
target process 5.2.1. Thus, we have been able to verify PyBox’s functionality. In Section
5.2.2, we have tested PyBox on two different malware samples and evaluated various
sections of the output reports in order to examine the activity that PyBox is able to
provide information about.

As a result, we can conclude that the created analysis environment very well entails
the ability to monitor the executed API calls and report them in a comprehensible
way. Furthermore, we have been able to extract valuable information from the analysis
reports concerning the two analyzed malware samples and to derive behavior indicating
malicious activity. Therefore, we can conclude that PyBox represents a fully functional
analysis environment that can be applied to determine the activity of malware samples.

98

Chapter 6.

Conclusion and Future Work

The goal of this thesis has been to describe the implementation of a sandbox environment
for the analysis of malware samples. In this chapter, we conclude this thesis and present
our major findings. In Section 6.1, we provide a summary reviewing all contents of this
thesis in order to provide an overview of what we have learned. Limitations regarding
the described implementation of PyBox are denoted in Section 6.2. In Section 6.3, we
outline several possibilities of how the work described in this thesis can be improved and
extended. In Section 6.4, we discuss our overall findings.

6.1. Summary

During this thesis, we have focused on the development of a sandbox solution, which is
used to analyze executables such as malware samples. At first, we introduced several
fundamentals. We outlined different common malware types and described ways to de-
tect them. Then, we provided basic information about the Windows operating system,
which was required in order to implement the PyBox analysis framework. Finally, we
described the concepts of API hooking and DLL injection as well as various implemen-
tation methods. Additionally, we discussed related work, in particular, CWSandbox and
Joe Sandbox as well as a concurrent project which pursues the same goal as this thesis.

After introducing these prerequisites, we detailed the implementation of our sandbox
solution. We divided the implementation into three parts: the hook library, the analysis
tool, and the means of communication between them. We first explained the realization
of the hook library which incorporates the hooking and monitoring functionality while
focussing on the realization of the hooking functionality. Then, we studied the main
part of the implementation, the analysis tool, which provides means of user interaction.
In particular, we learned how the configuration files have to be configured and how the
log information is processed and written to a report.

In addition to the implementation of PyBox, we also discussed the possibilities of port-
ing the analysis environment to a Linux operating system. For this purpose, we outlined
some fundamentals about the Linux operating system and its different manifestations.
Furthermore, we described various techniques of function hooking in Linux. We also
covered a possibility to implement library injection in Linux by applying the injectso
tool and explained how the executable behavior can be monitored. As an alternative
to implementing a hook library, we presented powerful tools, which allow one to trace

99

Chapter 6. Conclusion and Future Work

system calls and, thus, represent another possibility for the analysis of the behavior of
an executable during runtime.

6.2. Limitations

In Chapter 5, we have shown that the created analysis environment works well and pro-
duces reports which can be applied to derive malware behavior. However, the described
sandbox implementation is not a complete and perfect solution. It also entails some
limitations that are described in the following.

The first limitation is associated with the hook library’s focus on native API functions.
As we have described in Chapter 3, we primarily hook native API functions instead
of Windows API functions. The advantage is that we can also monitor the activity
of malware utilizing the native API. The disadvantage is that the different Windows
versions can use very different native API functions in order to accomplish the same
purpose. For instance, the native API used to create a new user mode process varies
from system to system: We have to use NtCreateProcess in In Windows NT and 2000,
NtCreateProcessEx in Windows XP and 2003, and NtCreateUserProcess in Windows
Vista and 7, while the corresponding Windows API CreateProcess can be utilized
throughout all Windows versions. In order to provide compatibility with all different
Windows versions, we have to provide callback implementations for each one of them.
Thus far, PyBox is designed to be used in Windows XP. In order to offer compatibility
with other versions the functionality of the hook library has to be extended.

The second limitation of the described implementation is a problem that occurs when
we try to use the applied monitoring methods for the analysis of certain GUI applica-
tions such as notepad.exe. In such a scenario, the initiated target process immediately
terminates after the injection of the hook library. Debugging of this incident reveals
that these processes terminate with the Windows error message CLASS_NOT_FOUND. The
reason for this message is that the initialization process of these GUI applications re-
quires the existence of certain Windows classes. Since we create all monitored target
processes in suspended mode in order to install the hook library before the program’s
execution, this initialization process is not started until the hook library has terminated
its installation process. However, during the termination of the latter, the hook library
checks whether or not there are any other running threads. As the hook library is the
only running thread, the termination sequence deletes all Windows classes. Therefore,
when the suspended main thread is resumed it cannot create the application’s GUI due
to the lack of the deleted classes. Therefore, PyBox cannot analyze applications that
require the existence of these classes. However, malware samples usually do not use a
GUI. Instead, they prefer to hide their presence. Therefore, this issue usually does not
influence the functionality of PyBox.

Another point of criticism that might be established is that the developed solution
described in this thesis is rather static and not easy to extend. In order to add further
hook functionality, we have to change the code of the hook library by adding additional
callback and trampoline functions and then by recompile it.

100

6.3. Future Work

6.3. Future Work

As we have pointed out in the previous section, PyBox still has some limitations which
can be addressed by future work. Various possibilities of extending and improving its
functionality exist. As in what follows, we outline a few such approaches, which are
beyond the scope of this thesis.

An approach for extending the functionality of PyBox is to add further hooks to the
analysis framework. For this purpose, additional callback and trampoline functions have
to be created as well as interpreters, which convert the log fields to an appropriate report
format. Consequently, the analysis would be able to monitor more activity types of the
observed executable and, thus, would provide more information.

Furthermore, the analysis tool’s report generation can be extended by mapping pro-
vided numeric values such as file creation flags to strings that describe the meaning of
the activated flags. Although this enhancement does not provide more information, it
would simplify the interpretation of the monitored activity and therefore precipitate the
analysis process.

A third approach is to implement a hook library for other operating systems such
as Android. In this case, the analysis environment could also analyze malware samples
that are designed for the mobile operating system and provide valuable information
concerning the detection of malware threats and the protection of mobile devices.

Another approach addressing the limitation regarding the flexibility of PyBox would
be to inject a Python interpreter into the remote process as described in the approach of
Leder and Plohman [LP10] mentioned in Chapter 2.4.2. Thus, the analysis framework
would be entirely Python-based. All callbacks would be handled by Python scripts. Since
Python uses an interpreter, these scripts would not have to be compiled and, therefore,
could easily be extended. This solution would offer more flexibility and extendability.
However, when analyzing executables during runtime, we have to consider the important
aspect of performance. For example, malware could notice the slow performance of
a process and, as a consequence, might behave differently. Therefore, applying this
approach requires us to ensure that the python scripts do not cause considerable drops
in performance.

Another approach regarding flexibility and extendibility is to incorporate the function-
ality of a C compiler. We could use a special Python script and create the hook library’s
code out of existing code fragments according to the configured settings specified by the
analyst. Thus, we would implement a modular solution that automatically compiles a
separate, customized hook library that can be injected into the remote process to be
monitored. In doing so, we would have a flexible solution, which also considers the
performance criterion.

101

Chapter 6. Conclusion and Future Work

6.4. Conclusion

Ultimately, we conclude that we have provided a secure environment in which executables
can be safely analyzed and that we have implemented an analysis framework that is able
to monitor the most important API calls of an observed executable together with all
relevant arguments. The resulting report provides detailed information in a categorized
and neatly arranged way which makes it easy to draw conclusions about the activities
of the monitored executable. In spite of several limitations, we have shown that the
analysis environment can very well be applied to reveal critical behavior of executables
in order to determine whether or not they represent a threat.

102

Appendix A.

Hooked API Functions

A.1. File System Interfaces

• NtCreateFile (ntdll.dll): Creates a new file or opens an existing file.

• NtOpenFile (ntdll.dll): Opens an existing file, directory, device, or volume.

• NtWriteFile (ntdll.dll): Writes data to an open file.

• NtReadFile (ntdll.dll): Reads data from an open file.

• NtDeleteFile (ntdll.dll): Deletes the specified file.

A.2. Registry Interfaces

• NtCreateKey (ntdll.dll): Creates a new registry key or opens an existing one.

• NtOpenKey (ntdll.dll): Opens an existing registry key.

• NtSetValueKey (ntdll.dll): Creates or replaces a registry key’s value entry.

• NtQueryValueKey (ntdll.dll): Returns a value entry for a registry key.

A.3. Process Interfaces

• NtCreateProcess (ntdll.dll): Creates a new process (Windows NT, 2000).

• NtCreateProcessEx (ntdll.dll): Creates a new process (Windows XP, 2003).

• NtOpenProcess (ntdll.dll): Opens an existing process.

• NtCreateThread (ntdll.dll): Creates a new thread for an existing process.

• NtTerminateProcess (ntdll.dll): Terminates an existing process.

103

Appendix A. Hooked API Functions

A.4. Network Interfaces

• connect (wsock32.dll): Establishes a connection to a specified socket.

• send (wsock32.dll): Sends data on a connected socket.

• recv (wsock32.dll): Receives data from a connected socket or a bound connec-
tionless socket.

• connect (ws2_32.dll): Establishes a connection to a specified socket.

• send (ws2_32.dll): Sends data on a connected socket.

• sendto (ws2_32.dll): Sends data to a specific destination.

• recv (ws2_32.dll): Receives data from a connected socket or a bound connec-
tionless socket.

• recvfrom (ws2_32.dll): Receives a datagram and stores the source address.

• WSAConnect (ws2_32.dll): Establishes a connection to another socket appli-
cation, exchanges connect data, and specifies required quality of service.

• WSASend (ws2_32.dll): Sends data on a connected socket.

• WSARecv (ws2_32.dll): Receives data from a connected socket or a bound
connectionless socket.

104

Bibliography

[Ayc06] John Aycock. Computer viruses and malware. Advances in information
security ; 22. Springer, New York, NY, 2006.

[BDG11] Pedro Bueno, Toralv Dirro, and Paula Greve. McAfee Threats Report:
Fourth Quarter 2010. McAfee Labs, 2011.
http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q4-2010.pdf.

[BMKK06] Ulrich Bayer, Andreas Moser, Christopher Kruegel, and Engin Kirda. Dy-
namic analysis of malicious code. Journal in Computer Virology, 2:67–77,
2006. 10.1007/s11416-006-0012-2.

[CE10] Francie Coulter and Kim Eichorn. A Good Decade for Cybercrime. McAfee
Inc., 2010.
http://www.mcafee.com/us/resources/reports/
rp-good-decade-for-cybercrime.pdf.

[Clo] Shaun Clowes. injectso.
http://www.securereality.com.au/main.html, Retrieved March 2011.

[CM10] Lúıs Miguel Pinho Cláudio Maia, Lúıs Nogueira. Evaluating android os
for embedded real-time systems. In Proceedings of the 6th International
Workshop on Operating Systems Platforms for Embedded Real-Time Appli-
cations, pages 63 – 70, Brussels, Belgium, July 2010.
http://webpages.cister.isep.ipp.pt/~smp/OSPERT2010-Proceedings.pdf,
Retrieved March 2011.

[Dam] Joe Damato. Function hooking for osx and linux.
http://timetobleed.com/slides-from-defcon-18-function-hooking-for-osx-and-linux/,
Retrieved March 2011.

[Eil05] Eldad Eilam. Reversing : Secrets of Reverse Engineering. John Wiley &
Sons, 2005.

[Eng07] Markus Engelberth. Apioskop: Api-hooking for intrusion detection. Mas-
ter’s thesis, RWTH Aachen, September 2007.
http://pi1.informatik.uni-mannheim.de/filepool/theses/
diplomarbeit-2007-engelberth.pdf.

[FAZ11] FAZ. Merkel: Cyberwar so gefährlich wie klassischer Krieg. Frankfurter
Allgemeine Zeitung GmbH, 2011.
http://www.faz.net/s/RubDDBDABB9457A437BAA85A49C26FB23A0/
Doc~EDB330E8D55AE42CFB27B83C8B9985309~ATpl~Ecommon~Scontent.html,

105

Bibliography

Retrieved February 2011.

[FMC10] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet Dossier.
Symantec, 2010.
http://www.symantec.com/content/en/us/enterprise/media/security_
response/whitepapers/w32_stuxnet_dossier.pdf.

[Gooa] Google. Android Developer Guide.
http://developer.android.com/guide/index.html, Retrieved March 2011.

[Goob] Google. Google basics.
http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=
70897&rd=1, Retrieved April 2011.

[HB08] Greg Hoglund and James Butler. Rootkits : Subverting the Windows Kernel.
Addison-Wesley, 6. print. edition, 2008.

[IEE] IEEE, The Open Group. POSIX Certified.
http://posixcertified.ieee.org/, Retrieved March 2011.

[Iva02] Ivo Ivanov. API hooking revealed. The Code Project, 2002.
http://www.codeproject.com/KB/system/hooksys.aspx.

[joe11] How does joe sandbox work?, 2011.
http://www.joesecurity.org/products.php?index=3, Retrieved May 2011.

[KMPP07] Jim Keniston, Ananth Mavinakayanahalli, Prasanna Panchamukhi, and
Vara Prasad. Ptrace, Utrace, Uprobes: Lightweight, Dynamic Tracing of
User Apps. IBM, 2007.

[Lov07] Robert Love. Linux system programming. OReilly, Beijing, 1. ed. edition,
2007.

[LP10] Felix Leder and Daniel Plohmann. Pybox - a python approach to sandbox-
ing. Master’s thesis, University of Bonn, 2010.
http://www.informatik.tu-cottbus.de/~spring2010/content/Spring5_01_
Abstract_Plohmann.pdf, Retrieved April 2011.

[lsa04] Microsoft security bulletin ms04-011, 2004.
http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx, Re-
trieved April 2011.

[MCA00] John McHugh, Alan Christie, and Julia Allen. Defending yourself: The role
of intrusion detection systems. IEEE Software, 17:42–51, 2000.

[Mic10] Microsoft. Microsoft Portable Executable and Common Object File Format
Specification, September 2010.
http://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx.

[Neta] Microsoft Developer Network. Calling convention - enumeration.
http://msdn.microsoft.com/us-us/library/system.runtime.
interopservices.callingconvention(v=VS.100).aspx, Retrieved March
2011.

106

Bibliography

[Netb] Microsoft Developer Network. Interprocess communications.
http://msdn.microsoft.com/en-us/library/aa365574(VS.85).aspx, Re-
trieved March 2011.

[Oll08] Gunter Ollmann. The evolution of commercial malware development kits
and colour-by-numbers custom malware. Computer Fraud & Security,
2008(9):4 – 7, 2008.
http://www.sciencedirect.com/science/article/B6VNT-4THKK2D-6/2/
d1b7419077cc7f05baad3076bbbbf146.

[Ope] The Open Group. The Single UNIX Specification, Version 3.
http://www.unix.org/version3/, Retrieved March 2011.

[Ora11a] Oracle. Oracle VM VirtualBox Manual, 2011.
http://download.virtualbox.org/virtualbox/UserManual.pdf, Retrieved
March 2011.

[Ora11b] Oracle. Oracle VM VirtualBox Programming Guide and Reference, 2011.
http://download.virtualbox.org/virtualbox/SDKRef.pdf, Retrieved March
2011.

[Pie94] Matt Pietrek. Peering Inside the PE: A Tour of the Win32 Portable Exe-
cutable File Format. Microsoft, March 1994.
http://msdn.microsoft.com/en-us/magazine/ms809762.aspx.

[Pie02a] Matt Pietrek. An In-Depth Look into the Win32 Portable Executable File
Format, Part 1. Microsoft, February 2002.
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx.

[Pie02b] Matt Pietrek. An In-Depth Look into the Win32 Portable Executable File
Format, Part 2. Microsoft, February 2002.

[Pre] Prevx. Cssrss.exe.
http://info.prevx.com/aboutprogramtext.asp?PX5=
3E583C9DC0F87CBE51EE002CBE6AE800476D2E00, Retrieved April 2011.

[Ric94] Jeffrey Richter. Load your 32-bit dll into another process’s address space
using injlib. Microsoft System Journal, 9(5), May 1994.

[Ric99] Jeffrey M. Richter. Programming Applications for Microsoft Windows. Mi-
crosoft Press, Redmond, WA, USA, 4th edition, 1999.

[Rob00] John Robbins. DeBugging Applications. Microsoft Press, Redmond, WA,
USA, 2000.

[Roz03] Danny Rozenblum. Understanding intrusion detection systems, 2003.
http://www.sans.org/reading_room/whitepapers/detection/
understanding-intrusion-detection-systems_337, Retrieved April 2011.

[Rus06] Mark Russinovich. Inside Native Applications. Microsoft TechNet, 2006.
http://technet.microsoft.com/en-us/sysinternals/bb897447.

[Sal10] David Salomon. Elements of computer security. Undergraduate topics in
computer science. Springer, London, 2010.

107

Bibliography

[Sei09] Justin Seitz. Gray Hat Python: Python Programming for Hackers and Re-
verse Engineers. No Starch Press, San Francisco, CA, USA, 2009.

[Som11] Ravi Somaiya. Hackers Shut Down Government Sites. The New York
Times, 2011.
http://www.nytimes.com/2011/02/03/world/middleeast/03hackers.html,
Retrieved February 2011.

[Syma] Symantec. Backdoor.trojan.
http://www.symantec.com/security_response/writeup.jsp?docid=
2001-062614-1754-99, Retrieved April 2011.

[Symb] Symantec. W32.sasser.worm.
http://www.symantec.com/security_response/writeup.jsp?docid=
2004-050116-1831-99, Retrieved April 2011.

[Thr] ThreatExpert. Threatexpert report: Trojan.flush.g, hacktool.rootkit,
downloader-biu.sys.
http://www.threatexpert.com/report.aspx?md5=
3cdb8dc27af1739121b1385f36c40ce9, Retrieved April 2011.

[TIS95] TIS Committee. Tool Interface Standard (TIS) Executable and Linking For-
mat (ELF) Specification, May 1995.
http://refspecs.freestandards.org/elf/elf.pdf, Retrieved March 2011.

[Tor02] Linus Torvalds. libc-alpha@sources.redhat.com mailing list, 2002.
http://ecos.sourceware.org/ml/libc-alpha/2002-01/msg00079.html.

[Vij10] Jaikumar Vijayan. WikiLeaks furor spawns rival DDoS battles. Computer-
world Inc., 2010.
http://www.computerworld.com/s/article/9200098/WikiLeaks_furor_
spawns_rival_DDoS_battles, Retrieved February 2011.

[Vir] VirusTotal. Virustotal report.
http://www.virustotal.com/file-scan/report.html?id=
9e9efb4321ffe9ce9483dc32c37323bada352e2dccc179fcf4ba66dba99fdebf-1233827064,
Retrieved April 2011.

[WHF07] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security and Privacy,
5:32–39, 2007.

[Whi11] Sophos Whitepaper. Security Threat Report 2011. Sophos Ltd., 2011.
https://secure.sophos.com/sophos/docs/eng/papers/
sophos-security-threat-report-2011-wpna.pdf.

[WJCN09] Zhi Wang, Xuxian Jiang, Weidong Cui, and Peng Ning. Countering kernel
rootkits with lightweight hook protection. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS ’09, pages 545–
554, New York, NY, USA, 2009. ACM.

108

