Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Smart Card Overview

- Small, plastic card with embedded integrated circuitry
- Same size as magnetic stripe card
- Portable, tamper-proof computer
- High level of security
- Physical and electronic characteristics defined by ISO 7816
- Contact or contactless communication
- No internal power source
Memory Cards vs. Microprocessor Cards

Memory Cards
- Most common type
- Contain only memory chip
- Optionally with protected memory access
- Main advantage: low cost
- Areas used: prepaid phone cards, etc.

Microprocessor Cards
- Contain a microprocessor
- Tamper-proof
- More expensive
- Areas used: financial cards, electronic purses, access control, etc.
Smart Card Memory Types

- **ROM**
 - Read Only Memory
 - Persistent and nonmutable

- **EEPROM**
 - Electrical Erasable Programmable Read Only Memory
 - Persistent and mutable

- **RAM**
 - Random Access Memory
 - Nonpersistent and mutable
Typical Smart Card Hardware

- 8-32 bit CPU
- 2 kB RAM
- 32-64 kB ROM
- 8-32 kB EEPROM
- External Power: 5V
- External Clock: 1-5 Mhz
- Half duplex serial I/O: 420 Kbps
- Crypto Coprocessor
Contact Cards vs. Contactless Cards

Contact Cards
- Most common type
- Require insertion into the reader
- Have 8 gold plated contacts
- Disadvantages: can get worn or damaged

Contactless Cards
- No insertion required
- Data/Power transfer via RF
- Used when only limited amount of data has to be exchanged
- Advantages: higher reliability, longer lifetime
- Disadvantages: more expensive, not suitable when large amount of data has to be transferred
- Usage: transport systems, access control
Smart Card Contact Points

- VCC – power supply
- RST – reset signal
- CLK – clock signal
- GND – reference voltage
- VPP – write voltage
- I/O – data transfer
Card Acceptance Device

Smart Card Readers

- Basic connector between PC and smart card
- No intelligence to process transmitted data
- Attached to serial, parallel, or USB port
- Optionally equipped with display and PIN-pad

Smart Card Terminals

- Small computer on its own
- Integrates smart card reader as one of its components
- Usually has also a small display, keypad and printer
Smart Card Communication Model

- Half-duplex, master-slave model
- Application Protocol Data Unit (APDU)
 - Top level protocol
 - Specified in ISO 7816-4
 - Defines two types of messages
 - Command APDU
 - Response APDU
- Transmission Protocol Data Unit (TPDU)
 - Specified in ISO 7813-3
 - Transmits APDUs
 - Two common variations:
 - T=0 (byte oriented)
 - T=1 (block oriented)
- Answer to Reset (ATR)
 - Byte sequence returned by the card to the reader on power-on
Command APDU

- CLA – Class of instruction
- INS – Instruction code
- P1, P1 – Parameters
- Lc – Length of the optional data
- Le – Expected length of data returned

<table>
<thead>
<tr>
<th>Header (required)</th>
<th>Body (optional)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLA</td>
<td>INS</td>
</tr>
</tbody>
</table>
Response APDU

- Optional data – sent only if Le was specified in Command APDU
- SW1, SW2 – two status word bytes containing status information

<table>
<thead>
<tr>
<th>Body (optional)</th>
<th>Trailer (required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Field</td>
<td>SW1</td>
</tr>
</tbody>
</table>
Smart Card System Development
Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Java Card Technology

- Subset of Java SE platform and Java programming language for smart cards
- Brings smart card application development into mainstream
- Enables multiple applications from different vendors to run on the same card
- 1 Billion cards deployed
- Three specifications (currently in version 2.2.1):
 - Java Card Virtual Machine specification
 - Java Card Runtime Environment specification
 - Java Card API specification
Java Card Technology

![Diagram of Java Card Technology]

- **Applets**
 - loyalty applet
 - wallet applet
 - authentication applet

- **JCRE**
 - framework classes (APIs)
 - industry-specific extensions
 - installer

- **system classes**
 - applet management
 - transaction management
 - I/O network communication
 - other services
 - Java Card virtual machine (bytecode interpreter)

- **smart card hardware and native system**

- native methods
Java Card Language Subset

Supported Java Features

- Small primitive data types: `boolean`, `byte`, `short`
- One-dimensional arrays
- Java packages, classes, interfaces, and exceptions
- Java object-oriented features: inheritance, virtual methods, overloading and dynamic object creation, access scope, and binding rules
- The `int` keyword and 32-bit integer data type support are optional

Unsupported Java Features

- Large primitive data types: `long`, `double`, `float`
- Characters and strings
- Multidimensional arrays
- Dynamic class loading
- Security manager
- Garbage collection and finalization
- Threads
- Object serialization
- Object cloning
Java Card Virtual Machine

Split Architecture

- Off-card converter
 - Checks compliance with Java Card VM specification
 - Performs security checks
 - Optimizes bytecode
 - Initializes static variables
 - Outputs Converted Applet (CAP) file

- On-card installer
 - Communicates with the off-card installation program
 - Writes the CAP file into smart card memory
 - Links it with other classes that are already on the card

- On-card interpreter
 - Executes code found in the CAP file
Applet Installation Process

1. Class files
2. Converter
3. CAP file
4. Off-card installation program
5. CAD
6. PC or workstation
7. Runtime environment
 - On-card installer
 - Interpreter
 - Smart card
Java Card API

- java.lang
- java.rmi
- java.io
- javacard.framework
- javacard.framework.service
- javacard.security
- javacardx.crypto
- javacardx.rmi
Java Card Runtime Environment

- Initialized at card initialization time
- Responsible for resource management, network communication, applet execution, on-card system and applet security enforcement
- Special features include:
 - Persistent and transient objects
 - Atomic operations and transactions
 - Applet firewall and the sharing mechanisms
Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Java Card Applet Development

Two different programming models

- **Message-passing model**
 - Designed around the APDU protocol
 - Set of APDU instructions is the interface between the applet and the host application

- **Java Card Remote Method Invocation**
 - Subset of Java SE RMI
 - Provides distributed object model mechanism on top of APDU-based messaging model
import javacard.framework.*;
...
public class MyApplet extends Applet {
 // Definitions of APDU-related
 // constants
 ...
 // Constructor
 MyApplet() {...}
 // Life-cycle methods
 install() {...}
 select() {...}
 deselect() {...}
 process() {...}
 // Private methods
 ...
}
Life-cycle of a Java Card Applet

- install
- register
- select
- process
- deselect
Applet Methods

- `install()`
 - Called by the card installer when it installs the a new applet on the card
 - Must instantiate the applet
 - Must call the `register()` method to notify the JCRE that a new applet has been instantiated
Applet Methods

- **select()**
 - Invoked by the JCRE to notify the applet that it has been selected for APDU processing

- **deselect()**
 - Invoked by the JCRE to notify the applet that has been deselected, before another applet gets selected
 - Used for session cleanup
 - Is not guaranteed to be called
Applet Methods

- `process()`
 - Every time an APDU is received and an applet is selected, JCRE invokes its `process` method, passing it the incoming APDU as parameter.
 - Applet then takes appropriate actions and generates and sends back response data or throws an exception.
 - JCRE sends back any data received from applet together with appropriate status word.
Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Summary

- Smart cards represent nowadays the most portable and secure computing platform available
- Java Card technology brings smart card application development into mainstream while preserving smart card security
References

 http://developers.sun.com/techtopics/mobility/javacard/articles/javacard1/

 http://developers.sun.com/techtopics/mobility/javacard/articles/javacard2/
Agenda

- Overview of Smart Cards
- Introduction to Java Card Technology
- Developing a Java Card Applet
- Summary
- Q&A
Q&A