
VMAttack: Deobfuscating Virtualization-Based Packed Binaries

Anatoli Kalysch
FAU Erlangen-Nuremberg

anatoli.kalysch@fau.de

Johannes Götzfried
FAU Erlangen-Nuremberg

johannes.goetzfried@cs.fau.de

Tilo Müller
FAU Erlangen-Nuremberg

tilo.mueller@cs.fau.de

ABSTRACT

We present VMAttack, a deobfuscation tool for virtualization-
packed binaries based on automated static and dynamic
analysis, which offers a simplified view of the disassembly.
VMAttack is implemented as a plug-in for IDA Pro and as
such, integrates seamlessly with manual reverse engineering.
The complexity of the disassembly view is notably reduced
by analyzing the inner working principles of the VM layer of
protected binaries. Using static analysis, complex bytecode
sequences of the VM are mapped to easy-to-read pseudo-
code instructions, based on an intermediate representation
specifically designed for stack-based virtual machines. Using
dynamic analysis, we identify structural components like the
interpreter loop and compress instruction sequences by filter-
ing out semantically redundant instructions of the execution
trace. The integrated result, which rates both static and
dynamic analysis’s results, provides the reverse engineer with
a deobfuscated disassembly that tolerates weaknesses of a
single analysis technique. VMAttack is currently limited to
stack-based virtual machines like VMProtect. We evaluated
VMAttack using binaries obfuscated with VMProtect and
achieved an average execution trace reduction of 89.86% for
the dynamic and 96.67% for the combined static and dynamic
analysis.

KEYWORDS

Deobfuscation, Virtualization-based Obfuscation, Dynamic
Analysis, Static Analysis, Reverse Engineering

ACM Reference format:

Anatoli Kalysch, Johannes Götzfried, and Tilo Müller. 2017.
VMAttack: Deobfuscating Virtualization-Based Packed Binaries.
In Proceedings of ARES ’17, Reggio Calabria, Italy, August 29-

September 01, 2017, 10 pages.

DOI: 10.1145/3098954.3098995

1 INTRODUCTION

Besides dynamic protection measures, like anti-debugging
and hook detection, static code obfuscation is the method

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ARES ’17, Reggio Calabria, Italy

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-5257-4/17/08. . . $15.00
DOI: 10.1145/3098954.3098995

of choice to increase the effort that a reverse engineer has
to invest to analyze an application. Amongst static code
obfuscation techniques, virtualization-based obfuscation has
proven to be a particular effective measure. It is used, for
example, by professional DRM solutions like the Blu-ray
BD+ system [1]. However, the same technique also got the
attention of malware authors [16, 20], motivating the demand
for unpackers that roll back virtualization-based obfuscation
in the AV industry.

Soon after most obfuscation approaches became public, au-
tomatic deobfuscation tools were proposed that could recover
the original functionality [8, 13, 18]. For virtualization-based
obfuscation, however, there is still a lack of reliable deob-
fuscation tools. Virtualization-based obfuscation works by
transforming the original functionality of a program to byte-
code for a randomly generated virtual machine. As the VM
and the bytecode language are generated randomly, an appli-
cation can easily be repackaged with a different signature by
just re-obfuscating it. Although the original functionality re-
mains unchanged, applications outwardly appear completely
different as the protection layer changes [15].

Also internally, virtualization-based obfuscation changes
the control flow in a way that known reverse engineering
techniques are rendered hard or impossible to apply [14].
Virtualization-packed binaries do not restore their original
code at any point in time during execution [9, 15]. Instead, a
VM interprets equivalent bytecode instructions leading to an
enormous increase in executed instructions, and causing the
original representation of a binary to vanish. Additionally,
commercial obfuscators like VMProtect [29] and Themida [17]
can introduce several layers of VMs, where outer VMs inter-
pret inner VMs, which in turn interpret the payload [10].

1.1 Our Contribution

Deobfuscation approaches for virtualization-packed binaries
have long been part of state-of-the-art research, for example,
including techniques based on static, dynamic, and concolic
execution analysis [14, 19, 30]. Nevertheless, up to today, a
universal deobfuscation approach for virtualization-packed
binaries has not yet been found. With the design of VMAt-
tack, we contribute to the evolution of deobfuscation tools
against VM-based obfuscation. Our implementation allows
for automatic and semi-automatic analysis, and provides
reverse engineers with a simplified view of the disassembly
by seamlessly integrating it as a plug-in into the IDA Pro
framework. In detail, our contributions are:

• The static analysis approach of VMAttack transforms
virtualized bytecode into pseudo-code instructions of

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Anatoli Kalysch, Johannes Götzfried, and Tilo Müller

an intermediate representation specifically targeting
stack-based VMs.

• VMAttack’s dynamic analysis approach records execu-
tion traces of packed binaries and optimizes those by
filtering out instructions belonging solely to the VM
interpreter logic

• We evaluated VMAttack using binaries obfuscated with
VMProtect [29]. We were able to fully recover the
functionality with the help of static analysis and could
reduce the execution trace by 89.86% on average with
the dynamic analysis alone. We achieved an average
instruction trace reduction of 96.67% for the combined
analysis approach.

• We developed VMAttack as an open source plug-in
for the disassembler IDA Pro. VMAttack has been
published under the MIT license and is freely available
at https://github.com/anatolikalysch/VMAttack.

1.2 Related Work

Traditional approaches for deobfuscation use either static [12,
22] or dynamic [19] analysis, or a combination of both [20],
but recently, also techniques based on symbolic and concolic
execution [5, 24, 30] became relevant, like Driller [28] and
Angr [25].

A straightforward approach is to deobfuscate the VM
interpreter, enabling reverse engineers to convert the VM’s
bytecode back into x86 assembly instructions by utilizing an
intermediate representation [22]. The reversal of the whole
interpreter, however, is not always necessary, as Guillot et
al. have shown [12] by an approach for reversing a VM and
using symbolic execution to simplify the instruction set into
a symbolic one. The downside of the approaches from Guillot
et al. and Rolles is the immense time consumption and lack
of automation.

Dynamic approaches execute the binary at least once and
use the resulting execution trace for analysis. For exam-
ple, the execution trace could be clustered into repeating
instructions. Raber [19] applies a post-clustering optimiza-
tion, but this optimization has to be steadily updated by the
reverse engineer to remain precise. Taint-tracking and sym-
bolic execution are popular techniques to either generate an
equivalent but simpler control flow graph [5, 30] or transform
the instructions of the trace into an IR and use clustering to
generate a mapping of the bytecode to IR instructions.

Taint analysis executes a program and observes which
computations are affected by predefined taint sources such
as user input. The approaches of Coogan et al. [5] and
Yadegari et al. [30] use taint tracking of predefined values
to draw conclusions about the inner workings of the binary.
Coogan et al. [5] reason that the interaction of the binary
with its environment in form of system calls is most impor-
tant and therefore taint system call values and trace them
back throughout the execution. Yadegari et al. [30] taint the
input and output values focusing on possible transformations

between input and output values. Based on these transfor-
mations, they determine which inputs might lead to differing
outputs from the virtual machine function.

Concolic solutions have their own drawbacks. Taint tracking-
based solution require an IR transformation of the binary
instructions and produce a computational overhead by design,
due to the tracking and simulation of memory operations. As
pointed out by Yadegari et al. and Coogan, a transformation
into an IR is required for the code optimizations [6, 30].

An issue of symbolic execution is the handling of path
explosions. Depending on the symbolic variables, several
additional paths need to be computed subsequently. This
results in an increased number of computations [30]. Hence,
our static and dynamic analysis approaches present a more
feasible fit for the task of deobfuscating VM-based packed bi-
naries, due to the lower requirements towards computational
performance and the improved parallelization possibilities.
Subsequently, a combination of purely dynamic and static
analysis, without symbolic execution or taint tracking, is the
focus of this paper.

1.3 Outline

The remainder of this paper is structured as follows: Section 2
provides background information regarding virtualization
obfuscation in general. Section 3 presents the design and
implementation of VMAttack, detailing the architecture and
analysis capabilities, in particular the static and dynamic
analysis, and the combined system. Our implementation is
then evaluated (Section 4) and open questions are discussed
(Section 5). Finally, in Section 6, we draw conclusions about
our work.

2 BACKGROUND

This section describes the building blocks necessary to under-
stand the design and implementation of VMAttack. Readers
familiar with process virtual machines (Section 2.1) and vir-
tualization obfuscators (Section 2.2) may safely skip this
section.

2.1 Process Virtual Machines

The most common virtual machine category used for obfusca-
tion are Process Virtual Machines (PVMs), also referred to as
application virtual machines [27]. Process virtual machines
run on top of the operating system, i.e., on application level
and provide a platform-independent programming environ-
ment that abstracts away details of the underlying hardware
or operating system allowing a program to be executed un-
modified on any platform [7].

One subcategory of PVMs, which is often used for obfus-
cation, are the Emulating Virtual Machines (EVMs). EVMs
do not require high-level language code being translated into
bytecode, but instead are compiled directly into specific ma-
chine code for a specific platform [7, 27]. To execute machine
code on another platform, for which it was not compiled, the
virtual machine interprets this machine code and generates

https://github.com/anatolikalysch/VMAttack

VMAttack: Deobfuscating Virtualization-Based Packed Binaries ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

instructions for the executing platform. The virtual machine
fetches, decodes and emulates the compiled machine code
for the target platform. This often results in a one-to-n
instruction relationship between the source platform and the
destination platform [27].

2.2 Virtualization Obfuscators

Virtualization obfuscation poses a versatile mechanism, that
can be used for static code obfuscation, tamper-proofing and
anti-debugging [3, 20, 26]. Virtualization-based obfuscators
usually translate selected parts of the binary into bytecode in-
structions of another language. Consequently, the size of the
binary and the execution time increase significantly. Espe-
cially the increase in execution time is high, as − depending
on the emulated VM architecture − one original instruction
can be mapped to tens of VM instructions [16].

At the core of the virtualization-based obfuscation is the
virtual CPU, an interpreter that must be able to translate
instructions from the obfuscator language into instructions
of the target architecture. By executing the read bytecode
instructions during the execution cycle, the interpreter might
simulate another architecture inside the currently running
process [4, 23]. The execution cycle of a virtual machine
refers to the way a virtual machine interpreter executes
the bytecode. From a high-level viewpoint this execution
cycle consists of three repeating instruction sets, namely the
reading or fetching of bytecode, deciphering or interpreting of
the fetched bytecode and lastly executing the instructions [4,
21, 22]. Other than in obfuscation this approach is also used
in programming languages to provide platform independence,
e.g., Java and its Java Virtual Machine (JVM) [7].

To be able to understand the behavior of the obfuscated in-
structions, both the virtual machine and the obfuscated code
must be analyzed. The VM interpreters can be implemented
as switch statements, or each instruction must call the next
instruction according to the current instruction pointer of
the virtual machine [24]. The opcodes for the instructions,
which are interpreted by a virtual machine, possibly differ
with every binary and compilation. It is not possible to
dump the memory to restore the original instructions [26].
Consequently, virtualization-based obfuscation is not only
effective against static but also dynamic analysis.

3 DESIGN AND IMPLEMENTATION

This section presents the design and implementation of VMAt-
tack. A high-level design description is provided in Sec-
tion 3.1, dynamic analysis techniques in Section 3.2, and
static analysis techniques in Section 3.3. The automated
combination approach is presented in Section 3.4.

3.1 Architecture

The foundation of VMAttack is comprised of an IDA abstrac-
tion layer that consists of a collection of support libraries
that handle the IDA interaction. Our analysis modules build
upon this abstraction layer, namely the dynamic, static, and

optimization modules. Concluding the software stack is our
automation layer on top of all available modules. A pipes and
filters architecture is modeled where the different analysis ca-
pabilities of each module serve as filters and can be applied to
either execution traces or IDA’s disassembly datastructures
in the static analysis case. VMAttack was designed around
the assumption of an underlying stack machine-based virtual
machine. The dynamic module can be further subdivided
into the dynamic slicing and the dynamic loop detection mod-
ules. An additional optimization module provides execution
trace filtering capabilities and improvements for the static
analysis’ IR pseudo-code instructions. The static module,
consisting of the virtual translation and disassembly mod-
ules, enables the static approaches of VMAttack. On top of
these modules, the automation layer allows for an automated
combination of all available modules. The overall structure
is illustrated in Figure 1. Additionally, the interactive result
presentation enables direct interaction with the result in form
of removal of single features, resetting and undoing changes,
and colorization.

3.2 Dynamic Analysis Techniques

Dynamic analysis usually executes a binary to gain insights
and information through observations of the binaries behavior.
At time of execution, this can include register values or
available values on the stack, which can speed up the analysis
time considerably [9]. VMAttack executes the binary to save
an instruction trace which is then used by all further analysis
techniques. The trace can either be generated from within
IDA or loaded from a file when the execution and analysis
environments are different or a debugger not supported by
IDA is used.

An instruction trace consists of four mandatory and two
optional values. The thread id, starting address, disassembly,
and CPU context after execution are mandatory while the
score of a line and stack comments are optional. The stack
comment represents additional information gained during the
stack address propagation optimization, and the line score is
a numeric value given by VMAttack’s automation system to
each trace line. The line score represents the importance of
a trace line and is computed during the automated analysis.
The trace is traversed once per selected optimization and
once per selected analysis module.

Trace Optimizations. VMAttack’s trace optimizations allow
for information enrichment and an initial filtering of the trace,
depending on the following analysis. Optimizations represent
an important foundation, as most other analysis techniques
use or even require one or more of these optimizations to
be applied to the trace prior to their analysis. Available
optimizations can be grouped into propagation (PO) and
folding (FO) optimizations.

The focus of PO is to make information that is known
at the time of the analysis easier available to the reverse
engineer by enriching the trace with additional information.
Propagations usually are considered safe to use because no

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Anatoli Kalysch, Johannes Götzfried, and Tilo Müller

Figure 1: Overall structure of VMAttack showing the available modules for static and dynamic analysis.

information is being left out. FO have the focus on reducing
the trace in size making it easier to analyze. They can be
quite powerful, reducing the trace by a very high percentage
but also carry a risk of leaving out crucial information. At
present, two propagation optimizations, constant and stack
address propagation, and three folding optimizations, unused
operand, operation standardization and peephole folding, are
supported.

Dynamic Slicing Analysis. Dynamic program slicing refers
to techniques able to find all statements that directly or indi-
rectly affect the value of a certain variable [2]. Our Dynamic
Slicing Analysis (DA) is a virtual machine architecture in-
dependent approach and provides separate program slices
for every output variable of the VM‘s output registers. This
allows a reverse engineer to view an excerpt of only those
instructions that had a direct or indirect role in the VM‘s
output computation. As part of the dynamic module, the
DA expects an instruction trace and applies the two POs to
the trace. The optimizations are a crucial part of the result
presentation as they detail the stack address values used in
the analysis output trace. Without the stack comments the
trace would be taken out of context and consequently not be
comprehensible. Moreover, constant propagation replaces dy-
namic values, e.g. register names, with their constant values
at the time of computation. This enhances the information
quality for each trace line this optimization works upon.

After the two optimizations, we proceed with the analysis
step. As a first step, the VM input and output parameters
are extracted from the trace. To this extent, all registers
popped from the stack before function exit are considered
VM output parameters.

Assuming an example of an output parameter 0x177DA that
was returned in the EAX register. The input parameters to
the virtual machine function were 0xACDC and 0xCAFE.

For each output register, the analysis creates the dynamic
slices by tracing the origins of the result value. First, the
result value is followed on the trace to its last stack address.
Let this stack address be 0x60FF50 in our example. Next, the
analysis determines how the value saved on this address came
to be. The algorithm traces the value to its point of origin
which will be either a memory address or a computation. In

our example, let the value 0x177DA be moved to that location.
Before being moved, the value was computed as an addition
of the input parameters to the function.

During the VM execution, each of these instructions, i.e.,
moving, adding values, and returning a value, is represented
by multiple instructions and furthermore, the offset compu-
tations for the next bytecode are added between the relevant
instructions. DA removes irrelevant instructions and clari-
fies the computations that led to the output parameters. If
the value’s point of origin is a computation, the approach
recursively retraces the two values used in the computation.
This ensures that composed values are extracted correctly,
meaning all trace lines regarding the computation are also
traced back to the point of origin for the values used in the
computation. If the values point of origin is another memory
address, it is traced until no previous memory address can
be found. As a result, the output registers are presented
with all trace lines that compute or move the corresponding
values from and to the stack. The reverse engineer can get
the necessary information of how a value was computed and
whether this value depends on the input parameters for the
virtual machine function or not.

EAX: value from stack address 0x60FF50

Addr Disassembly Stack Comment

4822 mov edx , [0x60FFEC] [0x60FFEC]=0xACDC

4845 mov [0 x60FF4C] , 0xACDC

4822 mov edx , [0x60FFDC] [0x60FFDC]=0xCAFE

4845 mov [0 x60FF3C] , 0xCAFE

421b mov eax , [0 x60FF4C] [0 x60FF4C]=0xACDC

4224 add [0 x60FF3C] , 0xACDC [0 x60FF3C]=0xCAFE

4328 mov eax , [0 x60FF3C] [0 x60FF3C]=0x177DA

4328 mov [0 x60FF50] , 0x177DA

Listing 1: Output for the dynamic slicing analysis ex-
ample. The result details the elemental values that
are part of the eax output register.

The outlined example’s result can be seen in Listing 1.
The result shows the algorithm output in chronological order
of trace lines, the algorithm on the other hand traversed the
trace backwards.

This example was based upon a test case, where an addi-
tion of two values was obfuscated with a stack-based virtual

VMAttack: Deobfuscating Virtualization-Based Packed Binaries ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

machine. The instruction trace grew from 24 to 586 trace
lines due to the obfuscation. Using our DA, we were able to
reduce the trace down to 32 trace lines again, recovering the
original functionality.

Clustering Analysis. In our clustering approach, we approx-
imate loops on an aquired execution trace into clusters. The
looping execution flow of the VM is used against itself by
detecting groups of constantly repeating instructions. The
execution trace is traversed to detect repetitions of successive
addresses which are then declared clusters. Considering a
clusters position and its stack interactions, specifically the
read and write instructions, it is possible to determine the
task for some clusters. The most common clusters correspond
to a specific task in the fetch-decode-execute cycle of the
VM and will have a more or less fixed interval of instructions
between each cluster occurrence. If, for example, the same
sequence of instructions is used by the virtual machine to
move input values to their corresponding stack addresses, this
sequence will be summarized with its own cluster. A possible
clustered trace for this example is illustrated in Listing 2.

Addr Disassembly Stack Comment

. . .

C lus te r 4328−4341

4328 mov eax , [0x60FFEC] [0x60FFEC]=0xDEAD

432A mov [0 x60FF30] , 0xDEAD

432E jmp ds : o f f 4339

4339 mov al , 0x489A

433E add esi , 7

4341 jmp l oc4404

. . .

C lus te r 4328−4341

4328 mov eax , [0x60FFDC] [0x60FFDC]=0xBEEF

432A mov [0 x60FF40] , 0xBEEF

432E jmp ds : o f f 4339

4339 mov al , 0x489A

433E add esi , 7

4341 jmp l oc4404

. . .

Listing 2: Result output for the clustering analysis
without the basic block display. The result shows
two clusters that execute the same addresses of the
binary.

Loops in the original binary correspond to rather large clus-
ters, that incorporate several runs of the fetch-decode-execute
cycle, writes to, and reads from the stack, all in consecutive or-
der. Leftover unique instructions and rarely encountered clus-
ters reveal a lot of information about the pre-virtualization
logic of the original program, often even translating to in-
structions that were part of the original binary. The rarely
encountered clusters often represent instructions that were
part of the original binary but had to be switched with equiv-
alent instructions because the VM interpreter was incapable
of their execution.

The address-based clustering approach consists of consec-
utive clustering rounds on the instruction trace. In each
clustering round, for every address and its neighbor, the oc-
currence of the exact same sequence of addresses is searched

for in the trace. If this same sequence exists a cluster is
created.

The clustering loop stops if a clustering round yields no
length increase for any cluster. The reverse engineer can re-
move clusters during result presentation, additionally the de-
fault case already removes the most common clusters judged
to be part of the VM execution cycle. As the focus of this
algorithm is the filtering of non-functionality instructions,
and not the decoding of the bytecode as it is in the static
module, these parts of execution are filtered out and the
results are presented to the reverse engineer.

Additionally, the reverse engineer can remove clusters,
basic blocks and single instructions during result presentation,
allowing for higher analysis precision.

3.3 Static Analysis Techniques

The static approach analyzes the virtual machine function
and the provided bytecode to determine the functionality of
the original function. To this extent, our modules work hand
in hand to first determine executed instructions corresponding
to the bytecode and analyze them to provide a disassembly
of the virtual opcodes. This disassembly is translated into
the IR language and optimized.

Supported language operators include stack, memory, com-
putational and control flow operators and allow for a reduced
familiarization period. Through the stack machine focused
approach, our IR instructions allow for the extraction of
bytecode to executed functionality mappings while simultane-
ously preserving the VM’s internal value movements. These
value movements provide additional meta information into
the VM computational processes and can be of assistance in
distinguishing between output and input relevant computa-
tions. This meta information also supports our decision for
a result presentation in our stack-based IR (SBIR) language
rather than a re-transformation back to assembly which does
not allow for a natural way to convey stack-based context.
Our SBIR language, being closer to JVM bytecode, allows
for a clearer picture of the stack-based VM’s used variables,
return parameters and control flow dependencies.

Our static analysis approach uses the SBIR language to
provide core insights and to simplify the bytecode function-
ality. In an initial step, the switch-case-structure, especially
the jump table of the virtual machine interpreter, is used by
the virtual disassembly engine to map the bytecode to corre-
sponding x86/x64 assembly instructions. First, from start to
end of the bytecode, every byte is examined towards the path
the byte would execute inside the switch statement. This
allows to represent bytes as assembly instructions, albeit this
representation still includes a lot of overhead, representing the
interpreter computations (e.g., the byte pointer increments
towards the next byte).

The following algorithmic step removes the overhead from
these assembly instructions by translating them into SBIR.
At the beginning, a shadow stack is assumed and then, the
executed instructions are translated by looking up memory
access and interpreter specific patterns, which are needed for

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Anatoli Kalysch, Johannes Götzfried, and Tilo Müller

the pseudo instruction mapping. This process is completely
automated and handled by the virtual translation module
which in turn uses the virtual instruction optimizations to
achieve best possible results. The virtual instruction opti-
mizations offer improvements on an instruction level and
allow for recognized patterns to be optimized during the
translation.

3.4 Automation

The current approach at automation has the form of a scoring
model for trace lines. Basically, an automated combination
of VMAttack’s available analysis modules with additional
stack machine pattern matching mechanisms is employed to
strip the trace of VM instructions and preserve functionality
instructions. This algorithm currently consists of eight steps
and can be extended with additional implementations for
analysis modules. The procedure requires an instruction
trace to be available and assigns a seed value to each trace
line, called initial score. This value is computed according
to the uniqueness of the trace line. The score is then raised
or lowered according to the outcome of each analysis. A
graphical overview of the algorithm is given in Figure 2.

Initialization. When dynamic analysis is enabled, an in-
struction trace is obtained in the first step. After its acqui-
sition the trace lines are annotated with their initial score.
This value is determined by computing a line‘s frequency
inside the trace, where the more unique a line is, the higher
the score will be.

First, the frequency of all lines is computed to determine
the different frequency levels. The lowest frequency level
will always be one, as a line needs to be executed at least
once to be part of a trace. The highest level will vary from
trace to trace. Next, the initialization step computes the
initial score, where the frequency levels are used as score
in reverse order, that is unique lines have the highest score,
lines encountered twice with the second highest, and so forth.
The initialization step concludes with the most frequent lines
being graded with the worst possible score of one.

This approach of the initialization system makes use of
the virtual machine execution cycle. The more unique in-
structions are, the more likely they correlate to payload
functionality. For example, they will start from a better
position in the grading system than the read byte and write
byte instructions of the VM.

Propagations and Register Mappings. After the initializa-
tion step, the trace is still in its unoptimized state. Before
the two PO required by the analysis are applied to the trace,
the register mappings are computed. The trace is traversed
once for the virtual machine’s bytecode interaction, especially
read and write instructions. If the registers interacting with
the bytecode in these read and write instructions are only
used for the addressing mechanism of the VM, and not the
functionality computation they are flagged as addressing-only
registers. Addressing-only registers are used to compute the
offset for the next byte or the stack location where a value is

currently located or will be stored at, resulting in addressing-
only registers being irrelevant for the original functionality
and more of a way to bloat the trace and thereby increase
obfuscation. Furthermore, there can be functionality-only
registers that compute directly on input or output values and
intermediary results, and mixed registers where no conclusion
can be drawn. Removing mixed registers poses the danger
of leaving out crucial instructions so we decided to include
instructions with mixed registers in the output of this step.
Simultaneously, the propagations are applied to the trace in
this step.

Scoring Steps. With the prerequisites out of the way, the
actual scoring takes place. With every algorithmic step
another analysis module is applied to the trace and the score
is reevaluated according to the analysis findings. The scoring
changes correlate directly to the (default or user defined)
automation parameters for each analysis module.

• Dynamic Slicing Analysis: Modeled after the DA
of VMAttack. The algorithm assumes the default case,
that all output registers, except the addressing-only
registers, are considered important and obtains the
output backtraces for those output register. These
backtrace lines experience a raise in their score.

• Register and Memory Usage: During the prerequi-
site step, the register mappings were computed, which
detail whether registers exist, that are only used for
the bytecode offset computation process. The score of
trace lines containing those registers is reduced while
the mixed and functionality register trace lines score is
increased. In addition, trace lines with VM read instruc-
tions from the stack are raised if they use a functionality
register.

• Clustering Analysis: Relies on the clustering analysis
results to increase scores for unique lines and decreases
the score of repeating lines. Not all repeating instruc-
tions are decreased. Instead, to reduce the score for
fetching, reading and decoding instructions, the most
frequent occurring lines experience a decrease.

• Folding Optimizations: Uses FO to determine im-
portant instructions. The application of all available
optimizations results in a highly reduced trace. More-
over, register-based filtering is used on the trace to filter
registers only used for the virtual machine execution
cycle. For every remaining line in the reduced trace,
the score for the corresponding line in the original trace
is raised.

• Static Analysis: At the end of the analysis, the result
from the static deobfuscation is integrated into the
score. The score for the corresponding line for a SBIR
instruction is raised.

Lastly, the trace lines with the highest score are presented
to the reverse engineer. These trace lines represent the best
candidates for the original binaries functionality instructions.
However, the reverse engineer can also choose to view not
only the best but also lower grades. This design results in

VMAttack: Deobfuscating Virtualization-Based Packed Binaries ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Figure 2: Scoring algorithm overview.

high robustness and speed of the combined automated anal-
ysis, as the overall score of a trace line consists of several
grading steps, resulting in one failing analysis not signif-
icantly impacting the score. All the used algorithms are
automatable ensuring low levels of required user interaction.
Lastly, the stand-alone nature of each approach results in
high parallelization.

4 EVALUATION

In this section, we evaluate VMAttack regarding the correct-
ness of its automated analysis (Section 4.1) and the manual
analysis capabilities. The static module (Section 4.2) is evalu-
ated separately from the dynamic and optimizations modules
(Section 4.2) because it does not require an instruction trace
for the analysis.

To represent different viewpoints and challenges for the
analysis and deobfuscation methods, we compiled functions
containing common programming constructs, obfuscated
them with VMProtect and then deobfuscated them using
our IDA plug-in. VMProtect was chosen due to the use of
stack machine-based virtualization [29] which is the main
focus of our analysis approaches. The following constructs
were chosen to represent the foundation of Turing-complete
programming languages:

• arithmetic instructions: add, mul, sub, div

• logic instructions: and, or, xor

• control flow instructions: conditional and unconditional
jumps, calls and recursion

The main objective of the evaluation was the recovery of
equivalent instructions from the virtualized binary. Due to the

significant increase of the instruction trace after obfuscation1,
we decided to use the overall instruction trace reduction as
quantitative metric if the remaining trace still contained all
of the instructions equivalent to the original functionality.
The idea behind trace line reduction is that it results in a less
time consuming analysis for a reverse engineer as long as no
functionality preserving trace lines are left out. To evaluate
our static analysis, the obfuscated binaries were deobfuscated
by means of our static analysis module. The main objective
remained the recovery of original functionality, but as a trace
reduction metric can not be applied to our static approach, we
decided to evaluate the Control Flow Graph (CFG) similarity
instead, as was suggested by previous work [30]. In our
static approach we generate the CFG directly from our SBIR
language by using our optimized static analysis result. This
was used in a similarity metric comparing the reconstructed
CFG with the original CFG. To achieve high similarity the
recovered CFG needs to display the same amount of basic
blocks with the same number of incoming and outgoing edges.
Furthermore, all recovered instructions need to be the SBIR
equivalent instructions for the original binary.

All evaluations were performed on a desktop computer
with an Intel Core i3 running at 1.8 GHz and four gigabytes
of RAM. From the software side, we used Windows 10 with
IDA Pro 6.9 and Python 2.7.12. The test binaries were
compiled for the x86 or x64 architecture with VMProtect
2.9.

4.1 Automated Analysis Evaluation

The automated recovery of the original functionality worked
for all test cases, two thirds of the test cases could be solved
with default automation parameters. Automation parameters
decrease or increase the importance of an analysis and should
be changed if a reverse engineer favors a specific approach
over another. Every approach has a specific focus during
analysis, for example, the dynamic slicing analysis focuses on
the output parameters while the clustering analysis focuses
on unique instructions. Changing the importance weights
allows to increase or decrease the focus on such an important
area. Good examples are the branch binaries where the
focus lies less on the output parameters and more on unique
instructions and as such the automation parameters had to
be adapted towards a less output centered approach. Table 1
presents the results of the automated analysis evaluation.
Aside from the binary name, the table shows whether the
default importance weights of the automated analysis were
a good fit or had to be changed manually to successfully
recover instructions. The last two columns detail the achieved
instruction trace reduction and the specific reduction of the
obfuscation layer, namely, the percentage of stripped VM
instructions.

The achieved trace reduction removed at least 90% of the
virtualization layer. For five out of ten binaries the original
instructions could be recovered, the other cases allowed only

1On average, virtualization resulted in 191 times as many executed
instructions for our test cases.

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Anatoli Kalysch, Johannes Götzfried, and Tilo Müller

Binary Automation Parameters Overall Trace Reduction VM Instructions Stripped

addition default 99.65 % 98.58 %
multiplication default 98.85 % 98.03 %
subtraction default 99.53 % 98.54 %
division increased DA value 97.94 % 94.28 %
bitwise and default 99.53 % 96.83 %
bitwise or default 98.14 % 96.16 %
bitwise xor default 97.43 % 96.48 %
simple branch increased CA value 96.92 % 96.48 %
looped branch increased CA value 87.31 % 87.07 %
recursive fibonacci increased DA value 91.46 % 91.20 %

Table 1: Results for the combined analysis with ten different test binaries obfuscated by VMProtect.

for a recovery of equivalent instructions which can be attrib-
uted to the VM interpreters limited instruction set. If a VM
interpreter is not able to execute an instruction it will usually
be substituted with available equivalent instructions. The
loop binary displayed the least trace reduction of only 87.31%,
which is still notable compared to the initial trace. Contrary
to the previous test cases, the results of the combined binaries
contained unnecessary conversion instructions and movement
operations for stack values. The latter are helpful but not
crucial for the understanding of the functionality and are an
artifact of the virtual machine’s stack architecture.

4.2 Manual Analysis Evaluation

VMAttack also supports manual analysis with each analysis
technique offering one or multiple result presentations and
interactive result interaction. The reverse engineer can di-
rectly highlight, remove or apply another analysis techniques
to the result of the last analysis.

Static Only Analysis. For the evaluation of the static anal-
ysis the obfuscated binaries were deobfuscated by means of
the static analysis module. After the execution of the static
analysis a control flow graph was created from the deob-
fuscated virtual instructions and compared to the original
binarie’s CFG. The deobfuscation was judged a success, if
both graphs had high similarity to each other and addition-
ally the recovered virtual instructions represented the exact
or equivalent computations to the original binary. The eval-
uation was judged a failure if the recovered computations
were not equivalent to the original binaries computations or
were falsely distributed amongst the basic blocks of the CFG.
Similarity was computed according to the number of basic
blocks and edges connecting them.

The result of the static analysis was a complete deobfusca-
tion of all test cases. For the first eight binaries, the original
CFGs matched the structure of the deobfuscated CFGs and
the pseudo code instructions recovered were equivalent to
those of the original binary.

Overall, the recovered virtual instructions resemble the
original functionality in every test case and the generated

CFG structures match, except for the recursive fibonacci,
where the CFGs of the functions slightly differed. This
difference, however, can be attributed to the equivalent in-
structions used by the VM interpreter, which resulted in a
semantically equivalent but visually different CFG.

Dynamic Only Analysis. As the dynamic approaches require
the presence of an execution trace, the main focus in this
section lies on the trace reduction provided by VMAttack.
The three supported dynamic approaches for the ten evalu-
ated test cases are contrasted in Figure 3 . Each binary was
evaluated through optimizations with subsequent register
filtering, dynamic slicing analysis, and clustering analysis.

The dynamic slicing analysis shows potential to greatly
reduce the trace. Only output relevant values, computations
and their elemental parts are extracted. For the first eight
binaries, the trace reduction was enormous, yet the analysis
preserved all the relevant trace lines equivalent to the original
binaries. Compared to the combined analysis, however, more
artifacts from the virtual machine remain, as some move
instructions for the corresponding values are not filtered from
the trace.

Clustering analysis removes the most frequent clusters,
but it lacks in the initial trace reduction compared to the
dynamic slicing analysis and the optimization and filtering
approach. Original computations are often part of a cluster.
The best results were achieved by removing additional cluster
groups one after another, as soon as analysis determined the
cluster has nothing to do with the obfuscated functions. This
provides additional information about the virtual machines
structure and patterns of operation. This approach is more
stable as it does not assume dependencies between input and
output values, or dependencies towards the VM infrastructure.
Additionally, this technique has proven to be suitable for loop
and recursion detection. Through VMAttack’s stack changes
view, additional relevant information about important and
less important stack addresses can be extracted.

FOs coupled with selective register folding help greatly
at removing unwanted parts of the execution. Additionally,
the VM artifacts, such as next byte address computations,

VMAttack: Deobfuscating Virtualization-Based Packed Binaries ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

%

80

90

100 97
98.7

95.5 96.8 97.8 97.5
94.4

90.3

85.2 86.6

82.5

addition

87.4

mult.

85.5

subt.

85

division

83.9

bitw. and

85.3

bitw. or

84.1

bitw. xor

71.2

branch

80.6

loops

89.3

fibonacci

94.5 93.8 93.2 94.4 95.1 95.0 93.7
90.1 89.6

81.8

dynamic slicing only clustering only folding optimizations only

Figure 3: Overall trace reduction in percent achieved by dynamic analysis for ten test binaries.

can be excluded more reliably if their structure is analyzed
beforehand.

5 DISCUSSION

VMAttack provides an interface to manual static and dynamic
analysis techniques and bundles all available analysis modules
as an automated approach. The central assumption, however,
is that the underlying VM architecture used for obfuscation
is a stack-based VM.

That being said, the presented techniques can be adapted
for other VM architectures in the future. Dynamic slicing,
for example, does not rely on architectural aspects but rather
on the output variables the VM returns and the clustering
analysis uses loop detection and pattern matching. While
not having the same execution cycle of a stack-based VM,
repeating patterns can also be observed on other architec-
tures. The static module would need an extension in form
of an architecture detection routine and a bytecode to SBIR
extension for non-stack-based VMs. As our propagation op-
timizations have no architectural dependencies, additional
analysis and implementation overhead would be needed for
the adaptation of our FO.

Compared to prior solutions on the deobfuscation of stack-
based VMs our approach provides a combination of previously
untested approaches, namely dynamic slicing and optimiza-
tions, coupled with improvements upon prior work, e.g., our
static module [22] and our clustering analysis [19]. Unlike
previous semi-automated approaches by Rolles or Guillot et
al. our approach can be completely automated [12, 22]. Our
dynamic analysis techniques can arguably provide a computa-
tional advantage, as not the complete VM interpreter needs
to be reverse engineered but rather the executed instructions
are deobfuscated. Compared to Raber‘s automated greedy
clustering approach our analysis provides a higher deobfusca-
tion rate due to increased trace reduction, increased number
of available analysis modules, and more efficient clustering
and optimization algorithms. This increased precision, how-
ever, also results in a higher analysis runtime compared to
Raber‘s clustering-only approach.

We consider the specialization towards stack-based VMs
currently a scope defining factor for our approach. As other
architectures are not supported yet, general approaches with-
out architectural restrains offer a better alternative for non-
stack machine VMs. Concolic analysis currently seems to
hold promise for the general deobfuscation scenario which is
why the general approaches rely either on symbolic execution,
as in the case of Rotalumè [24], or taint tracking combined
with execution trace analysis as suggested by Yadegari et.
al [30]. For the specialized case of stack-based VMs our
tool provides comparable results to Rotalumè with regard to
trace reduction and comparable results with the approach by
Yadegari et. al in terms of CFG reconstruction.

In light of general approaches favoring concolic analysis
over static and dynamic techniques, the runtime should play
a role in future evaluations of approaches as well. However,
a direct comparison currently seems impossible due to the
closed source character of Rotalumè as well as the proof of
concept from Yadegari et al., and their approach evaluation
does not factor in analysis runtime. Our open-sourced ap-
proach can be used for a direct comparison by future work.
A runtime comparison between static, dynamic, and concolic
approaches for virtualization-based packed binaries has not
yet been conducted and would provide valuable insights for
the reverse engineering community.

Moreover, current approaches, with exception of Rolles,
seem to include trace generation at some point during the
analysis which prompts the question about achieved code cov-
erage. A solution similar to Driller [28] could be employed to
generate an instruction trace with the desired code coverage.

6 CONCLUSION

Virtualization-based obfuscation resists conventional static
and dynamic approaches by translating functionality into a
random language and architecture. Prior approaches at deob-
fuscation either try to reverse engineer the VM interpreter or
try to determine the semantics behind the executed instruc-
tions to peek at the functionality. We presented VMAttack,

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy Anatoli Kalysch, Johannes Götzfried, and Tilo Müller

an analysis tool that aims at deobfuscating virtualization-
based obfuscated binaries supporting a wide array of versatile
strategies, combining both static and dynamic analysis.

The static approach focuses on the deobfuscation of the
virtual machine’s bytecode through automated analysis of
the VM into SBIR. The dynamic approach focuses on the
recovery of the original functionality through dynamic slicing
and clustering-centered reduction techniques. The analysis
approaches represent either improvements based upon pre-
vious work in the case of the static and clustering analysis
or previously disregarded approaches as in the case for the
dynamic slicing analysis. An optimization module features
techniques to enrich the information available to the reverse
engineer and the extraction of the relevant instructions out
of an execution trace. The automation system combines all
analysis techniques to provide an automated binary analysis.
The combination of these analysis techniques and their weight
in the overall analysis can be controlled as needed and the
presentation of the result allows for dynamic interaction.

On average we are able to reduce the instruction trace by
89.86% through dynamic analysis and by 96.67% through
combined analysis, eliminating the VM artifact instructions
while retaining all instructions equivalent to the original
functionality.

Lastly, VMAttacks placed second during the IDA Plug-In
Contest in 2016 [11]. The open-sourced implementation can
be found at https://github.com/anatolikalysch/VMAttack.

Acknowledgments

This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research
Centre “Invasive Computing” (SFB/TR 89). We also want to
thank Prof. Dr.-Ing. Felix Freiling for his helpful comments
on this paper.

REFERENCES
[1] Rambus Inc. 2009. About Self-Protecting Digital Content. (2009).

https://www.rambus.com/about-spdc/, accessed on 06. March
2017.

[2] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program
slicing. In ACM SIGPlan Notices, Vol. 25. ACM, 246–256.

[3] Bertrand Anckaert, Mariusz Jakubowski, and Ramarathnam
Venkatesan. 2006. Proteus: virtualization for diversified tamper-
resistance. In Proceedings of the ACM workshop on Digital rights
management. ACM, 47–58.

[4] Samuel Chevet. 2015. Inside VMProtect. (2015).
http://lille1tv.univ-lille1.fr/telecharge.aspx?id=
d5b2487e-cacc-4596-ab37-dab2b362cb9e, accessed on 10.
March 2017.

[5] Kevin Coogan, Gen Lu, and Saumya Debray. 2011. Deobfusca-
tion of Virtualization-obfuscated Software: A Semantics-based
Approach. In Proceedings of the 18th ACM Conference on
Computer and Communications Security (CCS ’11). ACM,
New York, NY, USA, 275–284. DOI:http://dx.doi.org/10.1145/
2046707.2046739

[6] Kevin Patrick Coogan. 2011. Deobfuscation of Packed and
Virtualization-obfuscation Protected Binaries. Ph.D. Disserta-
tion. Tucson, AZ, USA. Advisor(s) Debray, Saumya. AAI3468656.

[7] Iain D. Craig. 2006. Virtual Machines. Springer-Verlag.
[8] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. 2010. Crypt-

analysis of a perturbated white-box AES implementation. In
International Conference on Cryptology in India. Springer.

[9] E. Eilam and E. J. Chikofsky. 2005. Reversing: secrets of reverse
engineering. Wiley.

[10] Hui Fang, Yongdong Wu, Shuhong Wang, and Yin Huang. 2011.
Multi-stage Binary Code Obfuscation Using Improved Virtual
Machine. In Information Security, Xuejia Lai, Jianying Zhou,
and Hui Li (Eds.). Lecture Notes in Computer Science, Vol. 7001.
Springer Berlin Heidelberg, 168–181. DOI:http://dx.doi.org/10.
1007/978-3-642-24861-0 12

[11] Ilfak Guilfanov. 2016. IDA Pro Plug-in Contest 2016. (2016).
https://www.hex-rays.com/contests/2016/index.shtml, accessed
on 23. March 2017.

[12] Yoann Guillot and Alexandre Gazet. 2010. Automatic binary
deobfuscation. Journal in Computer Virology (2010). DOI:
http://dx.doi.org/10.1007/s11416-009-0126-4

[13] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. 2007.
Renovo: A hidden code extractor for packed executables. In
Proceedings of the 2007 ACM workshop on Recurring malcode.
ACM, 46–53.

[14] Johannes Kinder. 2012. Towards static analysis of virtualization-
obfuscated binaries. In 2012 19th Working Conference on Re-
verse Engineering. IEEE, 61–70.

[15] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Soft-
ware: Obfuscation, Watermarking, and Tamperproofing for
Software Protection. Pearson Education.

[16] Eric Chien Nicolas Falliere, Patrick Fitzgerald. 2009.
Inside the Jaws of Trojan.Clampi. (2009). https:
//www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/inside trojan clampi.pdf, accessed
on 17. October 2016.

[17] Oreans Technologies. 2016. Themida. (2016). http://www.oreans.
com, accessed on 10. March 2017.

[18] Frederic Perriot. 2009. Countering polymorphic malicious com-
puter code through code optimization. (Nov. 24 2009). US Patent
7,624,449.

[19] Jason Raber. 2013. Virtual Deobfuscator – a DARPA Cyber
Fast Track funded effort. (2013). http://www.cerosecurity.com/
blackhat-usa-2013-presentaciones-y-diapositivas/, accessed on 10.
March 2017.

[20] Babak Bashari Rad, Maslin Masrom, and Suhaimi Ibrahim. 2012.
Camouflage in malware: from encryption to metamorphism. In In-
ternational Journal of Computer Science and Network Security.
74–83.

[21] Rolf Rolles. 2007. Defeating HyperUnpackMe2. (2007). http:
//www.openrce.org/articles/full view/28, accessed on 10. March
2017.

[22] Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In
Proceedings of the 3rd USENIX Conference on Offensive Tech-
nologies (WOOT’09). USENIX Association, Berkeley, CA, USA.

[23] Shared Encyclopedia. 2016. VMProtect Logical instruction.
(2016). http://et97.com/view/1281031.htm, accessed on 10.
March 2017.

[24] Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke
Lee. 2009. Automatic Reverse Engineering of Malware Emulators.
In 30th IEEE Symposium on Security and Privacy (S&P 2009),
17-20 May 2009, Oakland, California, USA. 94–109. DOI:http:
//dx.doi.org/10.1109/SP.2009.27

[25] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Kruegel, and Giovanni Vigna.
2016. SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis. (2016).

[26] Craig Smith. 2008. Creating Code Obfuscation Virtual Machines.
In Proceedings of the RECON 2008, Reverse Engineering Con-
ference. Neohapsis, Inc.

[27] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile
platforms for systems and processes. Elsevier.

[28] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. 2016. Driller: Augmenting Fuzzing
Through Selective Symbolic Execution. (2016).

[29] VMPSoft. 2016. VMProtect. (2016). http://www.vmpsoft.com,
accessed on 10. March 2017.

[30] Babak Yadegari, Brian Johannesmeyer, Ben Whitely, and Saumya
Debray. 2015. A Generic Approach to Automatic Deobfuscation
of Executable Code. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 674–
691. DOI:http://dx.doi.org/10.1109/SP.2015.47

https://github.com/anatolikalysch/VMAttack
https://www.rambus.com/about-spdc/
http://lille1tv.univ-lille1.fr/telecharge.aspx?id=d5b2487e-cacc-4596-ab37-dab2b362cb9e
http://lille1tv.univ-lille1.fr/telecharge.aspx?id=d5b2487e-cacc-4596-ab37-dab2b362cb9e
http://dx.doi.org/10.1145/2046707.2046739
http://dx.doi.org/10.1145/2046707.2046739
http://dx.doi.org/10.1007/978-3-642-24861-0_12
http://dx.doi.org/10.1007/978-3-642-24861-0_12
https://www.hex-rays.com/contests/2016/index.shtml
http://dx.doi.org/10.1007/s11416-009-0126-4
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/inside_trojan_clampi.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/inside_trojan_clampi.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/inside_trojan_clampi.pdf
http://www.oreans.com
http://www.oreans.com
http://www.cerosecurity.com/blackhat-usa-2013-presentaciones-y-diapositivas/
http://www.cerosecurity.com/blackhat-usa-2013-presentaciones-y-diapositivas/
http://www.openrce.org/articles/full_view/28
http://www.openrce.org/articles/full_view/28
http://et97.com/view/1281031.htm
http://dx.doi.org/10.1109/SP.2009.27
http://dx.doi.org/10.1109/SP.2009.27
http://www.vmpsoft.com
http://dx.doi.org/10.1109/SP.2015.47

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Outline

	2 Background
	2.1 Process Virtual Machines
	2.2 Virtualization Obfuscators

	3 Design and Implementation
	3.1 Architecture
	3.2 Dynamic Analysis Techniques
	3.3 Static Analysis Techniques
	3.4 Automation

	4 Evaluation
	4.1 Automated Analysis Evaluation
	4.2 Manual Analysis Evaluation

	5 Discussion
	6 Conclusion
	References

