
Programme

Seventh Framework Programme

Strategic Objective

Information Security in Supply Chain Management

Integrated Project / Programme Title

Secure Supply Chain Management

ACRONYM

secureSCM
Project No.

FP7-213531

WP No. / Work Package Title

WP9 Cryptographic Aspects

Deliverable No. / Deliverable Title

D9.2 Security Analysis

Leading Partner: IU

Security Classification: CONFIDENTIAL

Delivery: July 2009

Version: 1.0

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Versioning and contribution history

Version Description Responsibility Date Comments
0.1 New IU 01 Feb. 2009 Deliverable document start
0.3 Peer review UNIMI, TUE 13 Jul. 2009 Quality assurance by internal

peers
0.6 Final editing IU 27 Jul. 2009 Revision based on peer review

comments, proof-reading, for-
matting

0.7 Final approval PCC / Scientific
Coordinator del-
egate.

27 Jul. 2009 Formal approval within the
project

1.0 Submission to
EC

PMO Collection, formatting, print-
ing, and distribution of deliv-
erables

Legal Disclaimer

The information in this document is provided as is, and no guarantee or warranty is
given that the information is fit for any particular purpose. The above referenced consor-
tium members shall have no liability for damages of any kind including without limitation
direct, special, indirect, or consequential damages that may result from the use of these
materials subject to any liability which is mandatory due to applicable law.

Copyright 2009 by International University in Germany (IU), Technische Universiteit
Eindhoven (TUE), SAP AG (SAP).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 1/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Table of Contents

1 Introduction 8
1.1 Privacy-Preserving Computation . 8
1.2 Problem Definition . 9
1.3 Goals of WP9 . 9
1.4 Summary . 10

2 Models and Methods 11
2.1 Communication Model . 11
2.2 Security Models . 11

2.2.1 Active v/s Passive Security . 12
2.2.2 Statistical Security . 12
2.2.3 Universal Composability . 14

2.3 Complexity Analysis . 15
2.3.1 Communication Complexity . 16
2.3.2 Round Complexity . 17
2.3.3 Computation Complexity . 17
2.3.4 Empirical Results . 17
2.3.5 Tradeoffs . 18

2.4 SMC Framework . 19
2.4.1 Shamir’s Secret Sharing . 19
2.4.2 Arithmetic with Secret Field Elements 20
2.4.3 Input and Output . 22

2.5 Data Representation . 22
2.5.1 Boolean Operations . 23
2.5.2 Integer Arithmetic . 23
2.5.3 Fixed-Point Arithmetic . 23

2.6 Summary . 24

3 Secret Random Number Generation 26
3.1 Interactive Protocols For Randoms . 26
3.2 Protocols Based on PRSS . 27

3.2.1 Replicated Secret Sharing (RSS) . 27
3.2.2 Conversion of RSS Shares to Shamir Shares 27
3.2.3 Non-Interactive Generation of RSS Shares 28
3.2.4 PRSS-Based Protocols For Randoms 30

3.3 Protocols Based On RISS . 33
3.3.1 Replicated Integer Secret Sharing (RISS) 33
3.3.2 Conversion from RISS Shares to Shamir Shares 34
3.3.3 Non-Interactive Generation of RISS Shares 34
3.3.4 Bit-Share Conversions and Joint Bit Generation 35
3.3.5 Generation of Shared Randoms in Range Using RISS 37

3.4 Summary . 38

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 2/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

4 k-ary, Prefix and Bit-Wise Operations 40
4.1 K-ary and Prefix Operations . 40

4.1.1 k-ary Operations in log(k) Rounds 41
4.1.2 Prefix operations in O(log(k)) rounds. 41
4.1.3 Summary . 43

4.2 Bitwise Operations . 44
4.2.1 Binary Addition . 44
4.2.2 Comparison of Bitwise-Shared Values 46
4.2.3 Summary . 47

5 Arithmetic and Comparison 48
5.1 Truncation . 48

5.1.1 Reduction Modulo 2m . 48
5.1.2 Truncation . 51
5.1.3 Truncation With Probabilistic Rounding 51
5.1.4 Comparison of Truncation Variants 53

5.2 Integer Comparison . 54
5.3 Bit Decomposition . 56
5.4 Fixed-Point Arithmetic . 58

5.4.1 Fixed-Point Multiplication . 58
5.4.2 Fixed-Point Inner Product . 58
5.4.3 Fixed-Point Reciprocal . 59

5.5 Performance Measurements . 62
5.6 Summary . 68

6 Linear Programming Protocols 70
6.1 Linear Programming Using ST-RP Simplex 70
6.2 Secure Linear Programming Using ST-RP Simplex 72

6.2.1 Secret Indexing . 72
6.2.2 Secure ST-RP Simplex Protocol . 73

6.3 Tests and Performance Analysis . 79
6.4 Summary . 81

7 Conclusion 82
7.1 Summary . 82
7.2 Security Analysis . 83
7.3 Complexity and Performance Analysis . 83

7.3.1 Tradeoffs . 83
7.3.2 Measurements . 84

7.4 Further Work . 84
7.4.1 Non-Cryptographic Methods . 85

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 3/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

List of Abbreviations

LP Linear Programming
LSB Least Significant Bit
PRF Pseudo-Random Function
RSS Replicated Secret Sharing
PRSS Pseudo-random Replicated Secret sharing
RISS Replicated Integer Secret Sharing
SMC Secure Multiparty Computation
ST Small-Tableau
LT Large-Tableau
IP Integer Pivoting
RP Rational Pivoting

List of Symbols

F An arbitrary finite field.
Z Set of integers [−∞..∞].
Zm Set of integers [0..m− 1].
Zq Reserved for a prime field (q is prime).
[r]F A Shamir sharing in F of r ∈ F.
[r]RZ A RISS sharing of r.
[r]Zq Shamir sharing of r ∈ Zq for prime q > 2.
[r0]

F2m Shamir sharing of LSB of r represented in F2m .
[r] The same as [r]Zq when q is implicit.
[r]B Shamir sharing in Zq of bits of r in 2s complement.
a→ i a is sent to i over a private authentic channel.
(a1, . . . , an)→ (i1, . . . , in) aj is sent to ij over a private authentic channel.
a⇒ i a is sent to i over a public broadcast channel.
a⇒ a is broadcast.
a← b a is assigned the value b.

a
R← X a is chosen uniformly from set X.

a ∈R X a is distributed uniformly over set X.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 4/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

List of Protocols

2.1 Mul . 21
2.2 Inner . 22
2.3 Input . 22
2.4 Output . 22
3.1 RandFld . 26
3.2 RandBit . 26
3.3 Rand2mU . 27
3.4 Rand2mN . 27
3.5 RSStoShamir . 28
3.6 RandKey . 29
3.7 MasterRSS . 29
3.8 RandRSS . 30
3.9 PRandFld . 30
3.10 PRandZero . 31
3.11 MulPub . 32
3.12 Inv . 32
3.13 PRandBit . 32
3.14 RISStoShamir . 34
3.15 RandRISSshares . 34
3.16 BitZQtoF2M . 35
3.17 BitZQtoZQ . 35
3.18 PRandBitL . 36
3.19 PRandBitD . 36
3.20 BitF2MtoZQ . 36
3.21 PRandInt . 37
3.22 RandRISSrange . 37
3.23 PRand2mN . 38
3.24 PRand2mU . 38
4.1 KOpL . 41
4.2 PreOpL . 41
4.3 PreOpL2 . 42
4.4 AddBitwise . 45
4.5 CarryOut . 46
4.6 CarryOutAux . 46
4.7 CarryOutCin . 46
4.8 BitLT . 47
5.1 Mod2m . 49
5.2 Mod2mF . 50
5.3 LSB . 51
5.4 Trunc . 51
5.5 TruncF . 51
5.6 TruncPr . 52
5.7 TruncPrF . 53
5.8 TruncPrN . 53
5.9 LTZ . 54

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 5/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

5.10 LTZF . 55
5.11 EQZ . 55
5.12 EQZF . 56
5.13 EQPub . 56
5.14 BitDec . 57
5.15 BitDecF . 57
5.16 FPMul . 58
5.17 FPInner . 59
5.18 RecNR . 60
5.19 ScaleUpFactor . 60
6.1 SecRead . 72
6.2 SecWrite . 72
6.3 SecReadRow . 73
6.4 SecReadCol . 73
6.5 SecWriteRow . 73
6.6 SecWriteCol . 73
6.7 Result . 74
6.8 InitVar . 74
6.9 UpdVar . 74
6.10 Null . 75
6.11 GetPivCol . 75
6.12 GetPivRow . 75
6.13 MinCons . 76
6.14 CompCons . 76
6.15 FPLTZ . 77
6.16 FPCompCons . 77
6.17 STRPUpdTab . 78

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 6/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Executive Summary

Collaborative supply chain management and optimization requires participants to share
necessary but sensitive data. Often the risks associated with revealing this data far
exceed the benefits gained. Consequently some parties may be unwilling or unable to
share certain inputs with the other parties. The aim of the SecureSCM project is to
develop cryptographic solutions using Secure Multiparty Computation (SMC) to address
this problem of data sharing in supply chain optimization. The goal of SMC is to perform
some computation in a secure manner - i.e., without revealing inputs and outputs to
unauthorized parties.

Work-Package 9 (WP9) of the project deals with cryptographic aspects of secure com-
putation and recent work in this work-package focused on the analysis of the protocols
developed in the first phase of the project. The secure Simplex protocols described in De-
liverable 3.1 (D3.1) are based on standard cryptographic techniques from the literature
and provide adequate security in the semi-honest model. On the other hand, they rely on
general building blocks (discussed in Deliverable 9.1 (D9.1)) and do not take into account
any special features/requirements of our application scenario. Consequently, some of the
building blocks are serious bottlenecks. After reviewing D3.1, we concluded that WP9
has to address a combination of several aspects: (1) security; (2) complexity and perfor-
mance; (3) functional aspects (such as accuracy); and (4) tradeoffs between the above.
This deliverable (D9.2) summarizes the following work done in WP9:

1. Development of more efficient methods and building blocks, adapted to our ap-
plications (e.g., for data encoding, shared random values, secure arithmetic and
comparison for fixed-point numbers).

2. Theoretical foundation for our protocols with statistical security.

3. Formulation/selection of precise complexity metrics. The metrics abstract away
factors that depend on configuration/implementation/execution environment and
offer meaningful information suitable for studying tradeoffs and comparing design
solutions.

4. Complete and consistent specification of all the building blocks along with an applia-
tion example (secure ST-RP Simplex) with a rigorous complexity/security analysis.

5. Tests and performance measurements with prototypes of the main building blocks
and application protocols.

6. Analysis of tradeoffs between security, efficiency, and functional aspects (perfect ver-
sus statistical privacy, efficient encoding of different data types versus the overhead
of conversions, pre-computation).

7. Identification of several building blocks that remain bottlenecks and need more
efficient solutions taking in consideration of our application context.

In conclusion, the deliverable established a foundation for the protocols developed in the
project, by providing complete specifications and analysis for all the building blocks and
for the current application protocols

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 7/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

1 Introduction

The SecureSCM project aims to develop cryptographic solutions to the problem of data
sharing in Supply Chain Optimization (SCO). The SCO problem has a precise mathe-
matical structure. It is an instance of the general Linear Programming (LP) problem.
However, standard algorithms for LP problems are not suitable for this purpose because
they require participants to reveal private data needed as input to the algorithm. The
risk of revealing this information far exceeds the benefits gained. Therefore, the aim of
the project is to develop efficient techniques for securely solving LP problems. We refer
the reader to Deliverable[26] for details of the SecureSCM problem and to Deliverable
3.1[27] and [23] for details of the Simplex algorithm to solve an LP problem. In our con-
text, we consider the following variations of the Simplex algorithm: Small-Tableau (ST),
Large-Tableau (LT), Integer-Pivoting (IP), Rational-Pivoting (RP), and Revised-Tableau
(RT), along with their combinations. An overview of the algorithms not provided in D3.1
is given in Chapter 6.

In this deliverable, we analyze the different components for constructing secure pro-
tocols implementing the above algorithms. In particular we focus on efficiency, security
and accuracy of the underlying components and discuss different trade-offs.

1.1 Privacy-Preserving Computation

Consider the dining cryptographers’ problem [8]: three cryptographers are sitting down
to dinner at their favorite restaurant when their waiter informs them that arrangements
have been made with the maitre d’hotel for the bill to be paid anonymously. One of
the cryptographers might be paying for the dinner, or it might have been NSA (U.S.
National Security Agency). The three cryptographers respect each other’s right to make
an anonymous payment, but they would like to be sure of which side is paying.

They decide to solve their problem as follows1: each cryptographer mentally decides a
secret bit - 0 if (s)he paid and 1 if (s)he did not. Then they follow a protocol to compute
the AND of these bits without revealing their secret bits and reveal the result (from which
they can solve their problem).

The above strategy is ‘secure’ assuming they use a protocol that computes the (public)
AND of secret bits and at the same time reveals absolutely no information about the secret
bits. Such a protocol is said to be privacy-preserving or secure.

Secure multi-party computation (SMC) is a distributed computation using a protocol
constructed from such privacy-preserving building blocks. A classical result in cryptogra-
phy [7, 5, 6] states that the resulting protocol is perfectly privacy-preserving in the sense of
universal composability (UC) if every building block is perfectly privacy-preserving in the
sense of UC. Another result [32, 31] states that there exists a privacy-preserving protocol
for every computation that we can imagine. Although the technique of [32, 31] works
for any computation, it is extremely inefficient in practice since it operates at the circuit
level and uses bits as the basic data type. Recently, however, efficient privacy-preserving
protocols for several operations on signed integers have been proposed [12, 18, 4]. These
are based on linear secret sharing and do not operate at the bit level. Using these building
blocks, it is possible to design complex protocols accomplishing several interesting tasks
that were not practically possible using earlier methods.

1Note that the solution proposed in the original paper was different.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 8/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

1.2 Problem Definition

Our secure computation problem involves n parties with n ≥ 3. A LP problem in standard
or canonical form (depending on the algorithm used) is given. The different values defining
the constraints and the objective function are the data to be protected. The way in which
the different parties supply the data is called partitioning. Although this partitioning
will depend on the actual real-world context, in this deliverable we assume a random
partitioning of data, which is the most general case. A mathematical description of an
LP problem is given in Section 6.2.2.

At this stage we will not discuss how to encode a given LP problem instance in our
secure processor. Rather we will assume that at the beginning of the protocol, the parties
have obtained a secret-sharing of some given problem instance. Details of how to input
the problem and read the final solution will be discussed in Deliverable D3.2.

The goal of the project is to design efficient protocols for solving LP problems of a
certain form. The most common method for solving LP problems is the Simplex algorithm
(see Section 6.1). Our secure protocols will be based on this algorithm.

1.3 Goals of WP9

Work Package Goals: Although the theory of SMC is quite simple, designing a prac-
tical secure protocol is not that easy. A primary issue is to ensure that the resulting
protocol indeed achieves the desired security. When several building blocks are composed
(e.g., with statistical and perfect privacy, or public and secret outputs) the resulting pro-
tocol becomes quite complicated to analyze. The challenge is to build protocols that
offer sufficient security guarantees and at the same time meet the (minimal) functional
and performance requirements of the applications. Most of the protocols proposed in
research papers have not been implemented, and experience with real-life applications
is very limited. The goal of WP9 is the investigation of cryptographic aspects of the
proposed solution. Some of the issues addressed in this work package are:

1. Survey of state-of-the-art in cryptographic tools.

2. Identify the cryptographic tools and SMC framework to use.

3. Design of the underlying building blocks.

4. Analysis of the above building blocks: (a) security, (b) complexity/performance, (c)
functionality/usability, (d) tradeoffs.

Deliverable 9.2 Objectives: The aim of WP9.2 is to identity bottlenecks, describe
security guarantees and performance metrics, and to identify open issues. The eventual
goal is to serve as a guideline for implementing the final prototype. The recommendations
of this work package will form the basis of the design decisions in WP3.2 and WP4, and
the feedback will be used for further work in WP9.3.

The goal of this report is to summarize the work of WP9.2 - investigation of the
performance, security and functional aspects of the building blocks to be used in designing
secure linear programming protocols. In this document, we focus only on building blocks
for secure ST-Simplex. Other variants can be obtained as extensions.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 9/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

1.4 Summary

Cryptographic Primitives Used: The following is a summary of the cryptographic
primitives used in our protocols: (1) Secret sharing schemes: Shamir’s secret sharing [28];
Additive secret sharing over finite fields and integers; Replicated Secret Sharing (RSS) [11];
Replicated Integer Secret Sharing (RISS) [15]; and Pseudo-random Replicated Secret
Sharing (PRSS) [11], (2) Pseudo-Random Functions (PRFs), (3) Diffie-Hellman key agree-
ment, and (3) one-time pad encryption using addition or multiplication in a finite field.

Analysis Presented: Our analysis comprises of the following. Complexity analysis
consists of three abstracts metrics: (1) rounds, (2) invocations, and (3) exponentiations.
These metrics describe respectively the quantities data transmitted, communication time,
and local computation. Each metric is also associated with a corresponding finite field,
which is also explicitly given. For protocols that are new or optimized variants of standard
protocols, we also discuss two other aspects: (1) correctness and (2) security. For standard
protocols, we refer to the original papers and skip this analysis. Finally, we give some
recommendations for future work.

Organization: This report is designed to be comprehensive with every needed building
block explicitly described. The analysis is done based on earlier deliverables (D9.1, D3,1)
and any security/correctness analysis done therein is not repeated here.

Chapter 2 introduces the security models, the metrics and the cryptographic frame-
work to be used in the SecureSCM project and for the protocols in the remaining chapters.
Chapter 3 discusses basic primitives used for several protocols in remaining chapters.
These are protocols for random number generation and related operations. Chapter 4
discusses k-ary associative operations such as multiplication, AND, OR, XOR. Chapter 5
discusses protocols for arithmetic and any remaining operations. Protocols for secure
Simplex are given in Chapter 6. Finally, conclusions, assessment and recommendations
are presented for each chapter (or section, as suitable) and summarized in Chapter 7.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 10/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

2 Models and Methods

In this chapter, we introduce the models, methods and notation used in the remaining
part of this document. The aspects we discuss here are: the communication and security
models, complexity metrics, tradeoffs, SMC framework, and data representation.

2.1 Communication Model

Secure computation is an distributed computation. Therefore, in order to make a reli-
able performance and security analysis, it is necessary to make some assumptions of the
underlying communication model.

Type of communication channels: One of the first assumptions we make is about
type of available channels. Although several of our protocols require broadcast of public
information, for simplicity we assume only one-to-one reliable full-mesh channels. Broad-
cast is achieved by sending a copy of the message to every party. Reliability implies only
guaranteed delivery and not any security properties such as authenticity or privacy.

Security of communication channels: Cryptographic protocols should withstand an
adversary having full control of the underlying communication infrastructure. This implies
that the parties conceptually communicate by exchanging messages via the adversary.
The second assumption we will make is that in addition to guaranteed delivery, the above
unicast channels also implicitly provide source authentication and confidentiality.

2.2 Security Models

Security in SMC is defined using several parameters - adversary structure, type of attacks,
computation power of adversary and information leakage. The adversary in our model
has the ability to corrupt parties. The set of all possible sets of corrupted parties is called
the adversary structure. We follow the general model of a threshold adversary structure,
where the adversary can corrupt up to t parties. The value t is called the corruption
threshold (or simply the threshold). A corruption implies that the adversary obtains
read (and sometimes write) access to that party’s memory and communication channel.
An adversary with read-only access (i.e., the ability to only observe) is called a passive
adversary, while one with read-write access (i.e., the ability to not only observe but also
modify memory contents) is called active. Assuming that parties behave correctly by
default, a passive adversary cannot alter the behavior of corrupted parties. However, an
active adversary has the ability to alter the messages transmitted by corrupted parties,
and thus, their behavior.

We will follow the standard notation given in deliverable D9.1 [26] (and the references
therein) without any further elaboration on these concepts. For efficiency reasons, we
make the following assumptions:

1. We will assume a computationally bounded adversary, even though most of our
protocols offer protection even against unbounded adversaries.

2. We will assume static corruptions where the adversary must corrupt parties at the
start of the computation and cannot corrupt parties during or after the computation.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 11/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

2.2.1 Active v/s Passive Security

The analysis of the building blocks is done assuming only passive attacks. However, most
of these building blocks can be adapted to active attacks using standard transformation
at the cost of increased complexity.

In Chapter 7 we discuss some approaches for converting passively secure protocols to
actively secure ones.

2.2.2 Statistical Security

Security in our protocols is of two types: perfect and statistical. The difference between
the two notions is discussed below. Some of our building blocks provide only statistical
security in order to achieve better efficiency.

Statistical Distance: We use the notion of statistical distance to give a quantitative
notion of security. Let X and Y be two random variables. Then the statistical distance
Δ(X, Y) is defined below:

Definition 2.1. Let X and Y be two random variables, both taking values in some finite
set V . The statistical distance between X and Y is defined as

Δ(X; Y) =
1

2

∑
v∈V

|P(X = v)− P(Y = v)|. (1)

Intuitively, if Δ(X; Y) is small (or zero), then the distributions of X and Y are sta-
tistically (resp. perfectly) indistinguishable.

All our building blocks are based on the following high-level idea. Let x be a random
variable denoting a secret integer. We first generate a random secret integer r in some
range and reveal f(x, r) for some function f .2 Let δ = Δ(r, f(x, r)). The type of security
offered by the protocol depends on δ as follows: δ = 0 implies perfect security and δ ≤ c/2κ

(for some constant c) implies statistical security in security parameter κ.
Following are some basic results about statistical distance. Their proofs can be found

in Chapter 8 of [29].
We first show that if U is uniform on some finite set then the statistical distance

between X + U and U can be bounded by the size of the domain of U .

Lemma 1. Let M and K be positive integers with M ≤ K. Let X, U be random variables
in [0..M − 1], [0..K − 1] respectively such that U is uniform. Then Δ(U ; X + U) ≤
(M − 1)/K and this bound is tight.

Proof. This is Lemma 1 in [25, Appendix A].

Remark 2.1. The result of Lemma 1 implies that Δ(U ; X + U) is small if M 	 K.
For instance, if one sets K = M2k, we see that the statistical distance between U and
X +U is less than 1/2k, hence approaches 0 exponentially fast as a function of k. In other
words, one can mask an integer value X from a bounded range {0, . . . , M − 1} by adding
a uniform random integer U from an enlarged range {0, . . . , K−1}. This way one can do
one-time pad encryption with integers, where X is the message, U is the one-time pad,
and X + U is the ciphertext.

2This includes methods based on secret sharing and additive or multiplicative hiding - f(x, r) ∈
{x+ r, xr} for field elements x, r. This is similar to one-time pad encryption where r is the pad (i.e., key)
and x is the plaintext.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 12/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

In Theorem 4, we show that this holds even if U is not uniform, but a sum of uniform
distributions. For this we will use the following lemmas.

Lemma 2. Let X and Y be random variable taking values in some finite set V and let
f : V → V ′ be some function mapping to some finite set V ′. It holds that

Δ(f(X); f(Y)) ≤ Δ(X; Y). (2)

Proof. This is Theorem 8.32 of [29].

Lemma 3. Let X,Y and Z be random values, where X and Z are independent and Y
and Z are independent, then

Δ((X, Z); (Y, Z)) = Δ(X; Y). (3)

Proof. This is Theorem 8.33 of [29].

Theorem 4. Let X ∈ [0..M − 1] and U be random variables and let U =
∑n

i=1 Ui for
some finite n, where each Ui is independent and uniform in [0..K − 1]. Then:

Δ(X + U ; U) ≤ M − 1

K
. (4)

Proof. Let Ui ∈R [0..K− 1] for i = 1, . . . , n such that Ui is selected uniformly and let and
X ∈ [0..M − 1] be with unknown distribution. Let =

∑n
i=1 Ui. Lastly, let

f : [0..(n−1)K−n+1]×[0..M+K−2]→ [0..M+nK−n−1] be defined as f(x, y) := x+y.
It follows that

Δ(X + U ; U) = Δ(X +

n∑
i=1

Ui;

n∑
i=1

Ui)

= Δ(X +

n−1∑
i=1

Ui + Un;

n−1∑
i=1

Ui + Un)

= Δ(f(

n−1∑
i=1

Ui, X + Un); f(

n−1∑
i=1

Ui, Un))

Lemma 2 ≤ Δ((
n−1∑
i=1

Ui, X + Un); (
n−1∑
i=1

Ui, Un))

Lemma 3 = Δ(X + Un; Un)

Lemma 1 ≤
M − 1

K

From Theorem 4 it follows that if K = M2k, then Δ(X + U ; U) decreases exponen-
tially fast in k. On the other hand, U =

∑n
i=1 Ui ∈ [0..nK − n] such that in order to get

the same bound on the statistical distance as when U would be uniformly random the
domain of U is increased with a factor n.

Theorem 5 is an extension of Theorem 4 where U is constructed in a slightly different
manner. This is used for instance in the security proof of Protocol 5.2.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 13/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Theorem 5. Let X ∈ [0..M−1] and U be random variables and let U = U ′+K ′∑n
i=1 U ′

i ,
where U ′ ∈R [0..K ′ − 1] and each U ′

i is uniform and independent in [0..K ′′ − 1]. Then:

Δ(X + U ; U) ≤ M − 1

K ′K ′′ . (5)

Proof. Let Un = U ′ + K ′U ′
n and Ui = K ′U ′

i for i = 1, . . . , n − 1. Observe that Un is
uniform in [0..K ′K ′′ − 1], and Ui are independent. Also, let

f : [0..(n− 1)K ′(K ′′ − 1)]× [0..M + K ′K ′′ − 2]→ [0..M + nK ′(K ′′ − 1) + K ′ − 2]

be defined as
f(x, y) := x + y

Using the same method as in the proof of Theorem 4 we obtain:

Δ(X + U ; U) = Δ(X +

n∑
i=1

Ui;

n∑
i=1

Ui)

= Δ(X +

n−1∑
i=1

Ui + Un;

n−1∑
i=1

Ui + Un)

= Δ(f(
n−1∑
i=1

Ui, X + Un); f(
n−1∑
i=1

Ui, Un))

Lemma 2 ≤ Δ((
n−1∑
i=1

Ui, X + Un); (
n−1∑
i=1

Ui, Un))

Lemma 3 = Δ(X + Un; Un)

= Δ(X + U ′ + K ′U ′
n; U ′ + K ′U ′

n)

Lemma 1 ≤
M − 1

K ′K ′′

The particular case used in our protocols is M = 2k, K ′ = 2k, and K ′′ = 2κ. It follows
that Δ(X + U ; U) ≤ 2k−1

2k+κ < 2−κ. The range of U is [0..n2k(2κ − 1) + 2k − 1].
The security of every protocol with statistical security presented in this document

follows from one of the above theorems.

2.2.3 Universal Composability

In order to talk about security analysis, it is necessary to discuss a concept named Uni-
versal Composability (UC). Without going into too much technical details (for which we
refer the reader to [7, 6, 26]), we discuss the main aspects relevant to this document.

Roughly speaking, UC implies some sort of security when two building blocks are
composed to form a larger building block. The main UC theorem [6] says that if protocols
P1, P2 are UC, then any resulting protocol formed using (only) P1, P2 as building blocks
in any imaginable manner is also UC.3 Furthermore, being UC implies security under
standard requirements (such as privacy of inputs, etc).

To prove the security of a protocol P , we can utilize one of the following methods:

3Note that only the weakest security notion is preserved. For instance if P1 provides perfect security,
while P2 provides only statistical security, then the combined protocol will provide only statistical security.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 14/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

1. Construct a simulator such that any information extracted by an adversary interact-
ing with the parties in the real execution of P can also be extracted by the simulator
interacting with a trusted party implementing the ideal functionality of P .

2. Show that P is UC by showing that every sub-protocol Pi of P is UC in the follow-
ing sense. For every Pi, construct a simulator that interacts with a trusted party
implementing the ideal functionality of Pi and outputs something that cannot be
distinguished (by any external entity) from the output of the adversary interacting
with the parties in a real execution of Pi.

Although the first approach allows us to prove the security of P , it does not guarantee
security of a larger protocol in which P may be a sub-protocol. On the other hand, using
the second approach allows us to claim that P itself is UC, which allows us to use it in a
larger protocol without any loss of security.

Most of the protocols used in this work are standard in the literature with well accepted
guarantees of security and we will not prove security of those protocols. The remaining
protocols are optimized variants with non-standard techniques. For these, we will follow
the second approach by sketching out a simulator for each of their sub-protocols.

2.3 Complexity Analysis

In this section we describe the metrics we use in our complexity analysis. The purpose of
this analysis is to give quantitative results about the overall running time of the protocols,
using abstract metrics, independent of implementation and execution environment.

As we shall see, the following four types of analysis are sufficient to obtain an estimate
of the running time of the protocols without fully implementing them: (1) data trans-
mitted, (2) communication time, (3) local computation, and (4) empirical results. We
discuss the concepts in detail below.

Computation model. Secure computation requires frequent communications between
parties. Consider, for example, a secure computation system based on the Shamir’s secret
sharing scheme over a finite field. The system is based on the following operations with
secret field elements: input sharing (each party obtains a secret share of each private
input); addition/multiplication of shared values; addition/multiplication of public and
shared values; output recovery (each party obtains the output of a computation, recon-
structed from shares). These primitives are used to build protocols for any other secure
computation task. Multiplication of shared values, input, and output require interaction
between parties, while the other operations can be locally computed.

The parties run local instances of a protocol and communicate whenever they execute
an interactive operation. Causality relations define a partial order of the start and finish
times of the operations: a party can start an operation as soon as its input is available,
and may start several operations in parallel; on the other hand, a party can finish an
interactive operation φ only after receiving the necessary data from the other parties; any
operation whose input depends on φ can start only after finishing φ.

A simple computation model based on these remarks is sufficient for the analysis of
our protocols. A secure computation is structured into rounds according to the causal-
ity relations determined by the protocol (algorithm and secure computation primitives).
Round r groups the interactive operations that can start after finishing round r − 1. We

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 15/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

assume that the set of operations executed in a round is defined when the round begins,
and they are all finished before starting other operations (next round).

We distinguish the special case of operations whose start time does not depend on
the completion of other operations (e.g., joint generation of secret random values). These
operations can be precomputed, in the sense that if their output is needed in round r
they may be executed in any round r′ ≤ r. By convention we assign them to round r,
but they may be grouped in a precomputation round.

An implementation can schedule the interactive operations according to the partial
order relation, such that to minimize the effects of communication and synchronization
delays. We cannot analyze all executions paths that would be allowed by scheduling any
operation as soon as its input is available. However, the structure of rounds defined above
offers a good approximation of the parallelism allowed by the protocol, in order to reduce
the communication delays. Moreover, important performance gains can be obtained by
precomputation.

2.3.1 Communication Complexity

This quantity defines how much data is transmitted in a given protocol. In quantitative
terms, we are interested in the total network bandwidth consumption. Instead of several
possible metrics to define this overhead (such as octets per party, total octets, etc), we
decided to use the metrics called invocations. This was done because all the protocols
discussed in this work have some common features: (1) they are symmetric with respect to
the parties (i.e., all parties have almost identical communication overhead), (2) the number
of parties and corruption threshold is same in all protocols, and (3) our communication
model precludes true broadcast channels (broadcast is emulated by unicast). In this
setting, one invocation turns out to be the minimum communication overhead in protocols
requiring interaction. Furthermore, it turns out that the actual communication overhead
in every protocol is always an integer multiple of one invocation.

Invocation: Assume that the only means to communicate between parties is via secure
one-to-one channels. An invocation is a secure computation primitive achieved with a
single interaction between parties. During this interaction every party sends a message to
every other party. In our protocols the payload of a message is a secret share of a value,
and a share is an element of a finite field F.

The unit of communication complexity is the amount of data transmitted by a party
during an invocation, i.e., when every party transmits to every other party an element of
F. We will always consider an invocation with a corresponding field. Note that it is easy
to translate invocations to octets by considering the field elements to be transmitted in
some encoding and the number of parties.

Therefore, the metrics for communication complexity is the number of invocations
performed during a protocol run. This is proportional to the actual amount of data sent or
received, and conveniently abstracts away common factors like configuration parameters
(number of parties, type and size of field) and implementation dependent parameters
(encoding of field elements, message format).

Remark 2.2. It is important to note that we use invocations as the metrics for the amount
of data transmitted. In particular, invocations do not consider the overhead involved in

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 16/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

preparing/processing the transmitted/received data. This overhead is measured using a
different quantity called computation complexity (see Section 2.3.3).

2.3.2 Round Complexity

Roughly speaking, this quantity defines how much time is used for communication between
parties without considering the amount of data. As before, we are interested in abstract
metrics of this quantity. It turns out that invocations allows us to formulate similar
metrics for time. Recall that one invocation is the fundamental interaction between
parties. Assume that the secure computation is time-optimized by executing in parallel
all invocations in a round. Then we can take the amount of time needed to complete one
invocation as unit for interaction time. We call this unit a round.

Round: A round is the time needed for one invocation. If a protocol step requires two
or more invocations that can be done in parallel, then that step still counts as only 1
round of time. On the other hand, if two or more invocations in a step cannot be done
in parallel, then each such invocation adds one more round to the protocol. It turns out
that in all our protocols, whenever two or more invocation can be done in parallel, they
are always of the same type. Thus, even if invocations in two different fields take different
times, it is possible to use the total number of rounds and the type of invocation(s) in
each round to obtain a realistic estimate of the actual communication time.

The round complexity of a protocol is the number of rounds necessary to complete a
protocol run (according to the computation model given above). This metric takes into
account the inherent network delays, which are independent of the amount of data sent.

An estimate of the overall communication time (for an ideal implementation of the
computation model) can be obtained by combining the number of rounds and the number
of invocations.

2.3.3 Computation Complexity

Roughly speaking, this quantity defines the amount of computation time locally needed by
each party during a protocol run. In typical configurations, the overall protocol running
time is dominated by the communication time. However, if a protocol is executed a
large number of times in parallel, the local computation becomes prominent (e.g., during
precomputation or in Simplex iterations). Therefore, it becomes useful to get a theoretical
estimate of the computation complexity.

One way to obtain an accurate metric is to count the number and type of field op-
erations done by each party before and after each sequential invocation(s). However, in
practice, addition and multiplication are fast enough to be discarded from analysis. The
only expensive operation is field exponentiation. Therefore, our basic unit of measuring
local computation is an exponentiation.

2.3.4 Empirical Results

The above theoretical analysis is almost sufficient to obtain an estimate of the running
time. Assuming that the total number of rounds, the number and type of invocations
in each round, and total number of exponentiations are known. Then the only missing
information is the time for one invocation of each type and the time for one exponentiation.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 17/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

These two parameters can be obtained using experiments. For simple protocols with few
invocations, the time obtained from this analysis should be accurate.

On the other hand, for complex protocols with several tens of rounds and several
thousand invocations per round, several other factors come into play. The main problem
is efficient scheduling and synchronization of network messages in several parallel invoca-
tions. The second problem is of optimally parallelizing local computation with the round
computation.

In order to gain better understanding of the performance of secure Simplex, it is
necessary to make some empirical tests. Some of the tests suggested are: running time
with several rounds and several thousand parallel invocations in each round.

2.3.5 Tradeoffs

In this section we consider several possible tradeoffs that may result in improved perfor-
mance at the expense of some other property.

Precomputation: One of the tradeoffs we can make is to use precomputation, which
trades storage with time. Many protocols use large amounts of secret random values
(unknown to any party) and spend an important amount time to generate them. These
random values can be precomputed, either before starting the secure computation, or
before starting the protocol that needs them. Precomputation can reduce the running
time of the protocols, but requires additional resources.

For example, each iteration of secure Simplex has to generate a large number of secret
random bits. Each bit requires interaction between all parties and one exponentiation by
each party. We cannot precompute the random bits needed during the entire protocol
run, because the number of iterations is not known in advance (and the total amount is
huge for a large linear program). However, we can substantially reduce the running time
by precomputing the random bits needed by an iteration. We can reduce the number
of rounds by generating all the bits in parallel, instead of small batches, sequentially.
Furthermore, a multi-processor computer can run the precomputation for iteration i in
parallel with the iteration i − 1. The results of precomputation experiments with secure
Simplex are presented in Section 6.3.

Round versus communication complexity: When designing a protocol we often
have to choose between solutions that reduce the communication/computation complex-
ity but need more rounds, and solutions that save rounds but increase the communica-
tion/computation complexity. We want the solution with the best performance, but the
performance depends on several factors, including protocol implementation, execution
environment, and application.

This tradeoff applies to many of the secure computation tasks discussed in the next
chapters. A particular issue is the choice between encoding all data types in the same
field, which saves rounds but can increase the communication complexity, and efficient
data encoding in different fields, which reduces the communication complexity but requires
additional rounds for conversions (Section 5.5).

Functionality: A possible tradeoff in functional aspects is to reduce accuracy in order
to gain performance. This tradeoff applies to secure multiplication and division of fixed-

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 18/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

point numbers and their building blocks (Sections 5.1 and 5.4): we can choose a more
efficient protocol with lower accuracy, or a more complex protocol with better accuracy.

Another functional tradeoff is with respect to correctness, where we allow a small
probability of getting incorrect results in order to gain performance. Several protocols
proposed in the literature (e.g., for comparison) offer probabilistic correctness, with error
probability that can be made arbitrarily small.

As another example, the variant of secure Simplex presented in Chapter 6 does not use
Bland’s rule in selecting the pivot. Although this does not cause any undesirable effects
in general, there is always a very small probability of entering an infinite loop.

Security: Finally, as another tradeoff, we can gain performance by relaxing the security
requirements. Many of the protocols presented in Chapter 5 are designed for statistical
privacy, instead of perfect privacy, in order to improve their efficiency. Based on the
same ideas one can construct protocols that offer perfect privacy, but their complexity
is substantially higher. As another example, Chapter 3 presents several protocols with
statistical privacy (based on RISS) for secret random values, in addition to slower protocols
with perfect privacy.

The protocols mentioned above are based on standard security notions. They are
general building blocks that can be used in any application. On the other hand, since
performance is a critical issue in our applications, we consider further relaxing the secu-
rity requirements, in particular cases. The security of those protocols is not rigorously
quantifiable (as an example, TruncPrN). However, we give an intuitive argument for their
security when they are used as a sub-protocol in certain contexts (such as fixed-point
multiplication during Simplex iterations).

2.4 SMC Framework

Notation: The symbol a → i denotes that value a is sent to party (or set of parties)
represented by i over a secure channel. The symbol (a1, a2, . . . am) → (i1, i2, . . . , im) is
shorthand for (aj → ij) for 1 ≤ j ≤ m. The symbol a ⇒ i indicates that a is sent to i
over a public broadcast channel.

Our secure computation problem involves some n parties with n ≥ 3 working on
secret data. The basic framework we use is that of Shamir secret sharing [28]. In this
framework, secret values are represented as share vectors of the Shamir sharing scheme.
Each party holds one share of the secret and a threshold number of parties must pool their
shares in order to obtain the secret. The protocol uses the Lagrange form of polynomial
interpolation and is described in Section 2.4.1.

All the protocols discussed in this section are standard in the literature. The provide
perfect privacy and are UC-secure against a passive adversary. Consequently, we will not
present a security analysis of these protocols. The reader is referred to D9.1 [26] and the
references therein for the security proofs.

2.4.1 Shamir’s Secret Sharing

The scheme is defined using the following parameters: an integer n ≥ 2 (denoting the
number of parties), an integer t < n denoting a threshold (maximum number of parties
the adversary can corrupt) and a finite field F denoting the secret-space. The Dealer is
the party who holds a secret and might be one of the n parties.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 19/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Goal: Construct n shares of the secret such that any t + 1 or more shares can be
used to reconstruct the secret and any t or fewer shares reveal zero information about
the secret. In typical situations, the dealer secretly distributes one share to each of the n
parties. The scheme has three phases described below:

1. Share generation: The secret s is an element of some finite field F.

The dealer uniformly selects t field elements a1, a2, . . . , at ∈ F. He then constructs
the degree-t polynomial p(x) = s+a1x+a2x

2+. . . atx
t ∈ F[x] and computes si = p(i)

for 1 ≤ i ≤ n. The n-vector (s1, s2, . . . , sn) is called a sharing of s. We denote by
RandShare(s, n, t) the function that computes a sharing of s with parameters n, t.

2. Share distribution: si → i for 1 ≤ i ≤ n.

3. Secret reconstruction: Choose any subset J ⊂ [1..n] s.t. |J | = t + 1 and pool their
shares to reconstruct the secret s as:

s =
∑
j∈J

(
sj

∏
i∈J,i�=j

−i

j − i

)

Computation: In algorithm RandShare, all except the first term needed in the com-
putation of si can be precomputed without knowing the secret. Then this algorithm
needs n additions in F. Similarly, the vector of products needed for reconstruction can be
precomputed. Then this step needs t + 1 multiplications and t additions in F.

Security: If the number of available shares is ≤ t, they reveal no information about
s. Thus, the scheme provides information theoretic or perfect privacy. For details see [27].

Notation: We use the following shorthand notation. If s ∈ F is the secret then for any
n, t, the symbol [s] denotes a sharing of s. In other words, [s] is the vector (s1, s2, . . . , sn).
In the context of this document, the word “secret” refers to any value that is shared using
a secret-sharing scheme (such as above).

2.4.2 Arithmetic with Secret Field Elements

We give some building blocks used throughout the document. These are protocols for
addition, multiplication and related operation with secret-shared field elements.

Addition of secrets: Each party i ∈ [1..n] holds ai, bi, the shares of a, b ∈ F. Party i
computes ci = ai + bi ∈ F. Then [c] = (c1, c2, . . . , cn) is the sharing [a + b].

Addition of a secret with a public field element: Each party i ∈ [1..n] holds ai,
the share of a ∈ F. Let α ∈ F be a public value. Party i computes ci = α + ai. Then
[c] = (c1, c2, . . . , cn) is the sharing [α + a].

Multiplication of a secret with a public integer or field element: Each party
i ∈ [1..n] holds ai, the share of a ∈ F. Let α ∈ Z∪ F be a public value. Party i computes
ci = αai. Then [c] = (c1, c2, . . . , cn) is the sharing [αa].4

4When multiplying by a public integer (instead of a field element), F is considered as a Z-module.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 20/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Linear Combination of secrets: Each party i ∈ [1..n] holds ai, bi, the shares of
a, b ∈ F. Let α, β ∈ Z ∪ F be public values. Party i computes ci = αai + βbi. Then
[c] = (c1, c2, . . . , cn) is the sharing [αa + βb].

Multiplication of secrets: Each party i ∈ [1..n] holds ai, bi, the shares of a, b ∈ F.
They follow the following protocol. Note that this requires t < n/2.

Protocol 2.1: [c]← Mul([a], [b])

foreach party i ∈ [1..2t + 1] do parallel1

di ← aibi;2

(d(i,1), d(i,2), . . . , d(i,n))← RandShare(di, n, t);3

(d(i,1), d(i,2), . . . , d(i,n))→ (1, 2, . . . , n); // 1 rnd, ≈1 inv (F)4

foreach party j ∈ [1..n] do5

cj ←
∑2t+1

i=1

(
d(i,j)

∏2t+1
�=1,� �=i

−�
i−�

)
;6

return cj ;7

Then [c] = (c1, c2, . . . , cn) is the sharing [ab].

Inner Product of Secrets: Let [a], [b], [a′], [b′] be sharings. The parties now want to
jointly compute the sharing [h] = [ab + a′b′]. Using Protocol 2.1 the naive way would
result in each party j ∈ [1..n] computing cj, c

′
j and adding them locally to get the final

result. In other words, party j would compute

2t+1∑
i=1

(
d(i,j)

2t+1∏
�=1,� �=i

−�

i− �

)
+

2t+1∑
i=1

(
d′

(i,j)

2t+1∏
�=1,� �=i

−�

i− �

)

=

2t+1∑
i=1

(
(d(i,j) + d′

(i,j))

2t+1∏
�=1,� �=i

−�

i− �

)
,

where d(i,j) and d′
(i,j) are j’s shares in the sharings [aibi] and [a′

ib
′
i] respectively. From the

addition protocol, it is clear that d(i,j) +d′
(i,j) is j’s share in the sharing [aibi +a′

ib
′
i]. Thus,

it is more efficient to first compute aibi + a′
ib

′
i and then obtain j’s share from the sharing

[aibi + a′
ib

′
i]. Based on this, we obtain a generalization for computing the inner product of

two m-vectors.
Notation: Let a = (a1, a2, . . . , am) ∈ F

m be an m-vector of field elements. For
i ∈ [1, m], let [ai] = (a(i,1), a(i,2), . . . , a(i,n)) be a sharing of ai. For j ∈ [1, n], define

a∗
j

def
= (a(1,j), a(2,j), . . . , a(m,j)). By [a], we denote the n-vector (a∗

1, a
∗
2, . . . , a

∗
n)

Let a,b be two m-vectors. Each party i ∈ [1..n] holds two m-vectors a∗
i ,b

∗
i as defined

above. To compute the sharing [a · b], they use Protocol 2.2.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 21/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 2.2: [c]← Inner([a], [b])

foreach party i ∈ [1..2t + 1] do parallel1

di ← a∗
i · b∗

i ; // di = inner product of a∗
i and b∗

i2

(d(i,1), d(i,2), . . . , d(i,n))← RandShare(di, n, t);3

(d(i,1), d(i,2), . . . , d(i,n))→ (1, 2, . . . , n); // 1 rnd, ≈1 inv (F)4

foreach party j ∈ [1..n] do5

cj ←
∑2t+1

i=1

(
d(i,j)

∏2t+1
�=1,� �=i

−�
i−�

)
;6

return cj ;7

Then [c] = (c1, c2, . . . , cn) is the sharing [a · b].
In Protocols 2.1, 2.2, we assumed that only the first 2t + 1 parties are involved in the

initial phase. However, to optimize communication and computation load, it is possible
to select any arbitrary subset of 2t + 1 parties. Details are given in [26].

In most of our computation, the field F will be the field Zq for some prime q > 2. In
some cases, it will be the field F2m for some integer m.

Shorthand Notation: For convenience, we will use the infix notation to denote the
addition, subtraction, multiplication and linear combination protocols. For instance,
[c] ← [a][b] indicates that [c] is the (secret) output of the protocol for multiplication
with [a], [b] as inputs. Similarly [c]← a[b] indicates that [c] is the output of the protocol
for multiplication with public input a and secret input [b].

2.4.3 Input and Output

For convenience, we define the following two protocols:

Protocol 2.3: [a]← Input(a, j)

for party j do1

(a1, a2, . . . , an)← RandShare(a, n, t);2

(a1, a2, . . . , an)→ (1, 2, . . . , n); // 1 rnd3

foreach party i ∈ [1..n] do4

return ai;5

Protocol 2.4: a← Output([a])

foreach party i ∈ [1..t + 1] do parallel1

ai → [1..n]; // 1 rnd, ≈1 inv (F)2

foreach party j ∈ [1..n] do3

a←∑t+1
i=1

(
ai

∏t+1
�=1,� �=i

−�
i−�

)
; // local computation4

return a;5

2.5 Data Representation

Although we use the above SMC framework with arithmetic on secret field elements, the
data in our application domain consists of signed integers, signed fixed-point numbers and
boolean values. In this section we discuss how to map application data to field elements in

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 22/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

order to do secure computation with them. The reverse mapping is performed to extract
the application data after the computation.

Integers in the range [−2�..2�] will be represented as elements of a field Zq with prime
q such that q > 2�+1. For some integer α in the range, the corresponding field element
representation is α mod q.

Fixed point numbers in the range (−2e − 1, 2e + 1) with resolution (number of frac-
tional bits) f will be represented as integers in the range [−2e+f ..2e+f], which are then
represented as field elements of Zq as described above. For the fixed point number β in
the range, the corresponding integer representation is 2fβ.

Notation: Let Fldq : [−2�..2�] → Zq be the function that maps integers to their field
element representation and let Intf : (−2e − 1, 2e + 1) → [−2e+f ..2e+f] be the function
that maps fixed-point numbers with resolution f to their integer representation. In other
words, Fldq(x) = x mod q and Intf(x) = 2fx.

2.5.1 Boolean Operations

Every field F consists of the additive and multiplicative identities, 0 and 1 respectively.
These can be used to encode the boolean variables True and False respectively. The
arithmetic operations with secret field elements can be used to perform boolean operations
on the sharings of these bits. Table 2 in Section 2.6 shows how to evaluate the basic
boolean functions using the protocols of Section 2.4.2.

2.5.2 Integer Arithmetic

Using the above representation, the arithmetic with integers can be emulated using mod-
ular arithmetic in Zq. In particular, for any integers a, b ∈ [−2�..2�], the operation a � b
for � ∈ {+,−,×} can be done as:

a� b = Fld−1
q (Fldq(a)� Fldq(b))

The above can be done using protocols presented in Section 2.4.2. The protocol for
computing inner product of two integer vectors is a trivial extension of Protocol 2.2 for
field elements and we will not elaborate further on these.

Furthermore, if b|a then the division a/b can be done as

a/b = Fld−1
q (Fldq(a)× Fldq(b)

−1).

Assuming that b �= 0, Protocol 3.12 (Inv) of Section 3.2.4 can be used to compute inverse
of secret field elements. Protocols for comparison of integers are given in Section 5.2.

2.5.3 Fixed-Point Arithmetic

Using the above representation, the operations of addition, subtraction and compari-
son with fixed point numbers are similar to those with integers. To do an operation
on fixed point numbers a, b, we do the same operation on their integer representations
Intf(a), Intf(b). Depending on the operation, the output then is either the correct integer
representation of the fixed-point result (for addition, subtraction) or a boolean value (for
comparison).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 23/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Multiplication, on the other hand is not so straightforward and division is even more
complicated. In the multiplication protocol, we have two main steps: (1) multiply the
integer representations Intf(a), Intf (b) of two fixed-point numbers with resolution f to
obtain the integer representation Int2f (ab) of a fixed point number with resolution 2f ,
and (2) truncate this resulting value by f bits to obtain the integer representation of a
number with resolution f .5

Truncation of an integer (or an integer representation) α by f bits follows this general
procedure: (1) compute α′ = α mod 2f , and (2) compute α′′ = (α−α′)/2f , the truncated
value. Division by 2f is carried out by multiplication with 2−f ∈ Zq.

For the fixed-point division α/β, we perform the (fixed-point) multiplication αβ ′,
where β ′ is the (fixed-point) reciprocal of β, and is computed using the Newton-Raphson
method. Details are given in Deliverable 3.1 [27] and Section 5.4.

2.6 Summary

Notation: The remaining document is based on the notation and assumptions given
here. Unless otherwise specified, all secure computation is done using a (t, n) Shamir
secret-sharing scheme in a prime field Zq (the “default” field) with q sufficiently large
and q > 22e+2f+κ for some security parameter κ, where e, f denote the magnitude and
resolution of fixed-point numbers, and t, n denote the corruption threshold and the number
of parties. Some of the protocols work in other fields such as F28 during intermediate steps.

From this point onwards, by [x] we denote a Shamir sharing of x ∈ Zq, the default field.
Depending on the context, x may represent any of the following: (1) a signed integer, (b)
an unsigned integer, (c) a signed fixed-point number, or (d) a boolean value using the
mappings described in Section 2.5. For convenience, we will use the infix notation for Mul
and boolean operations.

When dealing with sharings in a non-default field, or when there is any ambiguity, we
will superscript the name of the field with the secret. For instance, the Shamir sharing of
s in F2m will be denoted by [s]F2m .

Organization: Due to various restriction imposed by the structure of the protocols
(i.e., their dependencies), the building blocks are grouped in broad categories (with some
minor overlap). This classification is done to ensure that every sub-protocol used at any
point has already been described before (i.e., we follow the ‘bottom-up’ approach). Our
high-level organization is as follows:

1. Random number generation (Chapter 3)

2. Unbounded Fan-in (i.e., k-ary) and binary operations (Chapter 4)

3. Arithmetic operations and comparison (Chapter 5)

4. Secure Simplex (Chapter 6)

Complexity of basic protocols: Table 1 gives the complexity of basic protocols.

5Note that due to the underlying algorithm, the value of q should be chosen so as to contain integers
in the range [−2e+2f ..2e+2f].

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 24/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Operation Protocol Rounds Invocations (F) Local Computation

[c]← [a] + [b] 0 0 1 add.
[c]← a + [b] 0 0 1 add.
[c]← a[b] 0 0 1 mul.
[c]← α[a] + β[b] 0 0 1 add., 2 mul.
[c]← [a][b] Mul 1 1 1 mul., 1 RandShare
[c]← [a] · [b] Inner 1 1 k − 1 add., k mul.

1 RandShare
∀j : [aj]← Input(aj , j) Input 1 1 1 RandShare
a← Output([a]) Output 1 1 t add., t + 1 mul.

Table 1: Complexity of basic building blocks.

Field used Operation Protocol How to compute? Rounds Invocations

Any (F) [c]← [a] ∧ [b] AND [c]← [a][b] 1 1 (F)
Any (F) [c]← [a] ∨ [b] OR [c]← [a] + [b]− [a][b] 1 1 (F)
Any (F) [c]← ¬[a] NOT [c]← 1− [a] 0 0
Any (F) [c]← [a]⊕ [b] XOR [c]← [a] + [b]− 2[a][b] 1 1 (F)

F2m [c]← [a]⊕ [b] XOR [c]← [a] + [b] 0 0

Table 2: Evaluation of boolean functions.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 25/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

3 Secret Random Number Generation

3.1 Interactive Protocols For Randoms

Generation of secret-shared random values is a fundamental building block in our SMC
protocols. In summary, our main goal is to generate a sharing [r] for some unknown r ∈ F

such that each party holds one share of r and any of the following hold:

1. r is uniform in F (random field element)

2. r is uniform in {0F, 1F} (random bit)

3. If F = Zq then r ∈ Z2m ⊂ Zq for some public integer m < log2(q).

We describe four basic protocols (Protocols 3.1-3.4). While Protocol 3.1 works in any
field, the remaining protocols (Protocols 3.2-3.4) work only in a prime field Zq.

(A) Random Field Element: Protocol 3.1 is a fundamental primitive used in several
protocols. It generates a random Shamir-shared field element in any finite field F.

Protocol 3.1: [r]F ← RandFld(F)

foreach party i ∈ [1..n] do parallel1

ri
R← F;2

[ri]
F ← Input(ri); // 1 rnd, 1 inv (F)3

[r]F ←∑n
i=1[ri]

F;4

return [r]F;5

Security: Protocol 3.1 provides perfect privacy [26].

(B) Random Bits: Protocol 3.2 (RandBit) generates a secret-shared random bit. This
protocol, its variants, and all other protocols that use this as a sub-protocol require F = Zq

and q ≡ 3 (mod 4).

Protocol 3.2: [b]← RandBit(q)

[r]← RandFld(Zq); // 1 rnd, 1 inv (Zq)1

[u]← [r][r]; // 1 rnd, 1 inv (Zq)2

u← Output([u]); // 1 rnd, 1 inv (Zq)3

v ← u−(q+1
4

) mod q; // 1 exp (Zq)4

// uv2 ≡ 1 (mod q)
[b]← (2−1 mod q)(v[r] + 1);5

return [b];6

Security: Protocol 3.2 provides perfect privacy [26].

(C) Random Elements In Range: We present two protocols for generating randoms
in range. Both protocols generate a Shamir sharing [r] in a prime field Zq of random
r ∈ [0..2m− 1] with m < log2(q). In the first protocol, Rand2mU, the value r is uniformly
distributed, while in the second one, Rand2mN, this value is a sum of random uniform
integers. Furthermore, Rand2mU additionally outputs a bit-wise sharing of the random.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 26/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 3.3: [r], [r]B ← Rand2mU(q, m)

foreach i ∈ [0..m− 1] do parallel1

[ri]← RandBit(q) ; // 3 rnd, 3m inv, m exp (Zq)2

[r]←∑m−1
i=0 2i[ri];3

[r]B ← ([r0], [r1], . . . , [rm−1]);4

return [r], [r]B;5

Security: Protocol 3.3 provides perfect privacy.

As always, the number of parties is n. Let τ : Zn× [1..n] → {0, 1} be a public function
s.t. ∀x ∈ Zn :

∑n
i=1 τ(x, i) = x. Protocol Rand2mN is as follows.

Protocol 3.4: [r]← Rand2mN(q, m)

foreach party i ∈ [0..n] do parallel1

βi ← �(2m − 1)/n�+ τ(2m − 1 mod n, i);2

ri
R← [0..βi];3

[ri]← Input(ri); // 1 rnd, 1 inv (Zq)4

[r]←∑n
i=1[ri];5

return [r];6

3.2 Protocols Based on PRSS

First we give some notation. Let there be n parties. We assume a threshold adversary
structure with threshold t < n. Then the set A = {X|X ⊂ [1..n] ∧ |X| = t} is the set of
all maximal unqualified subsets of parties. Note that |A| = (n

t

)
= n!

(n−t)!t!
.

3.2.1 Replicated Secret Sharing (RSS)

RSS [11] is a secret sharing scheme over some finite field F as described below.

1. Share Generation: To share a secret s ∈ F, the dealer generates ri
R← F for 1 ≤ i ≤

|A| − 1 and sets r|A| = s−∑|A|−1
i=1 ri. Then (r1, r2, . . . , r|A|) is the share vector of s.

We use the symbol [s]RQ to denote this share vector.

2. Share Distribution: The dealer assigns some arbitrary (public) labeling to elements
of A and writes A as {X1, X2, . . . , X|A|}. Then for 1 ≤ i ≤ |A|, he distributes the
shares as follows:

ri → [1..n]\Xi

3. Secret Reconstruction: Let B ∈ [1..n] such that |B| = t + 1. Then members of B

jointly share the entire vector (r1, r2, . . . , r|A|). They compute s =
∑|A|

i=1 ri.

Security: The scheme provides perfect privacy. See D9.1 [26] and [11] for details.

3.2.2 Conversion of RSS Shares to Shamir Shares

Let [s]RQ = (r1, r2, . . . , r|A|) be an RSS sharing of some s ∈ F as described above. Then
the share vector of each party i ∈ [1..n] is (rj)i/∈Xj

with
(

n−1
t

)
elements. To convert the

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 27/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

RSS shares of s to Shamir shares of s for the same access structure the parties follow the
following protocol [11].

Protocol 3.5: [s]F ← RSStoShamir([s]RQ)

foreach party i ∈ [1..n] do1

si ←
|A|∑

j=1,i/∈Xj

⎛
⎝rj

∏
�∈Xj

(�− i)

�

⎞
⎠ ;

2

/* Local computation */

/* All arithmetic is done in F */

return si;3

Then (s1, s2, . . . , sn) is the Shamir sharing [s]F.

Correctness: Consider the polynomial f(x) =
∑|A|

i=1 rifi(x), where fi(x) =
∏

j∈Xi

(j−x)
j

.

By construction, the polynomials fi(x) have degree t over F; fi(0) = 1; and fi(j) = 0
for all j such that j ∈ Xi. Therefore, f(x) is a polynomial of degree t and f(0) =∑|A|

i=1 rifi(0) = s. Thus, f(x) forms a valid polynomial for the Shamir sharing of s. Also
observe that si = f(i) for all i ∈ [1..n]. Hence the vector (s1, s2, . . . , sn) is the Shamir
sharing [s]F. See [26, 15] for details.

Security: Security follows from the locality of conversion. The converted shares
cannot leak more information than the original shares. If the original shares are random
uniform then the resulting Shamir shares are also random uniform.

3.2.3 Non-Interactive Generation of RSS Shares

Observe that once the parties obtain the RSS sharing of a random field element, they
can locally convert it to a Shamir sharing of the same value. Also note that if the parties
mutually generate random consistent RSS shares, the resulting secret is also random.
Furthermore, note that a consistent RSS sharing implies that several subsets of members
are able to agree on a secret common field element (similar to a secret group key).

Since we want to generate several random field elements, we need to an equal number
of independent and consistent random RSS sharings. Our approach is to somehow obtain
one consistent random RSS sharing and reuse this sharing an arbitrary number of times.
We call the initial sharing the master sharing. The idea is to use each RSS share ri of the
master sharing as the key to a pseudorandom function (PRF) H and then to generate the
corresponding RSS share r(i,j) of jth subsequent instance as Hri

(j) [11, 15].
Although exponentially many random secret field elements can be generated based on

a single master sharing, obtaining the master sharing could (and probably would) still
require interaction. However, even if the cost of obtaining this master sharing may be
high, it is amortized over time as it can be used to generate practically infinite subsequent
random sharings without interaction.

(A) Generating The Master Sharing: There are several ways to generate the master
sharing. One model is to use a trusted party to distribute the master sharing. Another
method suggested in [15] does not use trusted parties. In this, each party acts as the dealer
and distributes an RSS sharing of a secret random field element. Then the master sharing
is the sum of these secrets (computed locally as the sum of the n RSS share vectors held

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 28/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

by each party). Here we suggest an alternate and more efficient method without using
trusted parties. Observe that to generate the master sharing without a trusted party, we
can use a key agreement protocol to generate secret keys shared among every subset of
n− t users. These secret keys then act as RSS shares held by those subsets. A suggested
protocol based on the Diffie-Hellman key agreement to compute a secret shared key is
given below.

(B) Key Agreement Protocol: Let g be a generator of a cyclic multiplicative group
G of order prime p such that Computational Diffie-Hellman (CDH) problem in G is hard.

User i generates xi
R← Zp as the private key. The public key is yi = gxi ∈ G. Some set S

of users want to agree on a key.

Protocol 3.6: k ← RandKey(S)

foreach party i ∈ S do parallel1

ri
R← Zp;2

foreach j ∈ S, j �= i do3

z(i,j) ← yj
ri;4

{z(i,j)|j ∈ S, j �= i} ⇒ S ; // public information, broadcast5

foreach party i ∈ S do6

k ← gri;7

foreach j ∈ S, j �= i do8

k ← k · z(j,i)
1/xi ;9

return k;10

Protocol 3.7 generates the master sharing [sm]RQ using Protocol 3.6.

Protocol 3.7: [sm]RQ ← MasterRSS(F)

foreach i ∈ [1..|A|] do parallel1

ki ← RandKey([1..n]\Xi);2

foreach party j ∈ [1..n]\Xi do3

ri ←H(ki) ; // H : G → F is a hash function.4

return ri;5

Then the vector (r1, r2, . . . , r|A|) is a valid RSS sharing of a random field element sm.
Security: The security of Protocol 3.7 is based on the hardness of the CDH problem.
Complexity: The cost of Protocol 3.7 is

(
n
t

)
(n − t) parallel broadcasts, each of size

Θ(n− t− 1). On an average, this is more efficient than the method suggested in [15] for
generating the initial sharing assuming broadcast channels.

Note that the overhead in the above protocol is only due to Step 2, where RandKey()
is invoked. Therefore, a non-interactive key agreement protocol for an arbitrary group
of users will allow non-interactive generation of the master sharing and will consequently
allow true non-interactive generation of random field elements.

(C) Non-Interactive Generation of RSS Sharings: Let [sm]RQ = (r1, r2, . . . , r|A|)
be an RSS master sharing over some field F

′. Let H : F
′ × Z

+× → F be a PRF with
keys in F

′, outputs in F, and inputs in Z
+. For any i ∈ Z

+, by [H[sm](i)]
RQ, we denote

the RSS sharing (Hr1(i), Hr2(i), . . . , Hr|A|(i)). Protocol 3.8 non-interactively generates a

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 29/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

random RSS sharing [s]RQ.

Protocol 3.8: [s]RQ ← RandRSS(F)

static ctr ← 0; // static used as in C language1

static [sm]RQ ← MasterRSS(F′); // F
′ is independent of F2

[s]RQ ← [H[sm](ctr)]
RQ;3

ctr++;4

return [s]RQ;5

Security: The security of the above protocol relies on the security of the PRF H [11].
Pseudorandom Replicated Secret sharing (PRSS): The general name given to

this technique of generating secret random RSS-shared field elements using PRFs is PRSS.

3.2.4 PRSS-Based Protocols For Randoms

(A) Non-interactive shared random field elements: The following protocol out-
puts a Shamir-shared random element of F non-interactively:

Protocol 3.9: [r]F ← PRandFld(F)

[r]RQ ← RandRSS(F) ;1

[r]F ← RSStoShamir([r]RQ);2

return [r]F;3

Security: The above protocol is secure as long as sm is never revealed and F satisfies
the standard notions of security for PRFs.

Complexity: There is no communication involved. Regarding computation complex-
ity, Step 1 requires each party to do

(
n−1

t

)
PRF computations and Step 2 requires each

party to compute the inner product of two
(

n−1
t

)
-vectors over F, one of which is computed

in Step 1 and the other can be precomputed even before the master sharing is obtained.

(B) Non Interactive Random Zero Sharing: The following protocol was proposed
in [11]. It generates a random Shamir-sharing [0] using a polynomial of degree 2t < n.
The idea can be generalized to any degree.

Notation: As before, A = {X|X ⊂ [1..n] ∧ |X| = t} is the set of all maximal
unqualified subsets of parties for some threshold t, and {X1, X2, . . . , X|A|} is an arbitrary
labeling of elements of A. Let F be the set of polynomials over F of degree ≤ 2t. Then F
is a vector space over F of dimension 2t + 1. For every i ∈ [1..|A|], define set Fi ⊂ F as:

Fi = {f |(f ∈ F) ∧ (f(0) = 0) ∧ (∀j ∈ Xi : f(j) = 0)}.

Then Fi is a subspace of F of dimension (2t− (1 + t)) + 1 = t. Let {fi,1, fi,2, . . . , fi,t} be
any basis of Fi, which is public information. We describe below how to compute a basis.
Let H : {0, 1}α × Z

+ → F be a PRF with keys in {0, 1}α, and let H ′ : F
′ × Z

+ → {0, 1}α
be a PRF with keys in F

′.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 30/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 3.10 generates a random Shamir sharing of 0 without interaction.

Protocol 3.10: [z]F ← PRandZero(F)

static ctr ← 0;1

static [s]RQ ← RandRSS(F′); // F
′ is independent of F2

// Let [s]RQ = (r1, r2, . . . , r|A|), the RSS shares

foreach i ∈ [1..|A|] do3

foreach party j ∈ Xi do4

foreach � ∈ [1..t] do5

static ri,� ← H ′
ri
(�); // ri,� act like keys to a PRF6

foreach party j ∈ [1..n] do7

zj ←
∑|A|

i=1,j /∈Xi

(∑t
�=1 Hri,�

(ctr) · fi,�(j)
)
;8

return zj ;9

ctr++;10

Correctness: Consider the polynomial f0 =
∑|A|

i=1,j /∈Xi

(∑t
�=1 Hri,�

(ctr) · fi,�

)
. Then

deg(f0) ≤ 2t; zj = f(j) for each j ∈ [0..n]; and f0(0) = 0. Thus, (z1, z2, . . . , zn) is a
consistent Shamir sharing of 0 using polynomial f0 of degree ≤ 2t.

Security: Recall that the security of a shared secret depends on the secrecy of the
reconstruction polynomial. In this case, there is no ‘secret’. However, it still makes sense
to talk about the secrecy of the reconstruction polynomial. Observe that the inner sum
in Step 8 generates a Shamir sharing [0] using a polynomial of degree ≤ 2t such that
the shares of parties in Xi are 0 and the other shares are random. This can be viewed
as a (2t, n) Shamir sharing where t shares have been revealed. Therefore, even if this
polynomial has degree 2t, only t + 1 more shares are needed to reconstruct it. The outer
sum (of all such [0] sharings) results in a Shamir sharing [0] using a polynomial of degree
≤ 2t where the share of every party is random. Consequently, 2t + 1 shares are needed
to reconstruct this final polynomial.

Selecting a basis: For each i ∈ [1..|A|] and each � ∈ [1..t], consider the polynomial:

fi,� = x�
∏
j∈Xi

(x− j)

By construction fi = {fi,1, fi,2, . . . , fi,t} ⊂ Fi; each element of fi is linearly independent
of the others (because they are of different degree); and |fi| = t. Thus, fi is a basis of Fi.

(C) Multiplication of secrets with public output: Each party i ∈ [1..n] holds ai, bi,
the shares of a, b ∈ F. Assume that (z1, z2, . . . , zn) is a random Shamir sharing of 0. They
follow Protocol 3.11:

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 31/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 3.11: c← MulPub([a]F, [b]F)

[z]F ← PRandZero(F); // Let [z]F = (z1, z2, . . . , zn), the Shamir shares1

foreach party i ∈ [1..2t + 1] do parallel2

di ← aibi + zi;3

di → [1..n]; // 1 rnd, ≈1 inv (F)4

foreach party j ∈ [1..n] do5

c←∑2t+1
i=1

(
di

∏2t+1
�=1,� �=i

−�
i−�

)
;6

return c;7

Correctness: We refer the reader to [26, 11] for the correctness.
Security: Observe that aibi is the share of party i of a Shamir sharing [ab] using a

polynomial of degree ≤ 2t, and therefore, 2t+1 such shares are needed to reconstruct the
polynomial (and then compute ab). However, the distribution of this polynomial is no
longer uniform and so the revealed shares may leak some information about the original
polynomials using which a, b were shared. In order to avoid this, we add shares of a
random zero sharing [0] to the original shares. In this case, the resulting shares di still
represent the sharing [ab] but whose polynomial is now uniformly distributed.

(D) Computing the Inverse of Secret Non-Zero Field Elements: Protocol 3.12
uses PRSS to implement a variant of a protocol presented in [2] to compute the Shamir
sharing [a−1] given the sharing [a] for some a ∈ F\{0}. It is necessary to ensure that
a �= 0, before invoking the protocol, otherwise this information is revealed.

Protocol 3.12: [b]F ← Inv([a]F)

[r]F ← PRandFld(F);1

x← MulPub([r]F, [a]F); // 1 rnd, 1 inv (F)2

y ← x−1;3

[b]F ← y[r]F;4

return [b]F;5

In a real implementation, there should be a check after Step 2 to ensure that x �= 0.
If x = 0 then the protocol must be started from the beginning.

Security: Protocol 3.12 provides perfect privacy.

(E) Shared random bits Protocol 3.13 generates a secret random bit shared in Zq

using PRandFld. The complexity of the protocol is 1 round and 1 invocations (2 rounds
and 2 invocations less than RandBit). This protocol works only in Zq.

Protocol 3.13: [b]← PRandBit(q)

// Requires q ≡ 3 (mod 4)
[r]← PRandFld(Zq);1

u← MulPub([r], [r]); // 1 rnd, 1 inv (Zq)2

v ← u− q+1
4 mod q; // 1 exp (Zq)3

[b]← (v[r] + 1)(2−1 mod q);4

return [b];5

Security: Protocol 3.13 provides perfect privacy.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 32/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

3.3 Protocols Based On RISS

In this section we describe protocols for efficiently generating sharings in two fields of the
same random bit. We do this using a share conversion protocol described in [15]. The
protocol can be used for converting a Shamir sharing of a bit in a source field to the
Shamir sharing of the same bit in a different target field.

We first describe another secret sharing scheme called RISS. This is derived from RSS
where the computation is over the set of integers Z instead of the finite field F. The
difference between the two from an application point of view is that while RSS allows us
to efficiently generate random field elements non-interactively, RISS allows us to convert
bits Shamir-shared in one field to that in another field. RISS is described below.

3.3.1 Replicated Integer Secret Sharing (RISS)

RISS is very similar to RSS with the only difference that arithmetic is done over the ring
of integers rather than a finite field. In the following, κ is a security parameter.

Original RISS: For clarity of presentation, we first describe a variant of RISS dis-
cussed in [15]. Our actual variant of RISS is slightly different from their’s but the main
ideas carry over.

1. Share Generation: To share a secret s ∈ [−2�..2�], the dealer generates ri
R←

[−2�+κ..2�+κ] for 1 ≤ i ≤ |A| and sets θ ← (
∑|A|

i=1 ri)−s. Then [s]RZ def
= (r1, r2, . . . , r|A|)

is the RISS share vector of s. Note that −(n2�+κ + 2�) ≤ θ ≤ n2�+κ + 2�. The pair
([s]RZ , θ) is called a RISS sharing of s.

2. Share Distribution: The dealer assigns some arbitrary labeling to elements of A and
writes A as {X1, X2, . . .X|A|}. Then for 1 ≤ i ≤ |A|, he distributes the shares as:

ri → [1..n]\Xi

θ → [1..n]

3. Secret Reconstruction: Let B ∈ [1..n] such that |B| = t + 1. Then members of B

jointly share the entire vector (r1, r2, . . . , r|A|). They compute s = (
∑|A|

i=1 ri)− θ.

Security: The scheme provides statistical privacy. Specifically, let B ∈ [1..n] be such

that |B| ≤ t. Let s′, s′′ R← [−2�..2�] be two secrets and let s′i, s′′i be their share vectors
held by party i. Then Δ({s′i|i ∈ B}, {s′′i |i ∈ B}) ≤ c/2κ [11, 15, 14].

Modified RISS: In our application, RISS is not used to protect (i.e., share) any
predefined secret but rather to generate random (RISS) shares in certain range, which
would then correspond to some unknown secret value. Therefore, we consider a variation
of RISS as follows:

1. The first difference is that we consider θ = 0. The parties will obtain the RSS shares
without a dealer, and these shares will correspond to some unknown secret.

2. The second difference is that we consider both the RISS shares and secrets to be
unsigned integers instead of signed.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 33/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

3.3.2 Conversion from RISS Shares to Shamir Shares

We describe a method similar to that in Section 3.2.2, where instead of inner product

of two
(

n−1
t

)
-vectors over F, we now take the Z-module inner product Z

(n−1
t) × F → F.

Specifically, let ([s]RZ) be a RISS sharing of secret s ∈ Z with [s]RQ = (r1, r2, . . . , r|A|).
Then the share vector of each party i ∈ [1..n] is (rj)i/∈Xj

with
(

n−1
t

)
elements.

The following protocol converts the above RISS sharing to a Shamir sharing in F.

Protocol 3.14: [s′]F ← RISStoShamir([s]RZ , F)

foreach party i ∈ [1..n] do1

si ←
|A|∑

j=1,i/∈Xj

⎛
⎝rj

∏
�∈Xj

(�− i)

�

⎞
⎠ ;

2

/* Local computation */

/* All arithmetic is done in F */

return si;3

Then (s1, s2, . . . , sn) is the Shamir sharing [s′]F for some s′ ∈ F as follows [15]:

1. If F = Zq, then s′ = s mod q.

2. If F = F2α , then s′ = s mod 2.

Security: As in Protocol 3.5, security follows from the locality of conversion.

3.3.3 Non-Interactive Generation of RISS Shares

We can reuse a RSS master sharing discussed in Section 3.2.3 to non-interactively generate
random RISS shared integers. In the following, [sm]RQ = (r1, r2, . . . , r|A|) is an RSS master
sharing defined over some (large) finite field F. Let F α : F× Z

+ → [0..2α − 1] be a PRF
with keys in F for some parameter α ∈ Z

+. For any i ∈ Z, by [F α
[sm](i)]

RZ , we denote

the RISS sharing (F α
r1

(i), F α
r2

(i), . . . , F α
r|A|(i)) ∈ [0, 2α − 1]|A|. The following protocol uses

[sm]RQ to non interactively generate a random RISS sharing [s]RZ . The shares are integers
in the range [0..2α − 1].

Protocol 3.15: [s]RZ ← RandRISSshares(α)

/* Generates a RISS sharing of a secret with each share random in

[0..2α − 1] */

static ctr ← 0; // static used as in C language1

static [sm]RQ ← MasterRSS(F); // F is independent of α2

[s]RZ ← [F α
[sm](ctr)]

RZ ;3

ctr++;4

return [s]RZ ;5

Then [s]RQ is a random sharing of some element s ∈ [0..2α|A| − |A|].
Security: In the above variant with θ = 0, the secret s may no longer be statistically

protected. On the other hand, the α least significant bits of s are indeed statistically
protected. Therefore LSB(s) is also statistically hidden. The following protocols base
their security on the secrecy of this bit.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 34/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

3.3.4 Bit-Share Conversions and Joint Bit Generation

We describe protocols for converting a Shamir sharing of a bit (or bounded integers) in a
source field F to polynomial shares in another target field F

′. The protocols use a random
RSS master sharing (via RandRISSshares) in some prime field Zq′ . Note that this field
may be different from any of the fields considered below. However, since elements of Zq′

will be used as secret keys to a PRF, it is necessary to have this field large enough to
prevent a brute-force attack.

(A) Conversion of bit shares from [b]Zq to [b]F2m . Protocol 3.16 converts a shared
bit from polynomial sharing in Zq to polynomial sharing in F2m .

Protocol 3.16: [b]F2m ← BitZQtoF2M([b]Zq , m)

[r]RZ ← RandRISSshares(κ + 1);1

[r]Zq ← RISStoShamir([r]RZ , Zq);2

[r0]
F2m ← RISStoShamir([r]RZ , F2m);3

r′ ← Output([r]Zq + [b]Zq); // 1 rnd, 1 inv (Zq)4

r′0 ← LSB(r′);5

[b]F2m ← [r0]
F2m ⊕ r′0;6

return [b]F2m ;7

Correctness: Observe that r′0 = r0 ⊕ b, hence the output is correct.
Security: Protocol 3.16 provides statistical privacy with security parameter κ.
Complexity: The complexity is one round and one invocation in Zq.

(B) Conversion of bit shares from [b]Zq1 to [b]Zq2 , q2 > q1. Protocol 3.17 converts
a shared bit from polynomial sharing in Zq1 to polynomial sharing in Zq2, where q2 > q1.
For example, it can be used in order to carry out a binary computation in a smaller field
and then convert the result to a larger field.

Protocol 3.17: [b]Zq2 ← BitZQtoZQ([b]Zq1 , q2)

[r]RZ ← RandRISSshares(κ + 1);1

[r]Zq1 ← RISStoShamir([r]RZ , Zq1);2

[r]Zq2 ← RISStoShamir([r]RZ , Zq2);3

r′ ← output([r]Zq1 + [b]Zq1) ; // 1 rnd, 1 inv (Zq1)4

[b]Zq2 ← r′ − [r]Zq2 ;5

return [b]Zq2 ;6

Security: Protocol 3.17 provides statistical privacy with security parameter κ.
Complexity: The complexity is one round, one invocation in a small field Zq1 .

(C) Joint generation of a shared random bit in Zq for large q. Protocol 3.18
allows to efficiently generate shared random bits in Zq when q is large. The protocol first
generates a shared random bit in a small field Zq1 and then converts the shares to the
larger target field Zq, where q � q1.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 35/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 3.18: [b]Zq ← PRandBitL(q)

[b]Zq1 ← PRandBit(q1); // 1 rnd, 1 inv (Zq1)1

[b]Zq ← BitZQtoZQ([b]Zq1 , q); // 1 rnd, 1 inv (Zq1)2

return [b]Zq ;3

Security: Protocol 3.18 provides statistical privacy with security parameter κ.
Complexity: The complexity of protocol 3.18 is 2 rounds and 2 invocations in Zq1 .

Working in the small field Zq1 reduces the computation complexity (Step 3 in PRandBit,
especially) and the communication complexity. For q � q1 the overall efficiency gain
is substantial, especially when generating large batches of shared random bits. Taking
log2(q1) = 64 bits is sufficient for our purposes. Moreover, we can also use the bits shared
in Zq1 to improve the efficiency of binary computation (instead of bits shared in F28).

(D) Joint generation of a random bit shared in both F2m and Zq with large q.
The purpose of protocol 3.19 is to improve the efficiency of a family of protocols presented
in Chapter 5 (e.g., truncation, comparison, bit decomposition). It combines the protocols
3.18 and 3.16 in order to efficiently generate a double sharing of a random bit b. The
sharing [b]F2m is used for efficient binary computation, while the sharing [b]Zq is used for
integer computation (see protocol 5.2).

Protocol 3.19: ([b]F2m , [b]Zq)← PRandBitD(m, q)

/* select small prime q1 with q1 	 q */

[b]Zq1 ← PRandBit(q1); // 1 rnd, 1 inv, 1 exp (Zq1)1

[r]RZ ← RandRISSshares(κ + 1);2

[r]Zq1 ← RISStoShamir([r]RZ , Zq1);3

[r0]
F2m ← RISStoShamir([r]RZ , F2m);4

r′ ← output([r]Zq1 + [b]Zq1); // 1 rnd, 1 inv (Zq1)5

r′0 ← LSB(r′);6

[b]F2m ← [r0]
F2m ⊕ r′0;7

[b]Zq ← r′ − [r]Zq ;8

return ([b]F2m , [b]Zq);9

Security: Protocol 3.19 provides statistical privacy with security parameter κ.
Complexity: Protocol 3.19 has the same complexity as protocol 3.18, i.e., 2 rounds

and 2 invocations in Zq1 (the additional conversion is essentially for free).

(E) Conversion of bit shares from [b]F2m to [b]Zq . Protocol 3.20 converts a shared
bit from polynomial sharing in F2m to polynomial sharing in Zq.

Protocol 3.20: [b]Zq ← BitF2MtoZQ([b]F2m , q)

([b′]F2m , [b′]Zq)← PRandBitD(m, q); // 2 rnd, 2 inv, 1 exp (Zq1)1

b′′ ← output([b]F2m ⊕ [b′]F2m); // 1 rnd, 1 inv (F2m)2

[b]Zq ← b′′ + [b′]Zq − 2b′′[b′]Zq ; // [b]Zq ← [b′]Zq ⊕ b′′3

return ([b]Zq);4

Security: Protocol 3.20 provides statistical privacy with security parameter κ.
Complexity: The complexity is 3 rounds and 3 invocations in small fields. However,

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 36/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

in typical applications, the random bit b′ shared in F2m and Zq can be precomputed (see
protocol 5.2). In this case, Step 1 is not necessary, and the conversion takes one round
and one invocation in F2m . The modified protocol takes as input these random bits and
has the interface BitF2MtoZQPre([b]F2m , [b′]F2m , [b′]Zq).

3.3.5 Generation of Shared Randoms in Range Using RISS

In this section we describe RISS-based protocols for non-interactively generating random
Shamir-shared field elements of Zq in a sub-range with some distribution. As before, n
are the number of parties and t < n is the number of maximum corrupted parties.

(A) Secret Integers in range [0..
(

n
t

)
(2m−1)]. The following protocol generates using

RISS a Shamir sharing [r] of a random integer r ∈ [0..
(

n
t

)
(2m− 1)]. The protocol requires

that q >
(

n
t

)
2m to ensure that no wraparound modulo q occurs in the sum of shares.

Protocol 3.21: [r]← PRandInt(q, m)

[r]RZ ← RandRISSshares(m);1

[r]← RISStoShamir([r]RZ , Zq);2

return [r];3

Security: Protocol 3.21 provides statistical security. This follows from the locality of
computation.

(B) Shared Integers in range [0..2m − 1]. The protocols of this section generate
Shamir-shared random numbers in range [0..2m − 1] assuming that q > 2m � (

n
t

)
.

Notation: Let ν =
(

n
t

)
and let τ : Zν × [1..ν] → {0, 1} be a public function s.t.

∀x ∈ Zν :
∑ν

i=1 τ(x, i) = x. Recall that A = {X1, X2, . . .Xν} is the set of all maximal
unqualified subsets of parties. In the following, [sm]RQ = (r1, r2, . . . , rν) is an RSS master
sharing defined over a large finite field F s.t. parties [1..n]\Xi know ri. Let F β : F×Z

+ →
[0..β] be a PRF with keys in F for some parameter β ∈ Z

+.
The following protocol produces random RISS shares (r′1, r

′
2, . . . , r

′
ν) of some random

element s ∈ [0, z] for a z ∈ Z
+.

Protocol 3.22: [s]RZ ← RandRISSrange(z)

/* Generates a RISS sharing of a secret in [0..z] */

static ctr ← 0; // static used as in C language1

static [sm]RQ ← MasterRSS(F); // F is independent of z2

// Let [sm] = (r1, r2, . . . , rν), the RSS shares of sm

foreach party j ∈ [1..n] do3

foreach � ∈ [1..ν] do4

if j /∈ X� then5

β ← �z/ν� + τ(z mod ν, �);6

r′� ← F β
r�

(i);7

return r′�;8

ctr++;9

Let [s]RZ = (r′1, r
′
2, . . . , r

′
ν). Then [s]RZ is a random consistent RISS sharing of some el-

ement s ∈ [0..z]. Note that RandRISSrange(
(

n
t

)
(2α−1)) is equivalent to RandRISSshares(α).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 37/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

The following protocol generates Shamir-shared random elements in range [0..2m − 1]
non-interactively. The protocol provides some security only if 2m � ν. Note that the
protocol works for any arbitrary upper bound instead of just 2m − 1.

Protocol 3.23: [r]← PRand2mN(q, m)

[r]RZ ← RandRISSrange(2m − 1);1

[r]← RISStoShamir([r]RZ , Zq);2

return [r];3

Correctness: Correctness follows from the fact that q > 2m. Since the original RISS
secret is s ∈ [0..2m − 1], the converted Shamir-shared secret is r mod q = r.

Security: Since the secret is the sum of
(

n
y

)
uniform shares, the protocol may not

provide statistical security of the entire secret. However, log2(�2m/
(

n
t

)�) low-order bits of
r are guaranteed to be secure. It is possible that the security provided may be adequate for
certain applications (such as truncation in fixed-point multiplication - see Section 5.4.1).

The following protocol uses PRSS to generate uniform randoms in range [0..2m − 1].

Protocol 3.24: [r], [r]B ← PRand2mU(q, m)

foreach i ∈ [0..m− 1] do parallel1

[ri]← PRandBit(q) ; // 1 rnd, m inv, m exp (Zq)2

[r]←∑m−1
i=0 2i[ri];3

[r]B ← ([r0], [r1], . . . , [rm−1]);4

return [r], [r]B;5

Security: Protocol 3.24 provides perfect security.

Protocol Distribution of output Security Complexity Output

Rand2mU(q, m) uniform in [0..2m − 1] perfect 3 rounds
3m invocations

random
with bits

PRand2mU(q, m) uniform in [0..2m − 1] perfect 1 round
m invocations

random
with bits

PRandInt(q, m) sum of
(

n
t

)
uniform vari-

ables in [0..2m − 1]
statistical non-interactive random

only
Rand2mN(q, m) r ∈ [0..2m − 1], sum of n

uniform variables
statistical 1 round

1 invocation
random
only

PRand2mN(q, m) r ∈ [0..2m − 1], sum of
(

n
t

)
uniform variables

statistical non-interactive random
only

Table 3: Comparison of protocols for generating shared randoms in range.

3.4 Summary

This chapter described protocols for generating (Shamir-shared) random secrets. The
three types of secrets we need are: (1) random field elements, (2) random bits, and (3)
random numbers in range. We presented an RSS-based method for generating uniformly
random field elements non-interactively (assuming that interaction for generating a mas-
ter RSS sharing is ignored). We described RISS-based methods for converting Shamir-

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 38/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

sharings of bits from one field to another and for generating the Shamir sharing of the
same uniformly random bit in two different fields. Finally, we described a RISS-based
method for non-interactively generating normally distributed random field elements in a
range that hides the low-order bits of the secret. The main bottleneck in our framework
are protocols for the generation of a Shamir-shared random bit in a prime field. As of
now, the problem of non-interactively generating such random bits is still open.

Complexity of The Protocols: Table 4 summarizes the complexity of the protocols
discussed in this chapter:

Output Protocol Interface Field Rounds Invoc. Exp.

[r]F RandFld(F) F 1 1 -
[r]F PRandFld(F) 0∗ 0 -

[r]Zq RandBit(q) Zq 3 3 1
[b]Zq PRandBit(q) Zq 1∗ 1 1
[b]Zq PRandBitL(q)† Zq1 2∗ 2 1
([b]F2m , [b]Zq) PRandBitD(m, q)† Zq1 2∗ 2 1

([r], [r]B) Rand2mU(q, m) Zq 3 3m m
([r], [r]B) PRand2mU(q, m) Zq 1 m m
[r] Rand2mN(q, m) Zq 1 1 -
[r] PRand2mN(q, m) 0∗ 0 -

[r] PRandInt(q, m) 0∗ 0 -

[b]F2m BitZQtoF2M([b]Zq , m) Zq 1∗ 1 -
[b]Zq2 BitZQtoZQ([b]Zq1 , q2)

†
Zq1 1∗ 1 -

[b]Zq BitF2MtoZQ([b]F2m , q)†
F2m 1∗ 1 -
Zq1 2∗ 2 1

[b]Zq BitF2MtoZQPre([b]F2m , [b′]F2m , [b′]Zq) F2m 1∗ 1 -

[c]F MulPub([a]F, [b]F) F 1∗ 1 -
[b]F Inv([a]F) F 1∗ 1 -

† Indicates that q1 	 q.
∗ Indicates that a master RSS sharing is needed.

Table 4: Complexity of main protocols discussed in Chapter 3.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 39/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

4 k-ary, Prefix and Bit-Wise Operations

Outline. Deliverable D9.1 presents protocols proposed in the literature [13, 30] for com-
puting unbounded fan-in boolean functions, prefixes, and operations with bitwise-shared
integers. These protocols run in constant number of rounds, but their communication
complexity and sometimes even round complexity are high (e.g., prefix-OR and bitwise
comparison based on prefix-OR).

In applications that perform many parallel operations (like linear programming), pro-
tocols with lower communication complexity can offer better performance. We can even
trade off a few additional rounds for an important reduction of the number of invocations.

We use the term k-ary to refer to an unbounded fan-in operation. We present generic
protocols for k-ary and prefix operations in Section 4.1, followed by addition and com-
parison of bitwise-shared values in Section 4.2.

4.1 K-ary and Prefix Operations

We present in this section several protocols that perform k-ary and prefix operations with
low communication complexity. We give general protocols that work for any associative
binary operation, with secret inputs and outputs encoded in a finite field F. These pro-
tocols are general building blocks used in secure comparison, fixed-point arithmetic, and
other applications.

k-ary and prefix operators. Let A be a set and � : A × A → A an associative
binary operator. We denote [a] � [b] a secure evaluation of a � b with secret inputs and
secret output. We consider the following secure computation tasks (extensions of a binary
operation):

• k-ary operation: [p] = [a1]� . . .� [ak] =
⊙k

i=1[ai].

• Prefix operation: ([p1], . . . , [pk]) = pre⊙([a1], . . . , [ak]), [pj] =
⊙j

i=1[ai], 1 ≤ j ≤ k.

In particular, we are interested in k-ary and prefix operations for multiplication (in
Z, Zq, F2m) and boolean functions (OR, AND, XOR). Secure evaluation of these binary
operations takes one round and one secure multiplication. A protocol that evaluates k-ary
and prefix operations in the naive way as a sequence of binary operations needs k − 1
rounds and k − 1 secure multiplications. The communication complexity (i.e., number
of invocations) in this solution is optimal, but the performance is low due to the large
number of rounds.

Assuming that one evaluation [c]← [a]� [b] takes α rounds and β invocations in some
field F, we present three generic and efficient protocols for evaluating k-ary and prefix
operations in O(log(k))α rounds. The protocols can be used for any associative binary
operation. They provide perfect privacy if the binary operation is evaluated with perfect
privacy. The protocols are based on well known techniques from computer arithmetic [17]
and parallel algorithms [19]. The protocols are specified assuming that k is a power of 2,
but can easily be adapted to any k. The protocols assume that computation in done in
some field F.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 40/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

4.1.1 k-ary Operations in log(k) Rounds

Protocol 4.1 computes [p] =
⊙k

i=1[ai]. The principle is illustrated in Figure 1. The com-
plexity of this protocol is α log(k) rounds and β(k − 1) invocations. The communication
complexity is optimal.

Protocol 4.1: [p]← KOpL(�, [a1], . . . , [ak])

if k > 1 then1

foreach i ∈ [1..k/2] do parallel2

[ui]← [a2i]� [a2i−1]; // α rnd, β(k
2
− 1) inv (F)3

[p]← KOpL(�, [u1], . . . , [uk/2]); // α log2(
k
2
) rnd, β k

2
inv (F)4

else5

[p]← [a1];6

return [p];7

a2 a3 a4 a5 a6 a7 a8a1

p

Figure 1: kOpL: k-ary operations in log(k) rounds with optimal communication complex-
ity (example for k = 8).

4.1.2 Prefix operations in O(log(k)) rounds.

A prefix protocol computes the prefixes [pj] = �j
i=1[ai], for 1 ≤ j ≤ k. We describe

two variants of the protocol with different tradeoffs. The first variant offers the best
combinations of rounds and invocations.

Protocol 4.2 has lower number of rounds but more invocations. The principle is il-
lustrated in Figure 2. The complexity of this protocol is α log(k) rounds and β k

2
log(k)

invocations. For usual values of k, this variant offers a better trade-off between the number
of rounds and the communication complexity.

Protocol 4.2: ([p1], [p2], . . . , [pk])← PreOpL(�, [a1], . . . , [ak])

foreach i ∈ [1.. log2(k)] do1

foreach j ∈ [1..k/2i] do parallel2

y ← 2i−1 + j · 2i;3

foreach z ∈ [1..2i−1] do parallel4

[ay+z]← [ay]� [ay+z]; // α log2(k) rnd, β(k
2
log2(k)) inv (F)5

return ([a1], . . . , [ak]) ;6

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 41/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

a2 a3 a4 a5 a6 a7 a8a1

p2 p3 p4 p5 p6 p7 p8p1

Figure 2: Prefix operations in log(k) rounds (example for k = 8).

Protocol 4.3 computes the prefixes [pj] = �j
i=1[ai], for 1 ≤ j ≤ k as in Protocol 4.2

but requires less invocations at the expense of more rounds. The principle is illustrated in
Figure 3. The complexity of protocol 4.3 is α(2 log(k)− 1) rounds and β(2k− log(k)− 2)
invocations. The number of invocations is optimal for O(log(k)) rounds.

Protocol 4.3: ([p1], [p2], . . . , [pk])← PreOpL2(�, [a1], . . . , [ak])

[p1]← [a1];1

if k > 1 then2

foreach i ∈ [1..k/2] do parallel3

[ui]← [a2i]� [a2i−1]; // α rnd, β(k
2
− 1) inv (F)4

([v1], . . . , [vk/2])← PreOpL2(�, [u1], . . . , [uk/2]);5

// α(2 log2(
k
2
)− 1) rnd, β(k − log2(k)) inv (F)

foreach i ∈ [1..k/2] do6

[p2i]← [vi];7

foreach i ∈ [2..k/2] do parallel8

[p2i−1]← [a2i−1]� [vi−1]; // α rnd, β(k
2
− 1) inv (F)9

return ([p1], . . . , [pk]);10

a2 a3 a4 a5 a6 a7 a8a1

p2 p3 p4 p5 p6 p7 p8p1

Figure 3: Prefix operations in 2 log(k) rounds with optimal communication complexity
for O(log(k)) rounds (example for k = 8).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 42/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

4.1.3 Summary

Security: All the protocols in this section provide perfect privacy if the operation � is
evaluated with perfect privacy (e.g., boolean functions and multiplication).

Complexity: Table 5 summarizes the complexity of the protocols discussed in this
section.

Protocol (k inputs) Rounds Invocations (F)

KOpL α log(k) β(k − 1)

PreOpL α log(k) β(k
2
log(k))

PreOpL2 α(2 log(k)− 1) β(2k− log(k)−2)

Table 5: Complexity of the protocols for k-ary and prefix operations.

Main k-ary and prefix operations: In our case, � ∈ {Mul, AND, OR, XOR, ◦}.6 Each
of these operations take one round and one invocations. Recall that α, β is the number
of rounds and invocations for one computation of �. For convenience, we reproduce the
values for relevant operations in Table 6.

� (operation) Field α β

Mul any 1 1
AND any 1 1
OR any 1 1
XOR any 1 1
XOR F2m 0 0
◦ any 1 2

Table 6: Parameters α, β for the main k-ary and prefix operations.

Log rounds versus constant rounds protocols for k-ary and prefix operations:
Constant rounds protocols for k-ary and prefix operations are presented in [13, 30] (see also
D9.1 [26]). For example, k-ary OR can be computed in 6 rounds and 5k invocations, while
kOpL runs in log(k) rounds and k−1 invocations. In this case, we trade off rounds versus
communication and computation complexity. The complexity of the constant rounds
variant can be reduced using PRSS. On the other hand, prefix-OR can be computed in 12
rounds and 12k + 5

√
k invocations. PreOpL runs in log(k) rounds with only 0.5k log(k)

invocations, so it needs less rounds and invocations even for very large k.
The constant rounds protocols can benefit from precomputation of the random values.

However, online precomputation is not “for free”, and low communication complexity
remains a better option for applications that perform a very large number of parallel
operations.

6The last one is the carry propagation operation - see Section 4.2.1.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 43/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

4.2 Bitwise Operations

Outline. This section contains several protocols for operations with bitwise-shared val-
ues: binary addition, in Section 4.2.1, and comparison, in Section 4.2.2. These protocols
are used as building blocks for secure comparison and arithmetic with fixed-point num-
bers. Protocols for addition and comparison of bitwise-shared integers were introduced
in the deliverables D9.1 and D3.1. We present more efficient variants and include (for
clarity and completeness) revised specifications and analysis for all the building blocks.

4.2.1 Binary Addition

The binary addition protocols presented in this section are based on standard algorithms
from computer arithmetic [17], and use the general protocols for k-ary and prefix op-
erations discussed in the previous section. These protocols run in log(k) rounds with
low communication complexity and are more suitable for our applications than constant
rounds solutions proposed in the literature [13, 22, 30].

Algorithm. Given the bitwise representations (ak, ak−1, . . . , a1) and (bk, bk−1, . . . , b1) of
two k-bit numbers a and b respectively, we want to compute the bitwise representation
(sk+1, sk, . . . s1) of the k +1-bit number s = a+ b. The protocols use the algorithm below.

For each i ∈ [1...k], the algorithm takes as input three bits (ai, bi, cini) and outputs
two bits (ci, si), where cini, ci denote the ith carry-in and carry bits respectively. The
bits are assigned as follows: ai, bi are the input bits; cin1 = 0; cini+1 = ci; and (ci, si) are
computed using Table 7. Finally sk+1 is set to ck. Then (sk+1, sk, . . . s1) is the bitwise
representation of a + b.

ai bi cini ci si

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 7: Computing ci, si

In other words, si = ai ⊕ bi ⊕ cini and ci = ((ai ⊕ bi) ∧ cini) ∨ (ai ∧ bi). Rewriting the
above, si = ai ⊕ bi ⊕ ci−1 and ci = ((ai ⊕ bi) ∧ ci−1) ∨ (ai ∧ bi) with c0 = 0.

We call ai ∧ bi the carry generation bit and ai ⊕ bi the carry propagation bit.

Computation of the carry bits ci. Let a = (ak, . . . , a1) and b = (bk, . . . , b1) the two
integer inputs, pi = ai⊕ bi the carry propagation bit and gi = ai ∧ bi the carry generation
bit, for 1 ≤ i ≤ k. The carry bits can be computed as follows:

c1 = g1, ci = gi ∨ (pi ∧ ci−1), 2 ≤ i ≤ k.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 44/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

We define the following carry propagation operator:

◦ : {0, 1}2 × {0, 1}2 → {0, 1}2

(p, g) = (p2, g2) ◦ (p1, g1) = (p1 ∧ p2, g2 ∨ (p2 ∧ g1)).

For bits encoded in Zq or F2m we obtain:

pi = ai + bi − 2aibi

gi = aibi

c1 = g1, ci = gi + pici−1, 2 ≤ i ≤ k.

(p, g) = (p2, g2) ◦ (p1, g1) = (p1p2, g2 + p2g1).

For secret inputs and output, the operator ◦ can be computed in 1 round and 2 secure
multiplications in parallel (i.e., 1 round, 2 invocations in the corresponding field).

Let (P1, G1) = (p1, g1) and (Pi, Gi) = (pi, gi) ◦ (Pi−1, Gi−1), for 2 ≤ i ≤ k. Observe
that ci = 1 if and only if Gi = 1. In other words, we can compute the carry bits ci by
computing the prefixes (Pi, Gi) and taking ci = Gi, for 1 ≤ i ≤ k. The carry propagation
operator is associative, so the carry bits can be computed by adapting the generic prefix
protocols 4.2 or 4.3.

Binary addition. Protocol 4.4 takes as inputs two bitwise-shared k-bit integers [a]B =
([ak], . . . , [a1]) and [b]B = ([bk], . . . , [b1]), and returns a bitwise-shared k + 1-bit integer
[s]B such that s = a + b. To simplify the description of the protocol we assume that k is
a power of 2. It is easy to derive a general variant for any k.

Steps 2 requires 1 round and k bit multiplications. If one of the operands is public,
this becomes local computation. Step 3 needs log(k) rounds and k

2
log(k) evaluations of

the carry propagation operator, i.e., k log(k) bit multiplications. The remaining steps are
local computation.

Protocol 4.4: [s]FB ← AddBitwise(([ak]
F, . . . , [a1]

F), ([bF

k], . . . , [b1]
F))

foreach i ∈ [1..k] do parallel1

[di]
F

B ← ([ai]
F + [bi]

F − 2[ai]
F[bi]

F, [ai]
F[bi]

F); // 1 rnd, k inv (F)2

// di = (pi, gi)

([ci]
F)i∈[1..k] ← PreOpL(◦, [dk]

F

B, . . . , [d1]
F

B); // log2 k rnd, k log2 k inv (F)3

[s1]
F ← [a1]

F + [b1]
F − 2[c1]

F; // c1 = a1b14

foreach i ∈ [2..k] do5

[si]
F ← [ai]

F + [bi]
F + [ci−1]

F − 2[ci]
F ;6

[sk+1]
F ← [ck]

F;7

[s]FB ← ([sk+1]
F, . . . , [s1]

F);8

return [s]FB;9

Computation of the carry-out bit. In some applications (e.g., protocol 4.8) we need
only the carry-out bit of a binary addition. This bit can be efficiently computed, without
the result of the addition, as shown in Protocol 4.5, CarryOut. The protocol takes as
inputs two bitwise-shared integers, ([ak], . . . , [a1]) and ([bk], . . . , [b1]), ai, bi ∈ {0, 1}, and
returns the carry bit ck. Protocol 4.6 is an adaptation of the generic protocol 4.1 (kOpL).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 45/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

The complexity of the protocol 4.6 is log(k) rounds and k− 1 evaluations of the carry
propagation operator, i.e., 2(k − 1) bit multiplications. Protocol 4.5 needs an additional
round and k bit multiplications in order to prepare the inputs for 4.6. However, if one
of the operands is public, this initialization becomes a local computation and then the
protocol 4.5 has the same round and communication complexity as 4.6.

Protocol 4.5: [g]F ← CarryOut(([ak]
F, . . . , [a1]

F), ([bk]
F, . . . , [b1]

F))

foreach i ∈ [1..k] do parallel1

[di]
F

B ← ([ai]
F + [bi]

F − 2[ai]
F[bi]

F, [ai]
F[bi]

F); // 1 rnd, k inv (F)2

// di = (pi, gi)

[d]FB ← CarryOutAux([dk]
F

B, . . . , [d1]
F

B, k); // log2 k rnd, 2k − 2 inv (F)3

([p]F, [g]F)← [d]FB;4

return [g]F;5

Protocol 4.6: [d]FB ← CarryOutAux([dk]
F

B, . . . [d1]
F

B, k)

if k > 1 then1

foreach i ∈ [1..k/2] do parallel2

[ui]
F

B ← [d2i]
F

B ◦ [d2i−1]
F

B; // 1 rnd, k − 2 inv (F)3

[d]FB ← CarryOutAux(([u k
2
]FB, . . . , [u1]

F

B), k
2
); // log2 k − 1 rnd, k inv (F)4

else5

[d]FB ← [d1]
F

B;6

return [d]FB;7

The protocols 4.4 and 4.5 can be extended in order to take as additional input a carry-
in bit (e.g., by modifying the computation of g1, s1). In particular, we need Protocol 4.7,
a variant of CarryOut with public carry-in bit, denoted c. The complexity is the same.

Protocol 4.7: [g]F ← CarryOutCin(([ak]
F, . . . , [a1]

F), ([bk]
F, . . . , [b1]

F), c)

foreach i ∈ [1..k] do parallel1

[di]
F

B ← ([ai]
F + [bi]

F − 2[ai]
F[bi]

F, [ai]
F[bi]

F); // 1 rnd, k inv (F)2

// di = (pi, gi)

[g1]
F ← [g1]

F + c[p1]
F;3

[d]FB ← CarryOutAux([dk]
F

B, . . . , [d1]
F

B, k); // log2 k rnd, 2k − 2 inv (F)4

([p]F, [g]F)← [d]FB;5

return [g]F;6

4.2.2 Comparison of Bitwise-Shared Values

The protocol BitLT for comparison of bitwise-shared integers described in [13, 30] (and
D9.1 [26]), uses the relatively complex prefix-OR protocol. We present a more efficient
solution based on binary addition.

Inequality test for bitwise-shared integers. Given two bitwise-shared k-bit un-
signed integers [a]B and [b]B , we want to compute a secret bit [s] such that s = (a < b).

Let d = 2k + a − b. Observe that 0 < d < 2k+1 and let d = dk, . . . , d0 be its binary
representation. If a−b < 0 then dk = 0 and if a−b ≥ 0 then dk = 1. Therefore, s = 1−dk.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 46/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Let b′ = ¬b, where ¬b is the bitwise negation of b, and observe that 2k − b = b′ + 1. The
bit dk can be computed using Protocol 4.7, CarryOutCin, with inputs [a]B, [b′]B, and the
carry-in bit set.

We need as building block a variant with one input public, shown as Protocol 4.8.
This protocol computes [a < b] given the public k-bit integer a and the bitwise-shared
integer [b]FB = ([bk−1]

F, . . . , [b0]
F).

Protocol 4.8 has the same round and communication complexity as the protocol
CarryOutCin (with one input public).

Protocol 4.8: [s]F ← BitLT(a, [b]FB)

foreach i ∈ [0..k − 1] do1

[b′i]
F ← 1− [bi]

F;2

[s]F ← 1− CarryOutCin((ak−1, . . . , a0), ([b
′
k−1]

F, . . . , [b′0]
F), 1); // Set carry-in3

// log2 k rnd, 2k − 2 inv (F)

return [s]F;4

4.2.3 Summary

Security. The protocols in this section use building blocks with perfect privacy. Fur-
thermore, no value is ever output in any of the protocols. Consequently, all the protocols
discussed in this section provide perfect privacy.

Complexity. Table 8 gives the complexity of the protocols for bitwise operations.

Output Protocol Input Fld Rounds Invoc.
[s]FB AddBitwise ([ak]

F, . . . , [a1]
F), ([bk]

F, . . . , [b1]
F) F 1 + log2 k k + k log2 k

[s]FB AddBitwise (ak, . . . , a1), ([bk]
F, . . . , [b1]

F) F log2 k k log2 k
[g]F CarryOut ([ak]

F, . . . , [a1]
F), ([bk]

F, . . . , [b1]
F) F 1 + log2 k 3k − 2

[g]F CarryOut (ak, . . . , a1), ([bk]
F, . . . , [b1]

F) F log2 k 2k − 2
[g]F CarryOutCin ([ak]

F, . . . , [a1]
F), ([bk]

F, . . . , [b1]
F), c F 1 + log2 k 3k − 2

[g]F CarryOutCin (ak, . . . , a1), ([bk]
F, . . . , [b1]

F), c F log2 k 2k − 2
[s]F BitLT a, [b]FB F log2 k 2k − 2

Table 8: Complexity of main protocols discussed in this section.

BitLT variants. The BitLT protocol presented in [13, 30] uses prefix-OR as main build-
ing block. The constant rounds solution for prefix-OR is impractical, and the variant with
log(k) rounds needs 0.5k log(k) invocations. The BitLT protocol based on binary addition
(Protocol 4.8) runs in log(k) rounds with only 2k− 2 invocations, hence it is significantly
more efficient.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 47/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

5 Arithmetic and Comparison

Outline. This chapter presents protocols for secure arithmetic and comparison with
integers and fixed-point rational numbers. Variants of several protocols were introduced
in the deliverables D9.1 and D3.1. We present and analyze more efficient variants and
add new protocols. We include (for clarity and completeness) revised specifications and
analysis for the entire family of arithmetic and comparison protocols, using the building
blocks described in the previous chapters.

Throughout this chapter we assume that integers and fixed-point numbers are encoded
in Zq as specified in Section 2.5 and q > 2k+κ+ν+1, where ν = �log(

(
n
t

)
)� and κ is a security

parameter (as usually, n is the number of parties and t is the corruption threshold).
Protocols for arithmetic with integers are a trivial extension of the protocols for arith-

metic with field elements described in Section 2.4.2 using the ideas of Section 2.5.2.

5.1 Truncation

Let x ∈ [−2k−1..2k−1 − 1] be a k-bit integer. Truncation is the process of ‘chopping off’
some m (with m < k) least significant bits from the binary representation of x. Note that
truncation by m bits is equivalent to computing the quotient of division by 2m. All our
truncation protocols take as input the sharing [Fldq(x)] of a k-bit integer x encoded in
Zq, and the public integers m and k. They output [Fldq(x

′)], where x′ depends on the
truncation protocol being used.

We consider three variants of truncation protocols:

1. Trunc: This protocol computes a signed integer obtained by chopping off the m least
significant bits of x, i.e., x′ = �x/2m�. An important application of Trunc is secure
integer comparison (protocol 5.9, LTZ).

2. TruncPr: This protocol computes x/2m with probabilistic rounding towards the
nearest integer. It returns x′ = �x/2m� + u, where u ∈ {0, 1} is a random bit
distributed such that x′ is the signed integer closest to the rational value x/2m.
TruncPr is more efficient than Trunc. Its main applications are secure fixed-point
multiplication and division.

3. TruncApp: This is protocol AppDiv2m described in D3.1 [27], an adaptation of a
protocol proposed in [1] to signed integers encoded in Zq. TruncApp efficiently
computes an approximation of x/2m with absolute error ε ≤ n, where n is the
number of parties. More precisely, it returns x′ = �x/2m� + ε, where ε ≤ n is a
random value. TruncApp can be used for secure fixed-point multiplication, but it is
less accurate than TruncPr.

Section 5.1.1 presents revised versions of a protocol for reduction modulo 2m introduced
in D3.1, which is the core component of Trunc. Protocol Trunc is described in Section
5.1.2, followed by the new protocol TruncPr in Section 5.1.3.

5.1.1 Reduction Modulo 2m

The protocol Mod2m computes x′ = x mod 2m for any x ∈ [−2k−1..2k−1 − 1] and 0 <
m < k. The inputs are [a] = [Fldq(x)] and the public integers k and m. The output is
[Fldq(x mod 2m)]. The protocol provides statistical privacy with security parameter κ.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 48/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

A first version of this protocol was described in D3.1 [27], using building blocks pre-
sented in D9.1 [26]. The performance of this first version degrades with the growth of the
parameters q, k, and m, and becomes very poor for the values needed in our applications.
We present in the following more efficient versions, based on the following improvements:
(1) generation of m shared random bits instead of k + κ bits; (2) efficient encoding of
the bits in F28 instead of Zq for comparison of bitwise shared integers; (3) more efficient
building blocks for generating shared random bits and integers and for comparison of
bitwise shared integers.

Protocol 5.1 is the reference variant, where all data types (integers, bits) are encoded
and shared in the same field Zq. This solution is suitable for small values of q and m
(e.g., log(q) ≤ 128 bits). As these values grow, encoding the bits in the same field as the
integers becomes inefficient.

Protocol 5.1: [b′]← Mod2m([a], k, m)

[b]← 2k−1 + [a];1

foreach i ∈ [0..m− 1] do parallel2

[ri]← PRandBit(q); // 1 rnd, m inv, m exp (Zq)3

[r′]B ← ([rm−1], . . . , [r0]);4

[r′]←∑m−1
i=0 2i · [ri];5

[r′′]← PRandInt(k + κ−m);6

[r]← 2m · [r′′] + [r′];7

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)8

c′ ← c mod 2m;9

[u]← BitLT(c′, [r′]B); // log m rnd, 2m− 2 inv (Zq)10

[b′]← c′ − [r′] + [u] · 2m;11

return [b′];12

Correctness. The protocol maps x ∈ [−2k−1..2k−1−1] to b ∈ [0..2k−1] by computing
b = (2k−1 + a) mod q = 2k−1 +x. Observe that b mod 2m = x mod 2m for any 0 < m < k.
Next, it generates a random secret r ∈ [0..2k+κ − 1] and reveals c = (b + r) mod q. Since
q > 2k+κ+1 we have q > b + r and hence c = b + r. Let c′ = c mod 2m, b′ = b mod 2m,
and r′ = r mod 2m. We see that c′ = (b′ + r′) mod 2m and b′ = c′ − r′ + u · 2m, where
u = 1 if c′ < r′ and u = 0 if c′ ≥ r′. Since b′ = x mod 2m = Fldq(x mod 2m), the output
is correct.

Mod2m with efficient bit-sharing. Protocol 5.2 is a variant of Mod2m that uses bits
shared in small fields in order to improve the efficiency of bit operations for large q and
m (lower communication and computation complexity).

The protocol generates a double bitwise sharing of r′, with bits shared in Zq and in
F28, using PRandBitD (Steps 2-3). We denote [u]F28 a Shamir sharing of bit u in F28 .
The sharing in Zq is used to compute [r′] (Step 5), while the sharing in F28 is used as
argument for BitLT (Step 10). Step 11 converts the output of BitLT from F28 to Zq (using
BitF2MtoZQpre), as needed in Step 12. This conversion is efficiently achieved (1 round, 1
invocation) using a double-shared random bit generated in Steps 2-3.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 49/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.2: [b′]← Mod2mF([a], k, m)

[b]← 2k−1 + [a];1

foreach i ∈ [0..m] do parallel2

([ri]
F28 , [ri])← PRandBitD(8, q); // 2 rnd, 2m + 2 inv, m + 1 exp (Zq1)3

[r′]
F28

B ← ([rm−1]
F28 , . . . , [r0]

F28);4

[r′]←∑m−1
i=0 2i · [ri];5

[r′′]← PRandInt(k + κ−m);6

[r]← 2m · [r′′] + [r′];7

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)8

c′ ← c mod 2m;9

[u]F28 ← BitLT(c′, [r′]
F28

B); // log m rnd, 2m− 2 inv (F28)10

[u]← BitF2MtoZQPre([u]F28 , [rm]F28 , [rm]); // 1 rnd, 1 inv (F28)11

[b′]← c′ − [r′] + [u] · 2m;12

return [b′];13

Security. Protocols 5.1 and 5.2 can leak information only in step 8, where a value is
output. From Theorem 5 we conclude that Δ(c, r) ≤ 2−κ. The other components provide
perfect or statistical privacy. Therefore, the protocols provide statistical privacy with
security parameter κ.

Complexity. The complexity of these protocols depends on the solution used for
binary computation:

• Protocol 5.1, with bits shared in Zq: 1 round and m + 1 invocations for Steps
2-3 (PRandBit); 1 round and 1 invocation for Step 8; log(m) rounds and 2m − 2
invocations for Step 10 (BitLT). Overall, log(m) + 2 rounds and 3m invocations in
Zq. Steps 2-3 can be precomputed (1 rnd, m + 1 invocations in Zq). Each of the

m shared random bits generated in Step 1 requires an exponentiation r
q+1
4 , which

slows down considerably the protocol for large q and m, and many parallel instances
(e.g., secure Simplex with integer pivoting).

• Protocol 5.2, with bits shared in F28 : 2 rounds and 2m + 2 invocations in a small
field Zq1 for Steps 2-3 (PRandBitD); 1 round and 1 invocation in Zq for Step 8;
log(m) rounds and 2m − 2 invocations in F28 for Step 10 (BitLT); 1 round and 1
invocation in F28 for Step 11. Overall, log(m) + 4 rounds and 2m + 2 invocations
in Zq1 , 1 invocation in Zq, and 2m − 1 invocations in F28 . Steps 2-3 dominate the
communication complexity and can be precomputed (2 rounds, 2m + 2 invocations
in Zq1). The protocol PRandBitD generates shared random bits in a small field Zq1 ,
reducing substantially the computation complexity.

Reduction modulo 2 (extraction of the least significant bit). Protocol 5.3 com-
putes x′ = x mod 2 for any x ∈ [−2k−1..2k−1 − 1], i.e., extracts the least significant bit of
x (for 2’s complement representation of negative integers). It uses the same method as
Mod2m, but the protocol is much simpler because we do not need BitLT. The complexity
of the protocol is 2 rounds and 2 invocations.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 50/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.3: [a0]← LSB([a], k)

[b]← PRandBit(); // 1 rnd, 1 inv, 1 exp (Zq)1

[r]← PRandInt(k + κ− 1);2

c← Output(2k−1 + [a] + 2[r] + [b]); // 1 rnd, 1 inv (Zq)3

[a0]← c0 + [b]− 2c0[b];4

return [a0];5

5.1.2 Truncation

Protocols 5.4 and 5.5 compute �x/2m� = (x− (x mod 2m))2−m for any x ∈ [−2k−1..2k−1−
1] and 0 < m < k. This is equivalent to cutting off the m least significant bits of
the binary representation of x. The protocols take as inputs [a] = [Fldq(x)] and the
public integers k and m, and return [Fldq(�x/2m�)]. They provide statistical privacy
with security parameter κ.

Protocol 5.4: [d]← Trunc([a], k, m)

[a′]← Mod2m([a], k, m); // 2 + log m rnd, 3m− 1 inv, m exp (Zq)1

[d]← ([a]− [a′])(2−m mod q);2

return [d];3

Protocol 5.5: [d]← TruncF([a], k, m)

[a′]← Mod2mF([a], k, m); // 1 rnd, 1 inv (Zq)1

// 2 rnd, 2m + 2 inv, m + 1 exp (Zq1)

// 1 + log m rnd, 2m− 1 inv (F28)

[d]← ([a]− [a′])(2−m mod q);2

return [d];3

Correctness. Let d′ = (a − a′) mod q. Since a = x mod q and a′ = x mod 2m

we have d′ = (x − (x mod 2m)) mod q = (�x/2m� · 2m) mod q. The protocol returns
d = d′ · (2−m mod q) mod q. Correctness follows from the fact that d = �x/2m� mod q =
Fldq(�x/2m�).

Analysis. Security/complexity are the same as for protocols 5.1 and 5.2, respectively.

Division by 2. For m = 1 we can compute y = �x/2� using the simpler protocol 5.3.

5.1.3 Truncation With Probabilistic Rounding

Rounding to the nearest integer. Suppose now that we have to compute an ap-
proximation of x/2m, rather than cutting off the m least significant bits of x (e.g., for
multiplication of fixed-point numbers). Protocols 5.4 and 5.5 compute d = �x/2m�, which
approximates x/2m with the absolute error ε = |x/2m − d| < 1. We can reduce the error
to ≤ 0.5 by rounding to the nearest integer , i.e., by computing d′ = �x/2m� + u, where
u = 0 if x mod 2m < 2m/2 and u = 1 if x mod 2m ≥ 2m/2. However, this rounding
requires a secure comparison, hence it is inefficient.

Protocol 5.6 offers probabilistic rounding “for free”. It computes �x/2m� + u, where
u is a random bit, for any x ∈ [−2k−1..2k−1 − 1] and 0 < m < k. The random bit

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 51/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

u is distributed such that the fraction x/2m is probabilistically rounded to the nearest
integer. The inputs are [a] = [Fldq(x)] and the public integers k and m. The output is
[Fldq(�x/2m�+ u)]. The protocol provides statistical privacy with security parameter κ.

Protocol 5.6: [d]← TruncPr([a], k, m)

([r′], [r′]B)← PRand2mU(q, m); // 1 rnd, m inv, m exp (Zq)1

[r′′]← PRandInt(q, k + κ−m);2

[r]← 2m · [r′′] + [r′];3

[b]← 2k−1 + [a];4

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)5

c′ ← c mod 2m;6

[a′]← c′ − [r′];7

[d]← ([a]− [a′])2−m;8

return [d];9

Correctness. Steps 1-7 compute the value a′ = (x mod 2m) − u · 2m, where u ∈
{0, 1}, using the same method as protocol 5.1, Mod2m. To see that, observe that b =
(2k−1 + a) mod q = 2k−1 + x, b mod 2m = x mod 2m, and a′ = (b mod 2m) − u · 2m.
Let d′ = (a − a′) mod q and observe that d′ = (x − (x mod 2m) + u · 2m) mod q =
(�x/2m� · 2m + u · 2m) mod q. The protocol returns d = d′ · (2−m mod q) mod q. We have
d = (�x/2m�+ u) mod q = Fldq(�x/2m�+ u), hence the output is correct.

Probabilistic rounding. Let x′ = x mod 2m and r′ = r mod 2m. Observe that
x′+r′ ∈ [0..2m+1−2] and u = 1 if x′+r′ ≥ 2m and u = 0 if x′+r′ < 2m−1. Denote p(x′) the
probability that u = 1 for given x′. It follows that p(x′) = Px′(u = 1) = Px′(r′ ≥ 2m−x′).
We see that p(x′) grows with x′ from p(0) = 0 to p(2m − 1) ≈ 1. For example, if r′ is
random uniform in [0..2m − 1], we obtain p(x′) = x′/2m, hence p(0) = 0, p(2m/2) = 1/2,
and p(2m − 1) = 1− 2−m.

Absolute error. Let ε1 be the error of protocols 5.4/5.5 and ε2 the error of protocol
5.6. Observe that ε2 < 1 and ε2 < ε1 in all cases except when x′ < 2m/2 and r′ > 2m−x′.

Complexity. Step 1 needs 1 round and m invocations, and step 5 needs 1 round and
1 invocation (in Zq). Overall, 2 rounds and m + 1 invocations. Note that Steps 1-2 can
be precomputed.

More efficient variant for large q. We can improve the efficiency of Protocol 5.6 by
generating the shared random bits in a small field using PRandBitL (Protocol 3.18), as
shown in Protocol 5.7.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 52/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.7: [d]← TruncPrF([a], k, m)

foreach i ∈ [0..m− 1] do parallel1

[ri]← PRandBitL(q); // 2 rnd, 2m inv, m exp (Zq1)2

[r′]←∑m−1
i=0 2i · [ri];3

[r′′]← PRandInt(q, k + κ−m);4

[r]← 2m · [r′′] + [r′];5

[b]← 2k−1 + [a];6

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)7

c′ ← c mod 2m;8

[a′]← c′ − [r′];9

[d]← ([a]− [a′])2−m;10

return [d];11

Security. Protocols 5.6 and 5.7 can leak information only when they output c = b+r.
From Theorem 5 we conclude that Δ(c, r) ≤ 2−κ. The other components provide perfect
or statistical privacy. Therefore, the protocols provide statistical privacy with security
parameter κ.

Fast truncation for fixed-point multiplication. Protocol 5.8 is a variant of TruncPr
that generates r′ without interaction, using PRand2mN (instead of PRand2mU). This
variant is very efficient: 1 round and 1 invocation in Zq. On the other hand, it provides
weaker protection for the truncated part. Observe that for input [a] = [Fldq(x)] all
variants reveal c′ = ((x mod 2m) + r′) mod 2m, where r′ ∈ [0, 2m − 1]. The difference is
that in TruncPrN the secret random r′ is a sum of random integers, while in the previous
variants r′ is uniformly distributed. However, the protection offered by TruncPrN can
be sufficient for particular applications, e.g., secure multiplication of fixed-point numbers
(see section 5.4.1).

Protocol 5.8: [d]← TruncPrN([a], k, m)

[r′]← PRand2mN(q, m);1

[r′′]← PRandInt(q, k + κ−m);2

[r]← 2m · [r′′] + [r′] ;3

[b]← 2k−1 + [a];4

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)5

c′ ← c mod 2m;6

[a′]← c′ − [r′];7

[d]← ([a]− [a′])2−m;8

return [d];9

5.1.4 Comparison of Truncation Variants

The protocol TruncPr is substantially more efficient than Trunc (essentially, because it
avoids BitLT). On the other hand, from the point of view of applications we distinguish
the following cases:

• If the task is to compute �x/2m� (i.e., cut off the m least significant bits) then Trunc
provides the exact result, while TruncPr computes an approximation with maximum

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 53/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

absolute error ε < 1. Some applications need the exact result and can only use Trunc
(e.g., integer comparison).

• If the task is to compute an approximation of x/2m then the maximum absolute
error of both protocols is ε < 1. However, the error of TruncPr is more likely less
than ε ≤ 0.5. Since TruncPr is much more efficient, it is obvious choice for this type
of applications (e.g., fixed-point multiplication).

The protocol TruncPr is more accurate than TruncApp, which computes the truncation
with absolute error ε ≤ n. With precomputation of [r′], TruncPr performs a truncation
in 1 round and 1 invocation, hence it becomes more efficient than TruncApp, which needs
3 rounds and 4 invocations. We call this variant TruncPrPre([a], k, m, [r′]). A similarly
optimized variant of TruncPrF is called TruncPrFPre.

TruncPrN is the most efficient variant of TruncPr: 1 round and 1 invocation in Zq. On
the other hand, it provides weaker security.

5.2 Integer Comparison

Family of protocols for integer comparison. The entire family of secure integer
comparison operators with secret inputs and outputs can be constructed based on two
protocols: EQZ(a), that computes a = 0, and LTZ(a), that computes a < 0. The names
of the protocols and the constructions are summarized in Table 9. For the operators with
two inputs, one input may be a public value.

Operation Protocol Construction Complexity

a = 0 EQZ(a) Primitive see Table 10
a = b EQ(a, b) EQ(a, b) = EQZ(a− b) same as EQZ

a < 0 LTZ(a) Primitive (sign of a) see Table 10
a > 0 GTZ(a) GTZ(a) = LTZ(−a) same as LTZ
a ≤ 0 LEZ(a) LEZ(a) = 1− LTZ(−a) same as LTZ
a ≥ 0 GEZ(a) GEZ(a) = 1− LTZ(a) same as LTZ

a < b LT(a, b) LT(a, b) = LTZ(a− b) same as LTZ
a > b GT(a, b) GT(a, b) = LTZ(b− a) same as LTZ
a ≤ b LE(a, b) LE(a, b) = 1− LTZ(b− a) same as LTZ
a ≥ b GE(a, b) GE(a, b) = 1− LTZ(a− b) same as LTZ

Table 9: The family of protocols for integer comparison.

Protocol LTZ (Less Than Zero). Protocol 5.9 computes s = (x < 0) for any x ∈
[−2k−1..2k−1 − 1]. The protocol takes as inputs [a] = [Fldq(x)] and the public integer k,
and returns [s] = [Fldq(x < 0)]. It provides statistical privacy with security parameter κ.

Protocol 5.9: [s]← LTZ([a], k)

[s]← −Trunc([a], k, k − 1);1

// 2 + log(k − 1) rnd, 3k − 4 inv, k − 1 exp (Zq)

return [s];2

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 54/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.10 is a variation that trades off between rounds and data transmitted by
having more rounds but invocations in a smaller field.

Protocol 5.10: [s]← LTZF([a], k)

[s]← −TruncF([a], k, k − 1); // 1 rnd, 1 inv (Zq)1

// 2 rnd, 2k inv, k exp (Zq1)

// 1 + log(k − 1) rnd, 2k − 3 inv (F28)

return [s];2

Correctness. The protocols return s = −�x/2k−1�. Since x ∈ [−2k−1..2k−1 − 1] it
follows that s = 1 for any x ∈ [−2k−1..− 1] and s = 0 for any x ∈ [0..2k−1− 1], hence the
output is correct.

Remark. When LTZ is used to construct comparison operators with two inputs, care
must be taken to ensure that subtraction of the inputs does not overflow. For example,
if a and b are k-bit integers and we need an operator LT (less than) that works for the
entire range of the inputs, we can use LT([a], [b], k) = LTZ([a]− [b], k + 1).

Protocol EQZ (Equal Zero). Protocol 5.11 computes s = (x = 0) for any secret
integer x ∈ [−2k−1..2k−1− 1]. The protocol takes as inputs [a] = [Fldq(x)] and the public
integer k, and returns [s] = [Fldq(x = 0)].

Protocol 5.11: [s]← EQZ([a], k)

([r′], [r′]B)← PRand2mU(q, k); // 1 rnd, k inv, k exp (Zq)1

[r′′]← PRandInt(κ);2

[r]← 2k · [r′′] + [r′];3

c← Output([a] + [r]); // 1 rnd, 1 inv (Zq)4

parse [r′]B as ([r′0], [r
′
1], . . . , [r

′
k−1]);5

foreach i ∈ [0..k − 1] do6

[si]← ci + [r′i]− 2ci[r
′
i]; // ci ⊕ [r′i]7

[s]← 1− KOpL(OR, ([s0], [s1], . . . , [sk−1])); // log k rnd, k − 1 inv (Zq)8

return [s];9

Correctness. The protocol generates a random integer 0 ≤ r ≤ 2k+κ+ν and then
computes c = (a + r) mod q = (x + r) mod q. Let c′ = c mod 2k and r′ = r mod 2k, and
observe that c′ = r′ if and only if x = 0. In steps 6-8 the protocol tests if c′ = r′ by
computing the bitwise-XOR of c′ and r′ and then testing if the result is null using the
k-ary OR protocol.

Security. The protocol can leak information about the input only in step 4, when
it reveals c = x + r. From Theorem 5 we can conclude that Δ(c, r) ≤ 2−κ. The other
building blocks provide perfect privacy or statistical privacy with security parameter κ.
Therefore, the protocol provides statistical privacy with security parameter κ.

Variant with efficient bit-sharing. We can improve the efficiency of EQZ (for larger
q) using the same methods as in Protocol 5.2, as shown in Protocol 5.12. This variant
returns a bit shared in F28 (conversion to Zq requires an additional round).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 55/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.12: [s]F28 ← EQZF([a], k)

foreach i ∈ [0..k − 1] do parallel1

([ri]
F28 , [ri])← PRandBitD(8, q); // 2 rnd, 2k inv, k exp (Zq1)2

[r′]
F28

B ← ([rk−1]
F28 , . . . , [r0]

F28);3

[r′]←∑k−1
i=0 2i · [ri];4

[r′′]← PRandInt(κ);5

[r]← 2k · [r′′] + [r′];6

c← Output([a] + [r]); // 1 rnd, 1 inv (Zq)7

foreach i ∈ [0..k − 1] do8

[si]
F28 ← ci ⊕ [r′i]

F28 ;9

[s]F28 ← KOpL(OR, ([s0]
F28 , . . . , [sk−1]

F28)); // log k rnd, k − 1 inv (F28)10

return 1− [s]F28 ;11

Equality with public output. Protocol 5.13 is a very efficient solution for equality
test with secret inputs and public output. The protocol offers perfect privacy.

Given the secret inputs [a] and [b], the parties generate a shared random secret [r],
compute [c] = ([a] − [b])[r], and then open c. If c = 0 then (a = b) = 1, otherwise
(a = b) = 0. The output is incorrect if a �= b and r = 0, but this occurs with probability
< 1/q, which is negligible in our setting.

Protocol 5.13: [s]← EQPub([a], [b])

[r]← PRandFld(Zq);1

c← MulPub([a]− [b], [r]); // 1 rnd, 1 inv (Zq)2

s← (c = 0)?1 : 0;3

return s;4

Faster Variant of GTZ: We also consider a faster variant of GTZ called GTZF, that
uses LTZF (instead of LTZ). The complexity of this protocol is the same as that of LTZF.

5.3 Bit Decomposition

The protocol BitDec is a general tool that provides a bridge between secure computation
with integers shared in Zq and with integers that are bitwise-shared in Zq or F28 . In
particular, we use BitDec in the protocol that computes the reciprocal of a fixed-point
number using the Newton-Raphson method.

The inputs are [a] = [Fldq(x)] and the public integers k and m, where x ∈ [−2k−1..2k−1−
1] and 0 < m ≤ k. The output is an array of shared bits equal to the m least significant
bits of the 2’s complement binary representation of x. The protocol provides statistical
privacy with security parameter κ.

Protocols 5.14 and 5.15 are more efficient variants of the bit decomposition protocol
introduced in D3.1 [27]. Protocol 5.14 uses bits encoded and shared in the same field
Zq as the integers. This variant is suitable for small q and m and applications that need
output bits shared in Zq. Protocol 5.15 uses bits encoded and shared in F28 , and it is more
efficient for large q and m and output bits shared in F28 (in particular, for the reciprocal
of fixed-point numbers). Both variants generate only m secret random bits, instead of
k + κ random bits in the version presented in D3.1.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 56/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.14: ([am−1], . . . , [a0])← BitDec([a], k, m)

foreach i ∈ [0..m− 1] do parallel1

[ri]← PRandBit(q); // 1 rnd, m inv, m exp (Zq)2

[r′]←∑m−1
i=0 2i · [ri];3

[r′′]← PRandInt(k + κ−m);4

[r]← 2m · [r′′] + [r′];5

c← Output(2k+κ+ν + 2k + [a]− [r]); // 1 rnd, 1 inv (Zq)6

([am−1], . . . , [a0])← AddBitwise((cm−1, . . . , c0), ([rm−1], . . . , [r0]));7

// log m rnd, m log m inv (Zq)

return ([am−1], . . . , [a0]);8

Protocol 5.15: ([am−1]
F28 , . . . , [a0]

F28)← BitDecF([a], k, m)

foreach i ∈ [0..m− 1] do parallel1

[ri]
F28 , [ri]← PRandBitD(m, q); // 2 rnd, 2m inv, m exp (Zq1)2

[r′]←∑m−1
i=0 2i · [ri];3

[r′′]← PRandInt(k + κ−m);4

[r]← 2m · [r′′] + [r′];5

c← Output(2k+κ+ν + 2k + [a]− [r]); // 1 rnd, 1 inv (Zq)6

([am−1]
F28 , . . . , [a0]

F28)← AddBitwise((cm−1, . . . , c0), ([rm−1]
F28 , . . . , [r0]

F28));7

// log m rnd, m log m inv (F28)

return ([am−1]
F28 , . . . , [a0]

F28);8

Precomputation. The random bits output in Step 2 can be precomputed. This
results in a saving of 2 rounds in Zq1. We call this variant BitDecFPre.

Correctness. Let b = (2k + a) mod q, and observe that b = 2k + x and b mod 2k =
x mod 2k. The protocol generates a random integer 0 ≤ r ≤ 2k+κ+ν−1 and then computes
c = (2k+κ+ν + 2k + a− r) mod q. Since q > 2k+κ+ν+1 we have c = 2k+κ+ν + 2k + x− r.

Observe that if x ≥ 0 then (r + c) mod 2k = x and if x < 0 then (r + c) mod 2k =
2k − |x|, so the value (r + c) mod 2k is equal to the 2’s complement representation of x.
The protocol uses binary addition to compute the m ≤ k least significant bits of x.

Security. The protocols 5.14 and 5.15 can leak information only in step 6, where a
value is output. From Theorem 5 we conclude that Δ(c, r) ≤ 2−κ. The other building
blocks provide perfect privacy or statistical privacy with security parameter κ. Therefore,
the protocols provide statistical privacy with security parameter κ.

Complexity. The complexity of the protocol depends on the method used for encod-
ing the binary values:

• Protocol 5.14, with bits shared in Zq: 1 round and m invocations in Zq for steps 1-2
(PRandBit); 1 round and 1 invocation in Zq for step 6; log(m) rounds and m log(m)
invocations in Zq for step 7 (AddBitwise with one input public). Overall, log(m) + 2
rounds and m log(m) + 1 invocations in Zq.

• Protocol 5.15, with bits shared in F28 : 2 rounds and 2m invocations in the small
field Zq1 for steps 1-2 (PRandBitD); 1 round and 1 invocation in Zq for step 6; log(m)
rounds and m log(m) invocations in F28 for step 7; 1 round and 1 invocation in Zq

for step 7. Overall, log(m)+3 rounds consisting of 2m invocations in Zq1, m log(m)

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 57/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

invocations in F28 , and 1 invocation in Zq. For large q and m, the communication
and computation complexity are substantially reduced using protocol PRandBitD
and binary addition with bits shared in F28 .

5.4 Fixed-Point Arithmetic

In this section, we give protocols for the following operations on fixed-point numbers:
multiplication, inner product of two vectors, and reciprocal. We refer the reader to Sec-
tion 2.5 for data representation. We will use the letters e and f to denote the magnitude
and resolution of all fixed-point numbers and omit them when there is no ambiguity.

5.4.1 Fixed-Point Multiplication

Let x, y be fixed-point numbers. As mentioned earlier, we represent both x and y as
integers x′ = 2fx and y′ = 2fy. We then compute the product z′ = 2fxy as follows: first
we compute z′′ = x′y′ = 22fxy. Then we truncate z′′ by f bits to obtain an approximation
(with a loss of f bits) of the product z′. The truncation is not necessary if one of x, y is
an integer. Let [a], [b] be the sharings of field elements a, b encoding fixed-point numbers.
The multiplication protocol is as follows:

Protocol 5.16: [d]← FPMul([a], [b], e, f)

[c]← [a][b]; // 1 rnd, 1 inv (Zq)1

[d]← Truncate([c], 2e + 2f, f); // See below2

return [d];3

Here Truncate ∈ {Trunc, TruncF, TruncPr, TruncPrF, TruncPrN, TruncApp}. We use the
notation FPMul, FPMulF, FPMulPr, FPMulPrF, FPMulPrN, and FPMulApp respectively to
denote the variants. The complexity is given in Table 11.

Security. All variants except FPMulPrN provide statistical privacy. FPMulPrN is much
more efficient than the other variants (2 rounds and 2 invocations), but offers slightly
weaker privacy. This variant uses the truncation protocol TruncPrN which reveals w =
(z′′ mod 2f + r′) mod 2f , where r′ ∈ [0, 2f − 1] is not uniformly distributed. Observe that
the weaker protection affects only the least significant f bits of the integer product of the
inputs, and that these bits are discarded. The protocol only leaks information that can
be inferred about inputs and output from w and the distribution of r′. We assume that
the information leaked is negligible for the secure Simplex protocols in Chapter 6.

5.4.2 Fixed-Point Inner Product

Notation. Let a = (a1, a2, . . . , am) ∈ Zq
m be an m-vector of field elements representing

fixed-point numbers. For i ∈ [1..m], let (a(i,1), a(i,2), . . . , a(i,n)) be a sharing of ai. For j ∈
[1..n], define a∗

j
def
= (a(1,j), a(2,j), . . . , a(m,j)). By [a], we denote the n-vector (a∗

1, a
∗
2, . . . , a

∗
n)

representing the sharing of a such that party i holds a∗
i .

Protocol 5.17 is an efficient protocol for computing the inner product of two m-vectors
a and b representing fixed-point numbers. The protocol uses a similar optimization
principle as that in Protocol 2.2.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 58/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.17: [d]← FPInner([a], [b], e, f)

[c]← Inner([a], [b]); // 1 rnd, 1 inv (Zq)1

[d]← Truncate([c], 2e + 2f, f); // See below2

return [d];3

Here Truncate ∈ {Trunc, TruncF, TruncPr, TruncPrF, TruncPrN, TruncApp}. We use the
notation FPInner, FPInnerF, FPInnerPr, FPInnerPrF, FPInnerPrN and FPInnerApp respec-
tively to denote the variants. The complexity is given in Table 11.

The security analysis of the above variants is similar to that of the FPMul variants.

5.4.3 Fixed-Point Reciprocal

Basic Newton-Raphson algorithm. Given an equation y = f(x), we can obtain an
approximation of a root of f(x) as follows: we start with an initial approximation r0 and
iteratively improve it by computing rn+1 = rn − f(rn)/f

′(rn). To use this technique to
find the reciprocal of a, we set f(x) = 1/a−x. We then obtain a sequence r0, r1, . . . given
by rn+1 = rn(2− arn) with the property that if 0 < r0 < 2/a then the sequence converges
quadratically to 1/a.

In our scenario, a is a signed fixed-point number in the range [−2e, 2e − 2−f] with
resolution f (represented as the signed integer 2fa ∈ [−2e+f ..2e+f − 1]) and we want to
compute the reciprocal 1/a with the same resolution (again represented as an integer)
assuming no overflow. In order to find an initial approximation we perform an initial
scaling of a to ensure that 0.5 < a < 1. The final result is obtained by a corresponding
scaling of the reciprocal in the reverse direction.

Initial Scaling. A key issue is to determine an initial approximation that ensures
quadratic convergence. Moreover, an important performance gain can be obtained by
starting with an accurate initial approximation, in order to reduce the number of itera-
tions. The usual approach is to compute the normalized input r ∈ [0.5, 1) (or r ∈ [1, 2))
and then find an approximation of 1/r. A linear approximation 1/r ≈ α · r +β can easily
be computed and offers good accuracy. For example, x0 = 2.9142 − 2r approximates
r ∈ [0.5, 1) with error ε0 < 0.08578, i.e., accuracy of m = 3.5 bits. For a secret normalized
value r this linear approximation is computed without interaction.

More accurate initial approximations can be obtained by table lookup. For example, a
piece-wise linear approximation using a lookup table with 2k entries offers initial approx-
imations with accuracy of m = 2k + 2 bits [21]. A reciprocal with 64-bit accuracy can
thus be computed in 2 Newton-Raphson iterations, with an initial approximation based
on a table with only 128 entries.

Reciprocal Protocol. Protocol 5.18 takes as input a secret-shared value [d], where
d = Fldq(Intf(d

∗)) for some d∗ ∈ [2−f , 2e − 2−f] and returns the secret-shared result [z]
where z = Fldq(Intf(z

∗)) for some z∗ ≈ 1/d∗.
The protocol uses the simple linear approximation shown above. Secure table lookup

can be achieved quite efficiently, and piece-wise linear approximation will be included in
a future version of the protocol. However, the complexity of the reciprocal protocol is
dominated by scaling, so reducing the number of iterations will have limited effects.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 59/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 5.18: [z]← RecNR([d], e, f, p)

Input: ([d], e, f, p) s.t. d = Fldq(Intf(d
∗)) for some fixed point number

d∗ ∈ [2−f , 2e − 2−f] and p is an accuracy parameter.
Output: [z] s.t. z − Fldq(Intf(z

∗)) for fixed point number z∗ ∈ [2−f , 2e − 2−f]
with z∗ ≈ 1/d∗

(θ, �, h, j)← ((e + f), �log p
m
�, (e + f − p), (p + e− f));1

[v]← ScaleUpFactor([d], θ); // 1 rnd, 1 inv (Zq)2

// 4 rnd†, 4θ inv, 2θ exp (Zq1)

// 1 + 2 log θ rnd, θ + 3θ
2

log θ inv (F28)

[r]← [d][v]; // 1 rnd, 1 inv (Zq)3

if (e + f − p > 0) then4

[r]← TruncPrF([r], e + f, h); // 1 rnd, 1 inv (Zq)5

// 2 rnd†, 2f inv, f exp (Zq1)

[x]← α− β[r];6

γ ← Fldq(Int2p(2.0));7

foreach i ∈ [1..�] do sequential8

[y]← γ − [x][r]; // � rnd, � inv (Zq)9

[y]← [x][y]; // � rnd, � inv (Zq)10

[x]← TruncPrF([y], 3 + 3p, 2p); // � rnd, � inv (Zq)11

// 2� rnd†, 2�f inv, �f exp (Zq1)

[z]← [x][v]; // 1 rnd, 1 inv (Zq)12

[z]← TruncPrF([z], p + e + f, j); // 1 rnd, 1 inv (Zq)13

// 2 rnd†, 2f inv, f exp (Zq1)

return [z];14

Protocol 5.19: [v]← ScaleUpFactor([d], k)

Input: ([d], k) s.t. d ∈ [0..2k − 1]
Output: [v] s.t. v = 2u ∧ vd ∈ [2k−1..2k − 1]

([dk−1]
F28 , . . . , [d0]

F28)← BitDecF([d], k, k); // 1 rnd, 1 inv (Zq)1

// 2 rnd†, 2k inv, k exp (Zq1)

// log k rnd, k log k inv (F28)

([ak−1]
F28 , . . . , [a0]

F28)← PreOpL(OR, [dk−1]
F28 , . . . , [d0]

F28);2

// log k rnd, k
2
log k inv (F28)

foreach i ∈ [0..k − 2] do3

[bi]
F28 ← [ai]

F28 − [ai+1]
F28 ;4

[bk−1]
F28 ← [ak−1]

F28 ;5

foreach i ∈ [0..k − 1] do parallel6

[bi]← BitF2MtoZQ([bi]
F28); // 2 rnd†, 2k inv, k exp (Zq1)7

// 1 rnd, k inv (F28)

[v]←∑k−1
i=0 [bk−1−i] · 2i;8

return [v];9

Optimization with Precomputation: We describe a variant of the above protocols
with precomputation of random bits that reduces the round complexity while keeping the

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 60/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

remaining parameters same. These rounds are indicated with the superscript †. The
following steps in RecNR allow precomputation:

1. Step 2 - ScaleUpFactor (see below) - saving of 4 rounds in Zq1 .

2. Step 5 - Use of TruncPrFPre instead of TruncPrF - saving of 2 rounds in Zq1 .

3. Step 11 - Use of TruncPrFPre instead of TruncPrF - saving of 2� rounds in Zq1.

4. Step 13 - Use of TruncPrFPre instead of TruncPrF - saving of 2 rounds in Zq1.

In ScaleUpFactor:

5. Step 1 - Use of BitDecFPre instead of BitDecF - saving of 2 rounds in Zq1 .

6. Step 7 - Use of BitF2MtoZQPre instead of BitF2MtoZQ - saving of 2 rounds in Zq1 .

Overall this results in a saving of 6 + 2� rounds in Zq1 considering 2 rounds for pre-
computation. We call this variant RecNRPre.

Correctness: The protocol uses the Newton-Raphson method discussed above. Signed
inputs are handled by a simple extension of this protocol, requiring a secure integer com-
parison and two secure multiplications. A detailed correctness proof is available in the
deliverable D3.1 [27]. The main steps of the computation are explained below:

1. Range reduction (initial scaling): Scale the input d∗ ∈ [2−f , 2e − 2−f] to the range
[1/2, 1). Let r∗ = 2s · d∗ ∈ [1/2, 1) the scaled value.

2. Iterations: Let x∗
0 ∈ (1, 2] an initial approximation of 1/r∗ with ε0 ≤ 2−m. Compute

x∗
i+1 = x∗

i (2 − x∗
i · r∗), for 0 ≤ i ≤ c. The number of iterations depends on the

desired accuracy and the initial approximation error. If ε0 ≤ 2−m an accuracy of p
bits is obtained after c = �log(p/m)� iterations.

3. Range expansion (final scaling): After the iterations we obtain x∗
c ≈ 1/r∗ = 1/(d∗ ·

2s). Scale x∗
c to obtain the (approximate) reciprocal 1/d∗ ≈ x∗

c · 2s.

The normalized input r∗ ∈ [1/2, 1) is a fixed-point number with resolution 2−p. The
protocol RecNR obtains r∗ as follows. The input Intf(d

∗) is first scaled up by a secret
factor 2u, obtaining the integer r′ = 2u · Intf(d

∗) ∈ [2e+f−1, 2e+f − 1]. If p = e + f ,
then Intp(r

∗) = r′. If p < e + f , then r′ is divided by the public value 2e+f−p to obtain
Intp(r

∗) = 2−(e+f−p)r′ ∈ [2p−1, 2p − 1]. Observe that r∗ ≈ 2u−ed∗. The secret factor 2u is
computed using Protocol 5.19, ScaleUpFactor.

The Newton-Raphson iterations start with the normalized input r∗ ≈ 2u−ed∗ and the
initial approximation x∗

0, and compute x∗
c ∈ (1, 2] such that x∗

c ≈ 1/r∗ with accuracy 2−p.
The final scaling computes Intf(z

∗) = 2u2−(p+e−f)Intp(x
∗
c) ≈ 2f+u−e(1/r∗) ≈ Intf (1/d

∗).
We assume e = f to avoid overflow for the entire range of the input. The parameter

p ∈ [f, e + f] allows a trade-off between the accuracy of the output and efficiency. If
p = e+ f = 2f , the accuracy is limited by the resolution of the fixed-point numbers, 2−f .
If p < 2f , then the input is truncated by cutting off the least significant 2f − u− p bits,
i.e., keeping p bits after the most significant non-zero bit. If p = f the truncation of the
input introduces an error < 2−f .

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 61/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

On the other hand, p determines the bit-length of the values during iterations and the
number of iterations. The efficiency gain obtained by taking p < 2f depends on how the
Newton-Raphson iterations are computed (including the variant of truncation protocol)
and the bit-length of the input. Taking p = f offers the best tradeoff. Different variants
for computing the Newton-Raphson iterations are analyzed in D3.1 [27].

Security: The protocol provides statistical privacy. It does not output any value and
all the building blocks are protocols with perfect or statistical privacy.

5.5 Performance Measurements

The protocols presented in this chapter were gradually included in JSMC, a collection
of Java libraries for secure computation using secret sharing developed in Work Package
9. The main purpose of JSMC is to enable fast prototyping, testing, and analysis of
protocol components. The current JSMC libraries include most of the current protocols
and their building blocks described in Chapter 3. We summarize in this section the results
of experiments with some of the main components of secure Simplex.

JSMC follows the simple computation model described in Section 2.3, and the parties
are processes running on different PCs, with full mesh interconnection topology. We
measured the running time of the protocols for 5 parties. We used a heterogeneous group
of PCs, equipped with Intel Pentium 4HT at 2.8 GHz or Intel Core Duo at 1.8 GHz.

The experiments were carried out in an isolated network, for two settings: LAN with
100 Mbps and WAN with 10 Mbps links. The end-to-end delay of the WAN was 16 ms
without traffic and about 50 ms (average) during the computation. The purpose of the
LAN experiments is to determine an upper bound for the protocol performance, which
corresponds to a network with high bandwidth and low delay. On the other hand, WAN
experiments show how the performance degrades when the network delay increases and
the bandwidth decreases.

We show the running time for the protocols LTZF (LAN tests in Figure 4 and WAN
tests in Figure 5), TruncPrF (LAN tests in Figure 6 and WAN tests in Figure 7, and
RecNR (LAN tests in Figure 8 and WAN tests in Figure 9

Each protocol was tested for three parameter settings relevant for our applications,
corresponding to fixed-point arithmetic with e = f = 32, e = f = 48, and e = f = 64.
Note that the running time of these protocols is essentially determined by the bit-length
of the data values, rather than the size of the modulus q.

We measured the running time for a single protocol instance and for batches of 10,
50, and 100 instances executed in parallel. Observe that the running time per instance
decreases rapidly with the size of the batch, so an important performance gain is obtained
by parallel execution. As these protocols are relatively complex, the gain levels off at
about 50 instances in our test environments. For a single instance, the running time is
dominated by the network delay (reflected by the round complexity), and for many parallel
instances by the amount of transmitted data and local computation (communication and
computation complexity).

All these protocols need an important amount of shared random bits, which can be
precomputed. We measured for each protocol the running time after precomputation,
besides the total time. The tests show that the generation of shared bits has an important
contribution to the running time, even with the relatively efficient protocols PRandBitD

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 62/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

109.9

36.9
28.8

25.0

51.6

14.3
10.1 8.5

0

20

40

60

80

100

120

140

160

1 10 50 100

Total

After
Precomp.

LTZ: qlen=192, k=64, K=48

Batch size

126.3

53.4

40.5 38.0

61.0

20.7
14.6 13.2

0

20

40

60

80

100

120

140

160

1 10 50 100

Total

After
Precomp.

LTZ: qlen=256, k=96, K=48

Batch size

147.5

69.1
54.1 49.3

69.4

29.0
20.5 18.7

0

20

40

60

80

100

120

140

160

1 10 50 100

Total

After
Precomp.

LTZ: qlen=320, k=128, K=48

Batch size

Figure 4: Running time of the protocol LTZF in LAN (millisec.).

274.3

87.5
74.4 69.4

142.1

34.6
23.3 20.3

0

50

100

150

200

250

300

350

400

1 10 50 100

Total

After
Precomp.

LTZ: qlen=192, k=64, K=48

Batch size

340.9

123.7 107.9 104.3

170.9

46.8 32.6 31.5

0

50

100

150

200

250

300

350

400

1 10 50 100

Total

After
Precomp.

LTZ: qlen=256, k=96, K=48

Batch size

386.1

164.8
143.8 137.0

189.3

58.2 46.2 41.5

0

50

100

150

200

250

300

350

400

1 10 50 100

Total

After
Precomp.

LTZ: qlen=320, k=128, K=48

Batch size

Figure 5: Running time of the protocol LTZF in WAN (millisec.).

74.3

25.2
19.0 17.414.3

3.3 2.2 2.5

0

20

40

60

80

100

120

1 10 50 100

Total

After
Precomp.

TruncPrF: qlen=192,
k=128, m=64, K=48

Batch size

83.3

35.5
28.9 27.9

15.9

5.9 4.9 5.1

0

20

40

60

80

100

120

1 10 50 100

Total

After
Precomp.

TruncPrF: qlen=256,
k=192, m=96, K=48

Batch size

98.6

46.0
37.7 37.5

19.5

8.3 7.4 8.2

0

20

40

60

80

100

120

1 10 50 100

Total

After
Precomp.

TruncPrF: qlen=320,
k=256, m=128, K=48

Batch size

Figure 6: Running time of the protocol TruncPrF in LAN (millisec.).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 63/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

163.3

58.8 55.0 53.1

24.6
5.8 4.7 4.2

0

50

100

150

200

250

1 10 50 100

Total

TruncPrF: qlen=192,
k=128, m=64, K=48

Batch size

198.1

84.5 82.0 80.0

25.2
8.6 7.3 7.3

0

50

100

150

200

250

1 10 50 100

Total

TruncPrF: qlen=256,
k=192, m=96, K=48

Batch size

230.1

111.6 110.0 108.6

28.5
11.0 12.1 13.1

0

50

100

150

200

250

1 10 50 100

Total

TruncPrF: qlen=320,
k=256, m=128, K=48

Batch size

Figure 7: Running time of the protocol TruncPrF in WAN (millisec.).

232.3

107.7
81.3

73.6

153.9

63.6
47.2 42.9

0

100

200

300

400

1 10 50 100

Total

After
Precomp.

RecNRV2: qlen=192,
f=32, p=32, K=48

Batch size

250.5

148.1
120.0 111.2

186.7

96.1
70.9 65.7

0

100

200

300

400

1 10 50 100

Total

After
Precomp.

RecNRV2: qlen=256,
f=48, p=48, K=48

Batch size

329.9

207.5

162.4 151.7

240.0

135.0

101.3 92.9

0

100

200

300

400

1 10 50 100

Total

After
Precomp.

RecNRV2: qlen=320,
f=64, p=64, K=48

Batch size

Figure 8: Running time of the protocol RecNR (using TruncPrN) in LAN (millisec.).

754.7

281.8 238.9 225.2

560.2

181.0 136.1 128.2

0

200

400

600

800

1000

1200

1 10 50 100

Total

After
Precomp.

RecNR: qlen=192,
f=32, p=32, K=48

Batch size

965.0

415.6 361.9 349.6

684.0

269.6
217.5 204.1

0

200

400

600

800

1000

1200

1 10 50 100

Total

After
Precomp.

RecNR: qlen=256,
f=48, p=48, K=48

Batch size

1 178.4

588.0
514.4 501.3

838.4

374.0
316.9 306.8

0

200

400

600

800

1000

1200

1 10 50 100

Total

After
Precomp.

RecNR: qlen=320,
f=64, p=64, K=48

Batch size

Figure 9: Running time of the protocol RecNR (using TruncPrN) in WAN (millisec.).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 64/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

and PRandBitL. On the other hand, precomputation can offer an important performance
gain (e.g., for the comparisons used in the Simplex protocols, see Chapter 6).

Data encoding tradeoffs. We carried out additional experiments in order to study
various data encoding tradeoffs. Several relevant results are shown in Figure 10 for LAN,
and in Figure 11 for WAN.

We tested the following variants of the LTZ protocol:

1. Variant with all data encoded in the same field Zq, where the bit-length of q is
determined by the bit-length k of the encoded integers. This variant is Protocol 5.9.
The shared random bits are generated in Zq using PRandBit.

2. Variant with efficient random bit generation in Zq1 (|q1| = 64) using PRandBitL and
bits encoded in Zq for BitLT. We call this variant LTZL.

3. Variant with efficient random bit generation in Zq1 (|q1| = 64) using PRandBitD and
efficient bit encoding in F28 for BitLT. This variant is Protocol 5.10, LTZF.

Each variant was tested for four parameter settings relevant for our applications, al-
lowing integer of fixed-point arithmetic with: k = 64 (k = 2f); k = 128 (k = 2f or
k = 4f); k = 192 (k = 4f); k = 256 (k = 4f).

The tests show that the performance of PRandBit degrades rapidly with the growth of q
and k, due to the increase of its computation and communication complexity. For k ≥ 128,
PRandBit is much slower than PRandBitD and PRandBitL, although these protocols need
an additional round for share conversion.

Similarly, computation with bits encoded in Zq becomes slower than with bits encoded
in F28 , although the latter needs an additional round for share conversion. The gain
obtained by encoding the bits in F28 is larger in WAN (due to lower bandwidth).

The other protocols presented in this chapter are constructed using same building
blocks and techniques as LTZ (except TruncPrN), so the data encoding has similar effects
on their running time.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 65/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

83

41
35 32

78

37

29 27

78

36

26 24

0

10

20

30

40

50

60

70

80

90

100

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=128,
k=64, K=48 178

126
115 111

124

70
59 56

113

63

50 45

0

20

40

60

80

100

120

140

160

180

200

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=192,
k=128, K=48

363

289
271 264

178
116

97 92149

89
75 72

0

50

100

150

200

250

300

350

400

450

500

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=256,
k=192, K=48

661

581
557 547

237
157

138 131
190

121
97 94

0

100

200

300

400

500

600

700

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=320,
k=256, K=48

Figure 10: Data encoding tradeoffs: LAN tests with LTZ (time in millisec.).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 66/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

282

121 113 110

280

113
103 100

245

85
73 69

0

50

100

150

200

250

300

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=128,
k=64, K=48 508

360
335 332

448

255
237 232

358

163
140 135

0

100

200

300

400

500

600

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=192,
k=128, K=48

865

724 709 695

636

436 409 406437

233 210 206

0

200

400

600

800

1000

1200

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=256,
k=192, K=48

1 422

1 272 1 254 1 245

844

651 617 612

513

306 276 275

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 50 100

All in Zq

RandBitL

RandBitD & Bits
in F(256)

LTZ: qlen=320,
k=256, K=64

Figure 11: Data encoding tradeoffs: WAN tests with LTZ (time in millisec.).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 67/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

5.6 Summary

Tables 10-12 summarize the complexity of the protocols discussed in this chapter.

Protocol Field Rounds Invocations Exp.

Mod2m([a], k, m) Zq 2 + log m 3m− 1 m

Mod2mF([a], k, m)∗
Zq 1 1 -
Zq1 2 2m + 2 m + 1
F28 1 + log m 2m− 1 -

LSB([a], k) Zq 2 2 1

Trunc([a], k, m) as in Mod2m
TruncF([a], k, m)∗ as in Mod2mF
TruncPr([a], k, m) Zq 2 m + 1 m
TruncPrPre([a], k, m, [r′]) Zq 1 1 -

TruncPrF([a], k, m)∗
Zq 1 1 -
Zq1 2 2f f

TruncPrFPre([a], k, m)∗ Zq 1 1 -
TruncPrN([a], k, m)† Zq 1 1 -
TruncApp([a], k, m) Zq 3 4 -

EQZ([a], k) Zq 2 + log k 2k k

EQZF([a], k)∗
Zq 1 1 -
Zq1 2 2k k
F28 log k k − 1 -

EQPub([a], [b]) Zq 1 1 -
LTZ([a], k) Zq 2 + log(k − 1) 3k − 4 k − 1

LTZF([a], k)∗
Zq 1 1 -
Zq1 2 2k k
F28 1 + log(k − 1) 2k − 3 -

GTZF([a], k) as in LTZF
BitDec([a], k, m) Zq 2 + log m m + 1 + m log m m

BitDecF([a], k, m)∗
Zq 1 1 -
Zq1 2 2m m
F28 log m m log m -

BitDecFPre([a], k, m)∗
Zq 1 1 -
F28 log m m log m -

∗ implies that q1 	 q
† implies weaker (than statistical) security.

Table 10: Complexity of integer arithmetic protocols in this chapter.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 68/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol Field Rounds Invocations Exponentiations

FPMul([a], [b], e, f) Zq 3 + log f 3f f

FPMulF([a], [b], e, f)∗
Zq 2 2 -
Zq1 2 2f + 2 f + 1
F28 1 + log f 2f − 1 -

FPMulPr([a], [b], e, f) Zq 3 f + 2 -

FPMulPrF([a], [b], e, f)∗
Zq 2 2 -
Zq1 2 2f f

FPMulPrN([a], [b], e, f)† Zq 2 2 -
FPMulApp([a], [b], e, f) Zq 4 5 -

FPInner([a], [b], e, f) as in FPMul
FPInnerF([a], [b], e, f)∗ as in FPMulF
FPInnerPr([a], [b], e, f) as in FPMulPr
FPInnerPrF([a], [b], e, f) as in FPMulPrF
FPInnerPrN([a], [b], e, f)† as in FPMulPrN
FPInnerApp([a], [b], e, f) as in FPMulApp

∗ implies that q1 	 q
† implies weaker (than statistical) security.

Table 11: Complexity of fixed-point arithmetic protocols in this chapter.

Protocol Fld. Rounds Invocations Exp.

RecNR([d], e, f, p)∗
Zq 5 + 3�log p

m
� 5 + 3�log p

m
� -

Zq1 8 + 2�log p
m
� 4e + 2f(4 + �log p

m
�) f(3 + �log p

m
�) + e

F28 1 + 2 log(e + f) e+f
2

(2 + 3 log(e + f)) -

RecNRPre([d], e, f, p)∗
Zq 5 + 3�log p

m
� 5 + 3�log p

m
� -

Zq1 2 4e + 2f(4 + �log p
m
�) f(3 + �log p

m
�) + e

F28 1 + 2 log(e + f) e+f
2

(2 + 3 log(e + f)) -

Table 12: Complexity of RecNR.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 69/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

6 Linear Programming Protocols

Outline. This chapter presents protocols for secure linear programming (LP) using the
Simplex method. Deliverable D3.1 [27] recommends several variants of Simplex suitable
for secure computation. For example, ST-RP (Small Tableau, Rational Pivoting) follows
the classical Simplex algorithm and uses arithmetic with fixed-point rational numbers.
On the other hand, ST-IP (Small Tableau, Integer Pivoting) uses integer arithmetic and
avoids rounding errors. ST-IP uses simpler protocols for secure multiplication and divi-
sion, but the values in the tableau grow during the iterations and can reach thousands of
bits. Moreover, it is not clear how to choose Zq such that to minimize the communication
overhead and at the same time avoid overflow of the secure arithmetic operations, since
we do not have a tight upper bound for the values in the tableau.

We reviewed the protocols proposed in D3.1, in order to check their completeness
(identify missing components) and analyze their correctness, complexity, and security.
The pivot selection protocols are similar in all variants, while the protocols for updating
the tableau are different. We selected for analysis the ST-RP variant. The variants based
on integer pivoting are simpler and use a subset of the building blocks needed by ST-RP.

Section 6.2.1 introduces the secret indexing protocols used to hide the operations
performed on the Simplex tableau. Section 6.2.2 presents a complete specification of the
ST-RP protocol, with additional protocols and revised protocol descriptions (consistent
with the building blocks in the previous chapters). Moreover, we give a more efficient
solution for the selection of the pivot row. The protocols were implemented in Java and
tested. Section 6.3 gives a summary of the performance measurements.

Notation. In this chapter, n refers to the number of variables in the LP problem, and
not to the number of parties in the secure computation as was done in earlier chapters.

6.1 Linear Programming Using ST-RP Simplex

Linear Programming Problem: A Linear Programming (LP) maximization problem
in canonical form is defined as follows: given n variables xj , for 1 ≤ j ≤ n, and m
inequalities

∑n
j=1 ai,j · xj ≤ bi, for 1 ≤ i ≤ m, maximize a function f =

∑n
j=1 fj · xj

where fj , ai,j, bi, xj ∈ R and xj ≥ 0. The m inequalities are called the constraints and f
is called the objective function. Any set of variables satisfying the constraints is called a
feasible solution and the set of variables maximing f is called the optimal solution (if it
exists). If there are infinitely many solutions, then the problem is said to be unbounded.
If the is no solution, the problem is said to be infeasible. In this work we only consider
problems which are unbounded or have an optimal solution. In other words, we require
every bi ≥ 0.7

Simplex Algorithm. The most suitable algorithm to solve LP problems in our context
is Simplex [16]. The algorithm starts by transforming the constraints to equalities by
adding m “slack” variables xn+i, for 1 ≤ i ≤ m. It then selects an initial feasible solution
and iteratively improves it until either an optimum is reached (if it exists), or the problem
is found to be unbounded. At each improvement, the problem is rewritten in an equivalent
form and the various constraints are stored in a matrix. The process of improving the

7WP3 will develop protocols for solving arbitrary LP problems.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 70/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

solution is called pivoting. In the literature there are several variations of Simplex (i.e.,
different sizes of matrices and different pivoting rules). We consider the variant called
Small-Tableau Rational-Pivoting (ST-RP). The following discussion gives a very brief
overview relevant for our purpose. For details see [27, 23, 16, 30].

In ST-RP Simplex, there are the following data structures. A m × n matrix A, a m
vector B, a n vector F , a variable Z, a n vector U and a m vector S. See Figure 12.⎛

⎜⎝
A(1, 1) . . . A(1, n)

...
. . .

...
A(m, 1) . . . A(m, n)

⎞
⎟⎠

⎛
⎜⎝

B(1)
...

B(m)

⎞
⎟⎠

⎛
⎜⎝

S(1)
...

S(m)

⎞
⎟⎠

(
F (1) . . . F (n)

)
Z(

U(1) . . . U(n)
)

Figure 12: Global data structures in ST-RP simplex.

1. Initialization: For 1 ≤ i ≤ m and 1 ≤ j ≤ n, set A(i, j) ← ai,j, F (j) ← −fj ,
B(i)← bi, Z ← 0, U(j)← j, S(i)← n + i.

2. Repeat Forever:

(a) Get Pivot Column: Select c ∈ [1..n] such that F (c) < 0. If no such c, report
“Optimal Solution” and exit. If more options, choose at random or using
Bland’s rule (minimum U(c)).

(b) Get Pivot Row: Select r ∈ [1..m], such that A(r, c) > 0 and |B(r)/A(r, c)| is
minimal. If no such r, report “Unbounded Problem” and exit. If more options,
choose at random or using Bland’s rule (minimum S(r)).

(c) Update the tableau (pivoting): Set T ←
(

A B
F Z

)
then do the following:

C(i) ← T (i, c) 1 ≤ i ≤ m + 1
R(j) ← T (r, j) 1 ≤ j ≤ n + 1
p ← R(c)

T (i, j) ← T (i, j)− C(i)·R(j)
p

1 ≤ i ≤ m + 1, i �= r, 1 ≤ j ≤ n + 1

T (i, c) ← −C(i)/p 1 ≤ i ≤ m + 1
T (r, j) ← R(j)/p 1 ≤ j ≤ n + 1
T (r, c) ← 1/p
U(c) ↔ S(r) (swap)

Decompose T back into A, B, F, Z.

3. Final solution: For 1 ≤ i ≤ m variable xS(i) takes the value B(i). All other variables
take the value 0. The objective function takes the value Z.

Discussion. The set of m variables pointed to by the vector S is called the basis, while
the remaining n variables (i.e., those pointed to by the vector U) is called the co-basis.
Initially the basis contains all (and only) the slack variables. At each iteration, the problem
is first checked to see if the solution can be improved. If so, the solution is improved by

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 71/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

rewriting the problem in an equivalent form and swapping a variable from the basis and
co-basis. The process is repeated until the existing solution cannot be improved or the
problem is found to be unbounded.

6.2 Secure Linear Programming Using ST-RP Simplex

Notation. Arrays are named with capital letters (A, B, . . .) and indexes are enclosed
within round brackets (). Elements of an array A with n elements start from index 1 and
are written successively as A(1), A(2), . . . , A(n). For any array A = (A(1), A(2), . . . , A(n)),
we denote by [A] the array ([A(1)], [A(2)], . . . , [A(n)]). Multidimensional arrays are han-
dled similarly. For convenience, bitmask vectors will be represented using boldface letters
(A,B, . . .).

6.2.1 Secret Indexing

The secure Simplex protocol hides the operations performed on the LP tableau using the
secret indexing method proposed in [30]. Let [A] be an array of secret-shared values,
using Shamir sharing. Given a secret index [v], we want to read (or write) [A(v)] without
revealing the value A(v) and the index v. The element at secret index [v] is selected
using an array of secret binary values [V] (bitmask), so that [V(i)] = [0] for i �= v and
[V(v)] = [1]. The lengths of the secret bitmask and the vector are usually equal. We
allow bitmasks shorter than the vectors.

Working with an array. Protocols 6.1 and 6.2 allow secret reading and writing from/to
a vector. The secure multiplications re-randomize the shares, providing perfect privacy.

Protocol 6.1: [s]← SecRead([A], [V])

Input: m-vector [A], m-vector [V].
Output: value [s].
[s]← Inner([A], [V]); // 1 rnd, 1 inv (Zq)1

return [s];2

In Protocol 6.1, one of {[s], [A]} may be replaced by a public value. If the output is
public, we can use a variation of Protocol Inner with public output based on the technique
of Protocol 3.11. In this case the number of rounds and invocations remains unchanged.
If [A] is replaced by a public value then the protocol requires no interaction.

Protocol 6.2: [A]← SecWrite([A], [V], [s])

Input: m-vector [A], m-vector [V], and a value [s]
Output: m-vector [A] (overwritten)
foreach i ∈ [1..m] do parallel1

[A(i)]← [A(i)] + [V(i)] ([s]− [A(i)]); // 1 rnd, m inv (Zq)2

return [A];3

In Protocol 6.2, [s] can be replaced by a public value. The complexity remains same.

Working with a matrix. Protocols 6.3, 6.4, 6.5, and 6.6 are used for secretly read-
ing/writing rows/cols of matrix. The principle is similar to that in Protocols 6.1 and 6.2.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 72/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 6.3: [R]← SecReadRow([T], [V])

Input: (m + 1)× (n + 1)-matrix [T], m-vector [V].
Output: (n + 1)-vector [R].
foreach i ∈ [1..n + 1] do parallel1

foreach j ∈ [1..m] do [X(j)]← [T (j, i)];2

[R(i)]← SecRead([X], [V]); // 1 rnd, n + 1 inv (Zq)3

return [R];4

Protocol 6.4: [C]← SecReadCol([T], [W])

Input: (m + 1)× (n + 1)-matrix [T], n-vector [W].
Output: (m + 1)-vector [C].
foreach i ∈ [1..m + 1] do parallel1

foreach j ∈ [1..n] do [X(j)]← [T (i, j)];2

[C(i)]← SecRead([X], [W]); // 1 rnd, m + 1 inv (Zq)3

return [C];4

In Protocols 6.3, 6.4 if [T] is replaced by a public value then the protocol requires no
interaction.

Protocol 6.5: [T]← SecWriteRow([T], [V], [R])

Input: (m + 1)× (n + 1)-matrix [T], m-vector [V], (n + 1)-vector [R]
Output: (m + 1)× (n + 1)-matrix [T] (overwritten)
foreach i ∈ [1..n + 1] do parallel1

[T (∗, i)]← SecWrite(T (∗, i), [V], [R(i)]); // 1 rnd, m(n + 1) inv (Zq)2

return [T];3

Protocol 6.6: [T]← SecWriteCol([T], [W], [C])

Input: (m + 1)× (n + 1)-matrix [T], n-vector [W], (m + 1)-vector [C]
Output: (m + 1)× (n + 1)-matrix [T] (overwritten)
foreach i ∈ [1..m + 1] do parallel1

[T (i, ∗)]← SecWrite([T (i, ∗)], [W], [C(i)]); // 1 rnd, n(m + 1) inv (Zq)2

return [T];3

Similar to Protocol 6.2, both [R] and [C] in Protocols 6.5 and 6.6 respectively can be
replaced by a vector of public values. The complexity remains same.

6.2.2 Secure ST-RP Simplex Protocol

Protocol 6.7, STRPSimplex, computes the iterations of the ST-RP algorithm. The com-
putation is structured into several sub-protocols, which select the pivot (column and row)
and then update the tableau [T] and the vectors [S] and [U].

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 73/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 6.7: ([T], [S], Result)← STRPSimplex([T])

Input: (m + 1)× (n + 1)-matrix [T]
Output: (m + 1)× (n + 1)-matrix [T], m-vector [S], Result ∈ {Opt, Unb}
([S], [U])← InitVar(m, n);1

repeat forever2

[V]← GetPivCol([T]); // see Table 153

if Null([V]) then return ([T], [S], Opt); // 1 rnd, 1 inv (Zq)4

[C]← SecReadCol([T], [V]); // 1 rnd, m + 1 inv (Zq)5

([W], [D])← GetPivRow([B], [C]); // see Table 156

if Null([D]) then return ([T], [S], Unb); // 1 rnd, 1 inv (Zq)7

[R]← SecReadRow([T], [W]); // 1 rnd, n + 1 inv (Zq)8

[p]← SecRead([R], [V]); // 1 rnd, n inv (Zq)9

[T]← STRPUpdTab([T], [C], [R], [V], [W], [p]); // see Table 1510

([S], [U])← UpdVar([S], [U], [V], [W]); // 2 rnd, 2m + 2 inv (Zq)11

The input to the protocol, [T] is a (m + 1)× (n + 1) matrix representing the matrices
A, B, F, Z as defined above. The matrix [T] is assumed to already exist in the system.
Deliverable 3.2 will discuss methods to construct this matrix from user data.

The following sections discuss the building blocks used in Protocol 6.7.

Maintaining Variable States. Protocol 6.8 (InitVar) creates the secret-shared vari-
ables [S] and [U] with initial public values. Protocol 6.9, UpdVar, updates [S] and [U] in
each iteration to reflect the current sets of basic and non-basic variables.

Protocol 6.8: ([S], [U])← InitVar(m, n)

Input: integers m, n
Output: m-vector [S], n-vector [U]
[z]← PRandZero(Zq);1

foreach j ∈ [1..n] do [U(j)]← [z] + j;2

foreach i ∈ [1..m] do [S(i)]← [z] + i + n;3

return ([S], [U]);4

Protocol 6.9: ([S], [U])← UpdVar([S], [U], [V], [W])

Input: m-vectors [S] and [V], n-vectors [U] and [W]
Output: m-vector [S], n-vector [U] (overwritten)
do parallel1

[s]← SecRead([S], [V]); // 1 rnd, 1 inv (Zq)2

[u]← SecRead([U], [W]); // 1 inv (Zq)3

do parallel4

[S]← SecWrite([S], [V], [u]); // 1 rnd, m inv (Zq)5

[U]← SecWrite([U], [W], [s]); // m inv (Zq)6

return [S], [U];7

Testing for Null Bitmask. Protocol 6.10 tests if a bitmask [V] is null and outputs a
public value. It assumes that at most one bit in the bitmask is set. If the bitmask may
contain multiple bits set, a variation using Protocol 5.13 (EQPub) must be used.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 74/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

Protocol 6.10: s← Null([V])

Input: �-vector [V].
Output: public bit s.
[v]← [V(1)];1

foreach i ∈ [2..�] do2

[v]← [v] + [V(i)];3

s← Output([v]); // 1 rnd, 1 inv (Zq)4

return s;5

Pivot Selection. Protocol 6.11, GetPivCol, determines the index c of the pivot column
as a secret bitmask denoted [V]. If none of the values in F is negative, then [V] is
null (V(i) = 0, 1 ≤ i ≤ n). The Simplex protocol has found the optimal solution and
terminates. Termination is detected by checking if [V] is null using the protocol Null.

Protocol 6.11: [V]← GetPivCol([T])

Input: (m + 1)× (n + 1)-matrix [T].
Output: n-vector [V].
foreach i ∈ [1..n] do parallel1

[D(i)]← LTZF([T (m + 1, i)], k); // n parallel LTZFs2

[D′]← PreOpL(OR, [D]); // log n rnd, n
2

log n inv (Zq)3

[V(1)]← [D′(1)];4

foreach i ∈ [2..n] do5

[V(i)]← [D′(i)]− [D′(i− 1)];6

return [V];7

Protocol 6.12, GetPivRow, determines the index r of the pivot row as a secret bitmask
denoted [W]. If none of the values in C is strictly positive, then [V] is null. The Simplex
protocol terminates and reports unbounded problem.

Protocol 6.12: ([W], [D])← GetPivRow([B], [C])

Input: m-vectors [B], [C].
Output: m-vector [W].
foreach i ∈ [1..m] do parallel1

[D(i)]← GTZF([C(i)]); // m parallel GTZFs2

[C∗(i)]← [C(i)][D(i)]; // 1 rnd, m inv (Zq)3

[B∗(i)]← [B(i)] + 1− [D(i)];4

// C∗ = copy of C with non-app entries set to zero

// B∗ = copy of B with non-app entries set to non-zero

[W]← MinCons([B∗], [C∗], m); // (5 + log(k − 1)) log m rnd,5

// m(3k + 5) inv, m(k − 1) exp (Zq)

return ([W], [D]);6

The bitmask [W] is computed by the protocol MinCons, using the protocol CompCons
as comparison operator.

Protocol 6.13 [30] computes the secret bitmask of the minimum value in a vector
with m elements in log(m) steps using m − 1 comparisons. The number of comparisons

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 75/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

and hence the communication and computation complexity are optimal. Protocols that
compute the minimum in less steps (and hence less rounds) can be obtained using standard
techniques [19], as shown in [30]. These techniques are less efficient for secure computation,
because the number of comparisons is substantially larger and the comparison protocols
are relatively complex. However, a limited performance gain is still possible. This issue
is left for further study.

Protocol 6.13: [W]← MinCons([B∗], [C∗], α)

/* Assume α is a power of 2 */

if α = 1 then1

return [1];2

else3

foreach i ∈ [1..α/2] do parallel4

[A0]← ([B∗(2i− 1)], [C∗(2i− 1)]);5

[A1]← ([B∗(2i)], [C∗(2i)]);6

[Z(i)]← CompCons([A0], [A1]); // 3 + log(k − 1) rnd,7

// α
2
(3k + 2) inv,

// α
2
(k − 1) exp (Zq)

do parallel8

// 1 rnd, α inv (Zq)

[B∗
new(i)]← [Z(i)]

(
[B∗(2i− 1)]− [B∗(2i)]

)
+ [B∗(2i)];9

[C∗
new(i)]← [Z(i)]

(
[C∗(2i− 1)]− [C∗(2i)]

)
+ [C∗(2i)];10

[Wnew]← MinCons([B∗
new

], [C∗
new

], α/2); // (5 + log(k − 1)) log α
2
rnd,11

// (3k + 5)(α− 1) inv,

// (k − 1)(α− 1) exp (Zq)

foreach i ∈ [1..α/2] do parallel12

[W(2i)]← [Z(i)][Wnew(i)]; // 1 rnd, α
2
inv (Zq)13

[W(2i− 1)]← [Wnew(i)]− [W(2i)];14

return [W];15

Protocol 6.14: [z]← CompCons([A0], [A1])

parse [A0] as ([b∗0], [c
∗
0]);1

parse [A1] as ([b∗1], [c
∗
1]);2

[x]← [b∗0][c
∗
1]− [b∗1][c

∗
0]; // 1 rnd, 2 inv (Zq)3

return LTZ([x], k); // 2 + log(k − 1) rnd, 3k inv, k − 1 exp (Zq)4

Table 13 gives the truth-table for Protocol 6.14 (CompCons). b0, b1, c0, c1 are the
original constraints corresponding to b∗0, b

∗
1, c

∗
0, c

∗
1 respectively.

Faster CompCons for STRP Simplex. For fixed-point numbers, the comparison
in protocol 6.14 can be computed more efficiently with protocol 6.15 than with an integer
comparison protocol. The idea is to compute x = b∗0c

∗
1 − b∗1c

∗
0, then truncate x to obtain

y = �x/2f�+ u, where u ∈ {0, 1}, and then obtain the sign of y as s = −�y/(2k−1)�.
Protocol 6.15 determines the sign of the input by combining the methods used in the

Protocols Trunc, TruncPr, and LTZ (Protocols 5.4, 5.6 and 5.9). The initial truncation
by f bits is achieved without interaction. This truncation reduces the bit-length of the

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 76/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

c0 > 0 c1 > 0 c∗0 c∗1 b∗0 · c∗1 < b∗1 · c∗0 Output Constraints Selection

0 0 0 0 0 < 0 0 Not applicable b1
c1

0 1 0 c1 b0c1 < 0 0 b0
c0

not applicable b1
c1

1 0 c0 0 0 < b1c0 1 b1
c1

not applicable b0
c0

1 1 c0 c1 b0c1 < b1c0 0 b1
c1
≤ b0

c0
b1
c1

1 b0
c0

< b1
c1

b0
c0

Table 13: Truth table for Protocol 6.14 (CompCons).

inputs of the protocol BitLT, eliminating 2f bit multiplications and one round (we assume
f ≥ 48 bits). Also, the f -bit random value r′ can be locally generated using PRand2mN
(instead of PRandBit), when weaker privacy is acceptable.

Protocol 6.15: FPLTZ([a], k, f)

foreach i ∈ [0..k + f − 1] do parallel1

[ri]← PRandBit(q); // 1 rnd, k + f inv, k + f exp (Zq)2

[r′]←∑f−1
i=0 2i · [ri];3

[r′′]←∑k+f−1
i=f 2i · [ri];4

[r′′]B)← (rk+f−1, rk+f−2, . . . , rf);5

[r′′′]← PRandInt(κ);6

[r]← 2k+f · [r′′′] + 2f · [r′′] + [r′];7

[b]← 2k+f−1 + [a];8

c← Output([b] + [r]); // 1 rnd, 1 inv (Zq)9

c′ ← c mod 2f ;10

[a′]← c′ − [r′];11

[d]← ([a]− [a′])2−f ;12

c′′ ← c/2f mod 2k−1;13

[u]← BitLT(c′′, [r′′]B); // log(k − 1) rnd, 2k − 4 inv (Zq)14

[d′]← c′′ − [r′′] + [u] · 2k−1;15

[e]← ([d]− [d′])2−(k−1);16

return −[e];17

The modified protocol FPCompCons is given below.

Protocol 6.16: [z]← FPCompCons([A0], [A1])

parse [A0] as ([b∗0], [c
∗
0]);1

parse [A1] as ([b∗1], [c
∗
1]);2

[x]← [b∗0][c
∗
1]− [b∗1][c

∗
0]); // 1 rnd, 2 inv (Zq)3

return FPLTZ([x], k, f); // 2 + log f rnd, 3f − 1 + k inv, k + f exp (Zq)4

Correctness. The protocol maps x ∈ [−2k+f−1..2k+f−1 − 1] to b ∈ [0..2k+f−1] by
computing b = (2k+f−1 + a) mod q = 2k+f−1 + x. Observe that b mod 2m = x mod 2m for
any 0 < m < k + f . Next, it generates a random secret r ∈ [0..2k+f+κ − 1] and reveals
c = (b + r) mod q. Since q > 2k+f+κ+1 we have q > b + r and hence c = b + r.

Let c′ = c mod 2f , b′ = b mod 2f , and r′ = r mod 2f . We see that c′ = (b′ +r′) mod 2f

and b′ = c′− r′ + u′ · 2f , where u′ = 1 if c′ < r′ and u′ = 0 if c′ ≥ r′. Steps 10-11 compute
the value a′ = (b′ − u′ · 2f) mod q = ((x mod 2f) − u′ · 2f) mod q. Step 12 computes

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 77/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

d = (�x/2f�+ u′) mod q.
Let c′′ = �c/2f� mod 2k−1, b′′ = �b/2f� mod 2k−1, and r′′ = �r/2f� mod 2k−1. We

see that b′′ = �x/2f� mod 2k−1. Observe that c′′ = (b′′ + r′′ + u′) mod 2k−1 and hence
(b′′ + u′) mod 2k−1 = c′′ − r′′ + u · 2k−1, where u = 1 if c′′ < r′′ and u = 0 if c′′ ≥ r′′.

Steps 13-15 compute d′ = (b′′ + u′) mod 2k−1. If b′′ < 2k−1 − 1 then d′ = b′′ + u′ =
(�x/2f� mod 2k−1)+u′ and the protocol returns the correct output, e = (d−d′)2−(k−1) mod
q = (�x/2f� + u′ − (�x/2f� mod 2k−1)− u′)2−(k−1) mod q = �x/2k+f−1� mod q. If u′ = 1
and b′′ = 2k−1− 1 then d′ = 0 and the output may be incorrect. This occurs in two cases:
�x/2f� = 2k−1 − 1 or �x/2f� = −1. These errors are negligible. Let y denote the fixed-
point rational number corresponding to the integer �x/2f�. The first case corresponds to
y = 2k−1 − 2−f (largest positive value) and the second case to y = −2−f (negative value
closest to 0).

Update of the Tableau. Protocol 6.17 updates the LP tableau. Fixed-point multi-
plications consist of integer multiplications followed by truncation using TruncPrN. We
can truncate f bits at each multiplication or 2f bits for two multiplications. Protocol
6.17 uses the second method. Intermediate values are at least f bits larger in this case,
but the number of truncations is only (m + 1)(n + 1) (in parallel). The protocol RecNR
computes the reciprocal of the pivot using Newton-Raphson.

Protocol 6.17: [T]← STRPUpdTab([T], [C], [R], [V], [W], [p])

Input: (m + 1)× (n + 1)-matrix [T], (m + 1)-vector [C], (n + 1)-vector [R],
n-vector [V], m-vector [W], value [p].

Output: (m + 1)× (n + 1)-matrix [T] (overwritten).

[s]← RecNR([p], e, f, f) ; // see Table 121

foreach j ∈ [1..n + 1] do parallel2

[R(j)]← [R(j)][s] ; // 1 rnd, n + 1 inv (Zq)3

foreach i ∈ [1..m + 1] do parallel4

[C ′(i)]← [C(i)];5

[C(i)]← −2f [C(i)][s] ; // m + 1 inv (Zq)6

SecWrite([C], [W], [s]) ; // 1 rnd, m inv (Zq)7

foreach i ∈ [1..m + 1], j ∈ [1..n + 1] do parallel8

[T (i, j)]← 22f [T (i, j)]− [C ′(i)][R(j)] ; // 1 rnd, (m + 1)(n + 1) inv (Zq)9

foreach j ∈ [1..n + 1] do10

[R(j)]← 2f [R(j)];11

SecWriteRow([T], [W], [R]) ; // 1 rnd, m(n + 1) inv (Zq)12

SecWriteCol([T], [V], [C]) ; // 1 rnd, n(m + 1) inv (Zq)13

foreach i ∈ [1..m + 1], j ∈ [1..n + 1] do parallel14

[T (i, j)]← TruncPrN([T (i, j)], 2f) ; // 1 rnd, (m + 1)(n + 1) inv (Zq)15

return [T];16

A variant that truncates once per fixed-point multiplication can work in a prime field
with smaller modulus and only needs m + n + 2 additional truncations (in parallel).
However, this also affects the protocol RecNR, increasing the number of rounds.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 78/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

6.3 Tests and Performance Analysis

We tested the secure Simplex protocols using JSMC, the Java libraries of secure compu-
tation building blocks developed in Work Package 9. The prototypes follow the revised
specifications of the Simplex protocols given in this chapter. The JSMC libraries used for
this purpose include virtually all the building blocks presented in the deliverable.

The aim of the tests was to check the correctness and completeness of the improved
Simplex protocol specifications and the new building blocks, and to analyze their per-
formance. However, the Java code was gradually developed after protocol analysis and
revision, leaving time only for preliminary tests, with linear programs of limited size.

The tests showed that the solutions provided by the secure Simplex protocols are
virtually the same as those obtained by usual (non-secure) implementations of the same
algorithms. Full tests (until termination of the Simplex algorithm) were performed with
the ST-RP protocol for linear programs up to m = 60 and n = 50, and partial tests for
larger sizes, m, n < 200. For the ST-IP protocol correctness tests were limited to small
linear programs (m = n = 10), since accuracy is not an issue and the duration increases
rapidly with the size of the linear program.

We summarize in the following the results of the performance measurements. We
recall that the main goal of JSMC is to support the development and analysis of secure
computation building blocks. JSMC follows the simple computation model described in
Section 2.3. This simplifies the analysis of the contribution of different complexity metrics
and building blocks and the effects of different optimization solutions. On the other hand,
the scheduling and communication libraries are not fully optimized for multiprocessor
computers and very large LP problems. A fully optimized implementation can achieve
substantial performance gains with respect to the results presented below.

We measured the running time of the Simplex protocols for 5 parties, using the same
test environment as for the arithmetic protocols (Section 5.5). Each party runs on a
different PC, with full mesh interconnection topology. The PCs are equipped with Intel
Pentium 4HT at 2.8 GHz or Intel Core Duo at 1.8 GHz. The experiments were carried out
in an isolated network, for two settings: Ethernet LAN with 100 Mbps links and WAN
with 10 Mbps links. The end-to-end delay of the WAN was 16 ms without any traffic and
about 50 ms (average) during the computation.

Experiments with Simplex ST-RP. Table 14 gives the running time of an iteration of
Protocol 6.7, STRPSimplex, and its main components. The table shows how the running
time increases with the size of the linear programs, for m = n = 10, m = n = 50,
m = n = 100, where m is the number of constraints and n is the number of variables. All
tests used fixed-point numbers with e = f = 48 bits, encoded in Zq with modulus length
� = 256 bits and security parameter κ = 56 bits.

An iteration is split into a precomputation phase followed by the actual Simplex
computation steps. The precomputation generates in parallel all the shared random bits
necessary during the iteration, using the protocols PRandBitD and PRandBitL. Each
iteration needs (n+m)(e+f)+(m−1)(e+2f)+(e+f) double shared bits and n+ e+f
bits shared in Zq, for comparisons and the reciprocal of the pivot. Figure 13 shows
the running time after precomputation versus the total duration of an iteration. The
precomputation takes about 40%−50% of the total time. An implementation that carries
out the precomputation for iteration i + 1 in parallel with the computation for iteration

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 79/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

LAN (100 Mbps), � = 256, f = 48 m = n = 10 m = n = 50 m = n = 100

Precomputation 1.02 4.24 7.81
Select pivot column 0.24 0.65 1.15
Select pivot row 0.53 1.53 2.65
Update tableau 0.32 1.57 4.84
Total iteration 2.10 7.99 16.45
After precomputation 1.09 3.75 8.64

WAN (10 Mbps), � = 256, f = 48 m = n = 10 m = n = 50 m = n = 100

Precomputation 2.82 13.41 26.49
Select pivot column 0.57 1.65 3.01
Select pivot row 1.45 4.31 7.20
Update tableau 1.20 8.06 28.77
Total iteration 6.04 27.42 65.46
After precomputation 3.22 14.02 38.97

Table 14: Running time (seconds) for Simplex ST-RP and its main components.

i can reduce the running time of an iteration to (roughly) the time we measured after
precomputation.

2.10

7.99

16.45

1.09

3.75

8.64

0

2

4

6

8

10

12

14

16

18

10 x 10 50 x 50 100 x 100

Total

After Precomp.

Simplex STRP, 5 parties, LAN 100 Mbps:
qlen=256, f=48

6.04

27.42

65.46

3.22

14.02

38.97

0

10

20

30

40

50

60

70

10 x 10 50 x 50 100 x 100

Total

After Precomp.

Simplex STRP, 5 parties, WAN 10 Mbps:
qlen=256, f=48

Figure 13: Running time (seconds) for the Simplex ST-RP protocol.

Simplex ST-RP versus Simplex ST-IP. Current tests show that ST-RP is much
faster than ST-IP for the current comparison protocol, whose running time depends on
the bit-length of the inputs (LTZF, Protocol 5.10). For the improved pivot selection
protocols presented in Section 6.2.2, ST-RP computes all the comparisons with inputs on
k = e + f bits, and k ≤ 128 is sufficient to obtain accurate solutions for large problems.
On the other hand, k can reach several thousands of bits in ST-IP.

This handicap can be eliminated only by a comparison protocol whose complexity does
not depend on the bit-length of the inputs. However, a protocol that meets this complexity
requirement and at the same time satisfies standard security notions is not available. The

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 80/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

alternative is to find a comparison protocol with relaxed security requirements, sufficient
for this particular application. However, if such a protocol is found, ST-RP and ST-IP
will have similar running time for pivot selection, and the difference will come from the
update of the tableau. Current tests suggest that ST-RP could still perform better, but
the difference will depend on the network delay and bandwidth (the amount of data sent
by ST-RP during the update of the tableau is about 10 times smaller, but it needs 30
rounds more for the reciprocal of the pivot).

6.4 Summary

Table 15 summarizes the complexity of protocols discussed in this chapter. In the table,t
m is the number of constraints and n is the number of variables. Note that n does not
denote the number of parties. The inputs and outputs are assumed to be as described in
the protocols.

Protocol Fld. Rounds Invocations Exp.

SecRead Zq 1 1 -
SecWrite Zq 1 m -
SecReadRow Zq 1 n + 1 -
SecReadCol Zq 1 m + 1 -
SecWriteRow Zq 1 m(n + 1) -
SecWriteCol Zq 1 n(m + 1) -
InitVar Zq - - -
UpdVar Zq 2 2m + 2 -
Null Zq 1 1 -

GetPivCol
Zq 1 + log n n + n

2
log n -

Zq1 2 2kn kn
F28 1 + log(k − 1) n(2k − 3) -

GetPivRow
Zq 2 + log m log(32k − 32) m(3k + 7) m(k − 1)
Zq1 2 2km km
F28 1 + log(k − 1) m(2k − 3) -

MinCons Zq log(32k − 32)(1 + log m
2
) m

2
(9k + 15)− 3k − 5 3m−2

2
(k − 1)

CompCons Zq 3 + log(k − 1) 3k + 2 k − 1
FPCompCons Zq 3 + log f 3f + 1 + k k + f

STRPUpdTab†
Zq 11 + 3α 5 + 3α -
Zq1 2 4e + 2f(4 + α) f(3 + α) + e

F28 1 + 2 log(e + f) e+f
2

(2 + 3 log(e + f)) -
† α = �log f

m
�

Table 15: Complexity of protocols in this chapter.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 81/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

7 Conclusion

7.1 Summary

The protocols presented in Deliverable D3.1 [27] are based on standard cryptographic
tools, methods, and models, and provide adequate security in the semi-honest model. On
the other hand, they rely on general building blocks from Deliverable D9.1 [26] (found in
the literature), that do not take into account the specific requirements of our applications.
After reviewing D3.1 we found the following issues:

1. Many of the building blocks in D9.1 become bottlenecks when used in the complex
protocols specified in D3.1, such as secure Simplex. We needed other design solutions
for several building blocks, with better performance for our particular applications.

2. The main factors that degrade the performance of the protocols specified in D3.1 are
the generation of shared random values, the data encoding, and the computation
with bitwise-shared values. It was necessary to find more efficient solutions for data
encoding and shared randoms, and to minimize binary computation.

3. The complexity metrics were not clearly defined. This led to a fuzzy analysis and
difficulty in considering tradeoffs.

4. Specifications of some components referred to in D3.1 were missing.

Based on the above review, we searched for solutions that are better adapted to our
applications and accomplished the following tasks:

1. Development of more efficient building blocks and techniques (based on solutions
proposed in the literature and new protocols): methods for generating shared ran-
doms with minimum interaction between parties, optimized data encoding and share
conversions, improved protocols for operations with bitwise-shared values and for
fixed-point arithmetic.

2. Theoretical foundation of the techniques used for constructing protocols with sta-
tistical security (Section 2.2.2).

3. Well-defined, abstract and meaningful complexity metrics (Section 2.3).

4. Complete and consistent specification of all the building blocks used in our appli-
cations, from primitives to secure arithmetic, with rigorous complexity and security
analysis (Section 2.4, Chapters 3, 4, 5).

5. Complete specification of the secure Simplex ST-RP protocols (including the missing
components and more efficient solutions), and analysis (Chapter 6).

6. Analysis of tradeoffs with respect to functional, security and precomputation aspects
along with recommendations (e.g., Sections 5.5 and 6.3).

7. Performance measurements for the main building blocks and the secure Simplex
protocols (Sections 5.5 and 6.3).

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 82/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

7.2 Security Analysis

Our protocols offer two categories of security: perfect and statistical (for threshold passive
adversary). Many of them offer perfect security, i.e., no information is revealed about
secret data. For other protocols, the security depends on a security parameter κ, which can
be adjusted to a desired value. Roughly speaking, this translates to ≈ 2−κ probability of
the attacker guessing some information about the secret. For secure Simplex, κ ∈ [32..64]
is sufficient. Note that this also incurs κ bits of overhead. These are the RISS-based
protocols of Chapter 3, the arithmetic protocols of Chapter 5, which hide secret values
using ‘one-time-pad encryption’, and any application protocol using them.

We highlight several security properties of these protocols:

1. The protocols provide passive security for threshold adversary, i.e., they guarantee
correctness and privacy if all parties follow the protocol and the number of dishonest
parties is not larger than a specified threshold.

2. Honest majority is necessary. In particular, we require t < n/2, and n ≥ 3, where
n is the number of parties and t is the threshold.

3. The protocols guarantee correctness and statistical privacy for secret integers and
fixed-point numbers within a specified range. Overflow is a topic of further investi-
gation in WP3 and WP9.

7.3 Complexity and Performance Analysis

For communication complexity, we used a metric of an invocation, while for measuring
communication time, we used a metric called rounds. Finally, we used a metric called
exponentiation to measure local computation. These metrics, when defined with a cor-
responding field give an accurate view of the overhead in the protocol. This analysis is
given in Tables 1, 2, 3, 4, 5, 6, 8, 10, 11, 12 and 15.

7.3.1 Tradeoffs

We considered the following tradeoffs in our design: gain in performance at the expense
of (controlled) loss of one or more of the following: security, accuracy, correctness, and
precomputation. Additionally, we considered tradeoffs related to data encoding and the
general issue of alternative solutions that minimize either the number of rounds or the
communication and computation complexity.

The security tradeoffs are evidenced by the category of security offered (perfect, sta-
tistical or weaker) and the corresponding complexities (i.e., invocations, rounds, etc) in
different variants of the same protocol as illustrated in the tables mentioned in Section 7.3.
Regarding accuracy and correctness, we made tests on the overall effect of tradeoffs in
protocols for fixed-point arithmetic and reciprocal. See next section for a discussion on
measurements. Following is a summary of several tradeoffs considered:

1. (Perfect versus statistical privacy) Many of the protocols presented in Chapter 5 are
designed for statistical privacy in order to improve their efficiency. It is possible to
construct variants of these protocols with perfect privacy, but they are substantially
more complex.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 83/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

2. (Precomputation) Secret random numbers can be precomputed in the beginning of
the protocol to save rounds at the cost of storage (e.g., the effects of precomputation
on the iterations of the secure Simplex protocol are discussed in Section 6.3).

3. (Data encoding) Encoding all the data types in the same field saves rounds but
increases the communication complexity. Efficient encoding of the data types in
different fields (e.g., bits and integers) reduces the communication complexity but
requires additional rounds for conversions (the effects of data encoding are discussed
in Section 5.5).

4. (Reciprocal) The protocol that computes the reciprocal of a fixed-point number
is relatively complex. The protocol has a parameter that allows to improve its
efficiency at the cost of reducing the accuracy of the output.

7.3.2 Measurements

We tested the building blocks and secure Simplex protocols using JSMC, the Java libraries
of secure computation building blocks developed in Work Package 9 (Sections 5.5 and 6.3).
The prototypes follow the revised specifications of protocols given in this document. The
JSMC libraries used for this purpose include virtually all the building blocks presented in
the deliverable.

The aim of the tests was to check the correctness and completeness of the improved
protocols, and to analyze their performance. The tests showed agreement with theoretical
complexity analysis. Furthermore, solutions provided by the secure Simplex protocols
were in close agreement with those obtained via non-secure computation.

The comparison protocol remains an important bottleneck for secure Simplex. In
the ST-RP variant the effects are considerably attenuated by precomputation and the
protocol improvements presented in Section 6.2.2. On the other hand, the ST-IP variant
becomes impractical for large problems.

7.4 Further Work

This deliverable has focused on establishing a foundation for the protocols developed in the
project, by providing complete and consistent specifications and analysis for all building
blocks, as well as the current secure Simplex protocols. A number of issues require further
investigation.

The following building blocks need more efficient solutions in our current framework:
(1) generation of secret random bit, (2) generation of secret random integer in range with
uniform distribution, (3) comparison, and (4) reciprocal.

Secure comparison remains one of the main performance bottlenecks for secure Sim-
plex. Further improvement of its efficiency seems to require relaxed security properties,
adapted to the particular context of secure Simplex.

Our current protocols are secure in the semi-honest model, and cryptographic solutions
for active security are not a realistic option for our complex applications. However, the
security of these protocols does not vanish in case of (limited) protocol violations and
it is necessary to clarify what are the effects of such actions on data privacy, in our
applications.

Further issues to be addressed are related to the protocols with statistical privacy,
e.g., the effects of overflow and the choice of the security parameter.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 84/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

7.4.1 Non-Cryptographic Methods

Consider the passively secure protocols presented in this document. Assume that there
is a correct implementation of these protocols under some passive adversary structure.
This implementation follows a client-server approach, where the functionality of each
party is implemented in a client interacting with the other clients via a trusted server
whose only purpose is scheduling and synchronization of messages between the clients.
A protocol implemented using this method provides passive security. In order to convert
this protocol to provide active security under the same adversary structure, it is enough
to ensure that the attacker is unable to alter the correct behavior of a client during the
protocol execution. We discuss two non-cryptographic approaches to achieve this goal.
First, note some important aspects of active and passive attacks:

1. Protection against active attacks is required only during protocol execution.

2. Observe that there is no way to ensure that the very first message of an active
attacker is correct. However, assuming that the first message is correct, we can
ensure that further messages sent by the attacker are consistent with prior messages
(up to the first message). We call this technique message chaining.

The approaches we consider are given below:

1. Tamper-resistant hardware: The first approach is to use specialized tamper-
resistant hardware that ensures only valid messages are accepted by the server,
where validity is checked using the chaining technique discussed above. In order to
do this, the hardware must be capable of maintaining internal state which keeps
track of all outgoing messages since the first message. An emerging technology for
this type of application is called Trusted Computing [9], where a tamper-resistant
device called the trusted platform module authenticates the correct runtime behavior
of a remote client using a method called remote-entrusting [20].

2. Code-obfuscation: In the second approach, we propose the use of code obfusca-
tion.8 The idea is to obfuscate the passively secure client to make the task of an
active adversary harder - in order to launch an active attack, the adversary must
now break the obfuscation. Although, it is not clear if perfectly secure obfuscators
exist [3, 24], there are several commercial obfuscators available that claim to make
programs significantly harder to reverse-engineer [10]. Therefore, even though ob-
fuscators may not resist a reverse-engineering attack, they may be able to provide
a time advantage. Assuming that the time between obtaining the obfuscation and
time of a successful break is longer than the time for the entire computation, it is
possible to do the computation with a reasonable guarantee of active security - if
the attacker attempts to launch an active attack before a successful break he either
risks detection or the inability to control the results of computation.

8Code obfuscation is best explained using the idea of a (code) obfuscator. An obfuscator O is a
probabilistic ‘compiler’ that transforms a program P into O(P), which is a functionally equivalent version
to P , yet hides certain internal details of P [3]. The idea is to make P hard to reverse-engineer.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 85/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

References

[1] J. Algesheimer, J. Camenish, and V. Shoup. Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In CRYPTO
2002, volume 2442 of LNCS, pages 417–432. Springer-Verlag, 2002.

[2] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant
number of rounds of interaction. In Proc. 8th annual ACM Symposium on Principles
of distributed computing, pages 201–209. ACM Press, 1989.

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and
K. Yang. On the (Im)possibility of Obfuscating Programs. In Advances in Cryp-
tology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
1–18. Springer-Verlag, 2001.

[4] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Protocols.
In Proc. of the 22nd ACM Symposium on the Theory of Computing, pages 503–515.
Springer-Verlag, 1990.

[5] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal
of Cryptology, 13(1), 2000.

[6] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols (revised). http://eprint.iacr.org/2000/067, Dec. 2005.

[7] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In Proc. of STOC, pages 494–503, 2002.

[8] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1:65–75, 1988.

[9] M. Chris. Trusted computing. IET, 2005.

[10] C. Collberg and C. Thomborson. Watermarking, tamper-proofing, and obfuscation-
tools for software protection. Software Engineering, IEEE Transactions on,
28(8):735–746, 2002.

[11] R. Cramer, I. Damg̊ard, and Y. Ishai. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Proc. of 2nd Theory of Cryptography
Conference (TCC’05), pages 342–362, 2005.

[12] R. Cramer, I. Damg̊ard, and U. Maurer. General Secure Multi-Party Computation
from any Linear Secret-Sharing Scheme. In EUROCRYPT 2000, volume 1807 of
LNCS, pages 316–334. Springer-Verlag, 2000.
http://www.iacr.org/archive/eurocrypt2000/1807/18070321-new.pdf.

[13] I. Damg̊ard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft. Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In Proc. of 3rd Theory of Cryptography Conference (TCC’06), volume
3876 of LNCS, pages 285–304. Springer-Verlag, 2006.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 86/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

[14] I. Damg̊ard and R. Thorbek. Non-interactive Proofs for Integer Multiplication. In
EUROCRYPT 2007, volume 4515 of LNCS, pages 412–429. Springer-Verlag, 2007.

[15] I. Damgard and R. Thorbek. Efficient conversion of secret-shared values between
different fields. Cryptology ePrint Archive, Report 2008/221, 2008.

[16] G. Dantzig. Linear Programming and Extensions. Princeton University Press, August
1998.

[17] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann, 2003.

[18] R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multi-party com-
putations with applications to threshold cryptography. In Proc. of ACM Symposium
on Principles of Distributed Computing (PODC’98), 1998.

[19] J. Jaja. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[20] R. Kennell and L. H. Jamieson. Establishing the genuinity of remote computer
systems. In SSYM’03: Proceedings of the 12th conference on USENIX Security Sym-
posium, pages 21–21, Berkeley, CA, USA, 2003. USENIX Association.

[21] N. T. Masayuki Ito and S. Yajima. Efficient Initial Approximation for Multiplicative
Division and Square Root by a Multiplication with Operand Modification. IEEE
Transactions on Computers, 46(4), 1997.

[22] T. Nishide and K. Ohta. Multiparty Computation for Interval, Equality, and Com-
parison Without Bit-Decomposition Protocol. In PKC 2007, volume 4450 of LNCS,
pages 343–360. Springer-Verlag, 2007.

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
recipes in C (2nd ed.): the art of scientific computing. Cambridge University Press,
New York, NY, USA, 1992.

[24] A. Saxena, B. Wyseur, and B. Preneel. Towards security notions in white-box cryp-
tography. In ISC’09: Proceedings of the 12th Information Security Conference, 2009.

[25] B. Schoenmakers and P. Tuyls. Efficient Binary Conversion for Paillier Encryptions.
In EUROCRYPT 2006, volume 4004 of LNCS, pages 522–537. Springer-Verlag, 2006.

[26] SecureSCM. Secure Computation Models and Frameworks. Deliverable D9.1, Se-
cureSCM project, 2008.

[27] SecureSCM. Protocol Description V1. Deliverable D3.1, SecureSCM project, 2009.

[28] A. Shamir. How to share a secret. In Communications of the ACM, 22(11), pages
612–613, 1979.

[29] V. Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, 2nd edition, 2009.

[30] T. Toft. Primitives and Applications for Multi-party Computation. PhD dissertation,
University of Aarhus, Denmark, BRICS, Department of Computer Science, 2007.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 87/88

STREP-Project
WPTitle
Deliverable

secureSCM
Cryptographic Aspects
D9.2 Security Analysis

Project No. FP7-213531
WP No. WP9

Date July 2009

[31] A. C. Yao. How to generate and exchange secrets. In Proc. of the 27th IEEE
Symposium on Foundations of Computer Science, pages 162–167, 1986.

[32] A. C.-C. Yao. Protocols for secure computations (extended abstract). In FOCS,
pages 160–164. IEEE, 1982.

CONFIDENTIAL 1.0 (Jump to Contents Protocols) Page 88/88

	Introduction
	Privacy-Preserving Computation
	Problem Definition
	Goals of WP9
	Summary

	Models and Methods
	Communication Model
	Security Models
	Active v/s Passive Security
	Statistical Security
	Universal Composability

	Complexity Analysis
	Communication Complexity
	Round Complexity
	Computation Complexity
	Empirical Results
	Tradeoffs

	SMC Framework
	Shamir's Secret Sharing
	Arithmetic with Secret Field Elements
	Input and Output

	Data Representation
	Boolean Operations
	Integer Arithmetic
	Fixed-Point Arithmetic

	Summary

	Secret Random Number Generation
	Interactive Protocols For Randoms
	Protocols Based on PRSS
	Replicated Secret Sharing (RSS)
	Conversion of RSS Shares to Shamir Shares
	Non-Interactive Generation of RSS Shares
	PRSS-Based Protocols For Randoms

	Protocols Based On RISS
	Replicated Integer Secret Sharing (RISS)
	Conversion from RISS Shares to Shamir Shares
	Non-Interactive Generation of RISS Shares
	Bit-Share Conversions and Joint Bit Generation
	Generation of Shared Randoms in Range Using RISS

	Summary

	k-ary, Prefix and Bit-Wise Operations
	K-ary and Prefix Operations
	k-ary Operations in log(k) Rounds
	Prefix operations in O(log(k)) rounds.
	Summary

	Bitwise Operations
	Binary Addition
	Comparison of Bitwise-Shared Values
	Summary

	Arithmetic and Comparison
	Truncation
	Reduction Modulo 2m
	Truncation
	Truncation With Probabilistic Rounding
	Comparison of Truncation Variants

	Integer Comparison
	Bit Decomposition
	Fixed-Point Arithmetic
	Fixed-Point Multiplication
	Fixed-Point Inner Product
	Fixed-Point Reciprocal

	Performance Measurements
	Summary

	Linear Programming Protocols
	Linear Programming Using ST-RP Simplex
	Secure Linear Programming Using ST-RP Simplex
	Secret Indexing
	Secure ST-RP Simplex Protocol

	Tests and Performance Analysis
	Summary

	Conclusion
	Summary
	Security Analysis
	Complexity and Performance Analysis
	Tradeoffs
	Measurements

	Further Work
	Non-Cryptographic Methods

