Learning and Classification of Malware Behavior

Konrad Rieck, Thorsten Holz, Carsten Willem$
Patrick Dussel, and Pavel Laskdv?

! Fraunhofer Institute FIRST
Intelligent Data Analysis Department, Berlin, Germany
2 University of Mannheim
Laboratory for Dependable Distributed Systems, Mannheim, Germany
3 University of Tubingen
Wilhelm-Schickard-Institute for Computer Sciencéibingen, Germany

Abstract. Malicious software in form of Internet worms, computer viruses, and
Trojan horses poses a major threat to the security of networked systémms
diversity and amount of its variants severely undermine ffexveness of clas-
sical signature-based detection. Yet variants of malware familie® gipical
behavioral patterngeflecting its origin and purpose. We aim to exploit these
shared patterns for classification of malware and propose a meth&ehfaing

and discrimination of malware behavior. Our method proceeds in thages (a)
behavior of collected malware is monitored in a sandbox environmeérbaged

on a corpus of malware labeled by an anti-virus scannerabware behavior
classifieris trained using learning techniques and (c) discriminative features of
the behavior models are ranked for explanation of classification desidiaper-
iments with diferent heterogeneous test data collected over several months using
honeypots demonstrate th&eztiveness of our method, especially in detecting
novelinstances of malware families previously not recognized by comniercia
anti-virus software.

1 Introduction

Proliferation of malware poses a major threat to modernrin&dion technology. Ac-
cording to a recent report by Microsoft [1], every third sdanmalware results in a
positive detection. Security of modern computer systems thitically depends on the
ability to keep anti-malware products up-to-date and atireficurrent malware devel-
opments. This has proved to be a daunting task. Malware wgeelvinto a powerful
instrument for illegal commercial activity, and a signifit&Tort is made by its authors
to thwart detection by anti-malware products. As a reselly malware variants are dis-
covered at an alarmingly high rate, some malware familiatufing tens of thousands
of currently known variants.

In order to stay alive in the arms race against malware vgiidevelopers of anti-
malware software heavily rely on automatic malware analysols. Unfortunately,
malware analysis is obstructed by hiding techniques sugbobgnorphism and ob-
fuscation. These techniques are especidilgative against byte-level content analy-
sis [17, 19] and static malware analysis methods [8, 10, Ihldontrast to static tech-
nigques, dynamic analysis of binaries during run-time eeslphonitoring of malware

behavior, which is more éicult to conceal. Hence, a substantial amount of recent work
has focused on development of tools for collecting, momitpand run-time analysis
of malware [3, 5, 6, 14, 22, 23, 25, 27, 36, 38].

Yet the means for collection and run-time analysis of madnay itself is not suf-
ficient to alleviate a threat posed by novel malware. What eded is the ability to
automaticallyinfer characteristics from observed malware behavior énatessential
for detection and categorization of malware. Such chariatitss can be used for sig-
nature updates or as an input for adjustment of heuristisrdeployed in malware
detection tools. The method for automatic classificatiomafware behavior proposed
in this contribution develops such a characterization ef/jmusly unknown malware
instances by providing answers to the following questions:

1. Does an unknown malware instance belong to a known malfaaréy or does it
constitute a novel malware strain?

2. What behavioral features are discriminative for distirghing instances of one
malware family from those of other families?

We address these questions by proposing a methodolodgaming the behavior
of malware from labeled samples and constructing modelatdapf classifying un-
known variants of known malware families while rejectindhbeior of benign binaries
and malware families not considered during learning. Tlyegkements of this approach
are the following:

(a) Malware binaries are collected via honeypots and spapstand malware family
labels are generated by running an anti-virus tool on eatéri To assedsehav-
ioral patternsshared by instances of the same malware family, the behafvéach
binary is monitored in a sandbox environment and behawaget analysis reports
summarizing operations, such as opening an outgoing IR@eation or stopping
a network service, are generated. Technical details oroflextion of our malware
corpus and the monitoring of malware behavior are providegdctions 3.1-3.2.

(b) The learning algorithm in our methodology embeds theegeied analysis reports
in a high-dimensional vector space and leardssariminative modefor each mal-
ware family, i.e., a function that, being applied to behaaipatterns of an unknown
malware instance, predicts whether this instance belangkhown family or not.
Combining decisions of individual discriminative modetsyides an answer to the
first question stated above. The embedding and learningegduves are presented
in Sections 3.3— 3.4.

(c) To understand the importance of specific features farsdi@ation of malware be-
havior, we exploit the fact that our learning model is defibgdveights of behav-
ioral patterns encountered during the learning phase. Bingdhese weights and
considering the most prominent patterns, we obtain cheriatit features for each
malware family. Details of this feature ranking are providie Section 3.5.

We have evaluated our method on a large corpus of recent meabtdained from
honeypots and spam-traps. Our results show that 70% of malnwstances not identi-
fied by an anti-virus software can be correctly classifieddnyapproach. Although such

accuracy may not seem impressive, in practice it meanstbaroposed method would
provide correct detections in two thirds of hard casben anti-malware products fail
We have also performed, as a sanity check, classificatioprifjh executables against
known malware families, and observed 100% detection acgufiéhis confirms that
the features learned from the training corpus are indeechctaistic for malware and
not obtained by chance. The manual analysis of most promfeatures produced by
our discriminative models has produced insights into thegticnships between known
malware families. Details of experimental evaluation of method are provided in
Section 4.

2 Related work

Extensive literature exists on static analysis of malisibinaries, e.g. [8, 10, 18, 20].
While static analysis foers a significant improvement in malware detection accuracy
compared to traditional pattern matching, its main weagries in the dfficulty to
handle obfuscated and self-modifying code [33]. Moreoresrent work of Moser et al.
presents obfuscation techniques that are provably NPfbasdatic analysis [24].

Dynamic malware analysis techniques have previously fedus obtaining reli-
able and accurate information on execution of maliciougrms [5, 6, 23, 38]. As
it was mentioned in the introduction, the main focus of ourkviles in automatic
processingof information collected from dynamic malware analysis.oliechniques
for behavior-based malware analysis using clustering bfaber reports have been
recently proposed [4, 21]. Both methods transform repdrtsbgerved behavior into
sequences and use sequential distances (the normalizgutession distance and the
edit distance, respectively) to group them into clusterielvhre believed to correspond
to malware families. The main filiculty of clustering methods stems from their unsu-
pervised nature, i.e., the lack of any external informapoovided to guide analysis of
data. Let us illustrate some practical problems of clustebiased approaches.

A major issue for any clustering method is to decide how madmnsters are present
in the data. As it is pointed out by Bailey et al. [4], there isade-df between cluster
size and the number of clusters controlled by a parametedaainsistencyhich mea-
sures a ratio between intra-cluster and inter-clusteatiari. A good clustering should
exhibit high consistency, i.e., uniform behavior shouldbbserved within clusters and
heterogeneous behavior betweefliatent clusters. Yet in the case of malware behavior
—which is heterogeneous by its nature — this seeminghatratbservation implies that
alarge number ofsmall classes is observed if consistency is to be kept high. The re-
sults in [4] yield a compelling evidence to this phenomergimen 100% consistency,
a clustering algorithm generated from a total of 3,698 medweamples 403 clusters,
of which 206 (51%) contain just one single executable. Whatatjioner is looking
for, however, is exactly the opposite:seall number oflarge clusters in which vari-
ants belong to the same family. The only way to attain tiflieat using consistency is
to play with diferent consistency levels, which (a) defeats the purposeitofratic
classification and (b) may still beficult to attain at a single consistency level.

Another recent approach to dynamic malware analysis ischasemining of ma-
licious behavior reports [9]. Its main idea is to identifyffdrences between malware

samples and benign executables, which can be used as spemifiof malicious be-
havior (malspecs). In contrast to this work, the aim of oysrapch is discrimination
between families of malware instead of discrimination lesw specific malware in-
stances and benign executables.

3 Methodology

Current malware is characterized by rich and versatile iehalthough large families
of malware, such as all variants of the Allaple worm, shararmon behavioral patterns,
e.g., acquiring and locking of particular mutexes on irddctystems. We aim to exploit
these shared patterns usimgchine learning techniqguesd propose a method capable
of automatically classifying malware families based orirthehavior. An outline of our
learning approach is given by the following basic steps:

1. Data acquisition A corpus of malware binaries currently spreading in the vsld
collected using a variety of technigues, such as honeypatspam-traps. An anti-
virus engine is applied to identify known malware instanzed to enable learning
and subsequent classification of family-specific behavior.

2. Behavior Monitoring Malware binaries are executed and monitored in a sandbox

environment. Based on state changes in the environmenesmstof API function
calls — a behavior-based analysis report is generated.

3. Feature ExtractionFeatures reflecting behavioral patterns, such as operitegy a
locking a mutex, or setting a registry key, are extractedhftbe analysis reports
and used to embed the malware behavior into a high-dimeaisiector space.

4. Learning and ClassificatiorMachine learning techniques are applied for identify-
ing the shared behavior of each malware family. Finally, mloimed classifier for
all families is constructed and applied tafdrent testing data.

5. Explanation.The discriminative model for each malware family is anatl/zes-
ing the weight vector expressing the contribution of bebiatipatterns. The most
prominent patterns yield insights into the classificationded and reveal relations
between malware families.

In the following sections we discuss these individual seapd corresponding tech-
nical background in more detail — providing examples of gsialreports, describing
the vectorial representation, and explaining the appgedring algorithms.

3.1 Malware Corpus for Learning

Our malware collection used for learning and subsequessifieation of malware be-
havior comprises more than 10,000 unique samples obtawiad diferent collection
techniques. The majority of these samples was gatheretkpi@nthesa honeypot solu-
tion optimized for malware collection [3]. The basic priple of nepenthes is to emulate
only thevulnerableparts of an exploitable network service: a piece of selficafing
malware spreading in the wild will be tricked into explogithe emulated vulnerabil-
ity. By automatically analyzing the received payload, we ttgen obtain a binary copy

of the malware itself. This leads to affextive solution for collecting self-propagating
malware such as a wide variety of worms and bots. Additignalir data corpus con-

tains malware samples collected g@am-trapsWe closely monitor several mailboxes
and catch malware propagating via malicious e-mails, eiglinks embedded in mes-

sage bodies or attachments of e-mails. With the help of Spaps; we are able to obtain
malware such as Trojan horses and network backdoors.

The capturing procedure based on honeypots and spam-trapees that all sam-
ples in the corpus ammalicious as they were either collected while exploiting a vul-
nerability in a network service or contained in maliciousial content. Moreover, the
resulting learning corpus isurrent as all malware binaries were collected within 5
months (starting from May 2007) and reflect malware famiéetvely spreading in
the wild. In the current prototype, we focus on samples ctdié via honeypots and
spam-traps. However, our general methodology on malwassification can be easily
extended to include further malware classes, such as teathd other forms of non-
self-propagating malware, by supplying the corpus withithmttal collection sources.

After collecting malware samples, we applied the antiwifdV) engineAvira An-
tiVir [2] to partition the corpus into common families of malwaseich as variants
of RBot, SDBot and Gobot. We chose Avira AntiVir as it had orighe best detec-
tion rates of 29 products in a recent AV-Test and detected999.of 874,822 unique
malware samples [35]. We selected the 14 malware famili¢sirodd from the most
common labels assigned by Avira AntiVir on our malware carpthese families listed
in Table 1 represent a broad range of malware classes suatojas Tiorses, Internet
worms and bots. Note that binaries not identified by Avirai¥intare excluded from
the malware corpus. Furthermore, the contribution of eanfily is restricted to a max-
imum of 1,500 samples resulting in 10,072 unique binariesAdiamilies.

Table 1. Malware families assigned by Avira AntiVir in malware corpus of 10,8@ghples. The
numbers in brackets indicate occurrences of each malware family ootpes.

1: Backdoor.VanBot (91) 8: Worm.Korgo (244)
2: Trojan.Bancos (279) 9: Worm.Parite (1215)
3: Trojan.Banker (834) 10: Worm.PoeBot (140)
4: Worm.Allaple (1500) 11: Worm.RBot (1399)

5: Worm.Doomber (426) 12: Worm.Sality (661)
6: Worm.Gobot (777) 13: Worm.SdBot (777)
7: Worm.IRCBot (229) 14: Worm.Virut (1500)

Using an AV engine for labeling malware families introduegsroblem: AV labels
are generated by human analysts and are prone to errorsveigwe learning method
employed in our approach (Section 3.4) is well-known forgeneralization ability
in presence of classifcation noise [34]. Moreover, our méthogy is not bound to a
particular AV engine and our setup can easily be adaptedar 8l engines and labels
or a combination thereof.

3.2 Monitoring Malware Behavior

The behavior of malware samples in our corpus is monitoraagu@WSandbox an
analysis software generating reports of observed progmerations [38]. The samples
are executed for a limited time in a native Windows environtred their behavior is
logged during run-time. CWSandbox implements this momitpby using a technique
calledAPI hooking[13]. Based on the run-time observations, a detailed repgener-
ated comprising, among others, the following informationdach analyzed binary:

— Changes to the file system, e.g., creation, modificatioretatidn of files.

— Changes to the Windows registry, e.g., creation or modificaf registry keys.

— Infection of running processes, e.g., to insert malicioate into other processes.
— Creation and acquiring of mutexes, e.g. for exclusive st system resources.
— Network activity and transfer, e.g., outbound IRC conio&st or ping scans.

— Starting and stopping of Windows services, e.g., to stopnaon AV software.

Figure 1 provides examples of observed operations comtdmanalysis reports,
e.g., copying of a file to another location or setting a regikey to a particular value.
Note, that the tool provides a high-level summary of the olesgevents and often more
than one related API call is aggregated into a single operati

copy_file (filetype="File" srcfile="c:\lae8b1l9ecealb65705595b245f2971ee.exe",
dstfile="C:\WINDOWS\system32\urdvxc.exe", flags="SECURITY_ANONYMOUS")

set_value (key="HKEY_CLASSES_ROOT\CLSID\{3534943...2312F5C0&}",
data="1sslwhxtettntbkr")

create_process (commandline="C:\WINDOWS\system32\urdvxc.exe /start",
targetpid="1396", showwindow="SW_HIDE", apifunction="CreateProcessA")

create_mutex (name="GhostBOT®.58b", owned="1")

connection (transportprotocol="TCP", remoteaddr="XXX.XXX.XXX.XXX",
remoteport="27555", protocol="IRC", connectionestablished="1", socket="1780")

irc_data (username="XP-2398", hostname="XP-2398", servername="0",
realname="ADMINISTRATOR", password="r®flc®mz", nick="[P33-DEU-51371]")

Fig. 1. Examples of operations as reported by CWSandbox during run-timtgsésaf different
malware binaries. The IP address in the fifth example is sanitized.

3.3 Feature Extraction and Embedding

The analysis reports provide detailed information aboutvage behavior, yet raw re-
ports are not suitable for application of learning techeigas these usually operate on
vectorial data. To address this issue we derive a genehaigee for mapping analysis
reports to a high-dimensional feature space.

Our approach builds on theector space modeindbag-of-words modetwo sim-
ilar technigues previously used in the domains of infororatietrieval [29] and text
processing [15, 16]. A document — in our case an analysisrrepis characterized
by frequencies of contained strings. We refer to the set obiciered strings as fea-
ture set¥ and denote the set of all possible reportsXiyGiven a strings € ¥ and
a reportx € X, we determine the number of occurrences@f x and obtain the fre-
quencyf(x, s). The frequency of a string acts as a measure of its importancexjn
e.g.,f(x, s) = 0 corresponds to no importancesfwhile f(x, s) > 0.5 indicates domi-
nance ofsin x. We derive an embedding functignwhich maps analysis reports to an
|¥|-dimensional vector space by considering the frequendial strings in¥:

¢ X - RlTl’ ¢(X) = (f(X, S))SE?

For example, iff contains the stringsopy_file andcreate_mutex, two dimen-
sions in the resulting vector space correspond to the frezjieg of these strings in
analysis reports. Computation of these high-dimensiopators seems infeasible at
a first glance, ag may contain arbitrary many strings, yet there exi$icent algo-
rithms that exploit the sparsity of this vector represeatato achieve linear run-time
complexity in the number of input bytes [28, 31].

In contrast to textual documents we can not define a featti’g sepriori, simply
because not all important strings present in reports arevirio advance. Instead, we
defineF implicitly by deriving string features from the observed malware djmrs.
Each monitored operation can be represented by a stringioarg its name and a list
of key-value pairs, e.g., a simplified strisdor copying a file is given by

“copy_file (srcfile=A, dstfile=B)”

Such representation yields a very specific featurgssb that slightly deviating be-
havior is reflected in dierent strings and vector space dimensions. Behaviorarpatt
of malware, however, often express variability induced bfuscation techniques, e.g.,
the destination for copying a file might be a random file nanoeaddress this problem,
we represent each operation imyltiple stringsof different specificity. For each oper-
ation we obtain these strings by defining subsets of keyevphirs ranging from the
full to a coarse representation. E.g. the previous exanapledpying a file is associated
with three strings in the feature sgt

“copy_file_1 (srcfile=A, dstfile=B)”
“copy_file ...” — “copy_file_2 (srcfile=A)”"
“copy_file_3 Q"

The resulting implicit feature s6t and the vector space induced pyorrespond
to various strings of possible operations, values andbates, thus covering a wide
range of potential malware behavior. Note, that the emlmegadli analysis reports using
a feature se¥ and functiong is generic, so that it can be easily adapted téedent
report formats of malware analysis software.

3.4 Learning and Classification

The embedding functiog introduced in the previous section maps analysis reports
into a vector space in which various learning algorithms lsarapplied. We use the
well-established method @upport Vector Machine€SVM), which provides strong
generalization even in presence of noise in features amtslaBiven data of two classes
an SVM determines aoptimal hyperplanghat separates points from both classes with
maximal margin [e.g. 7, 30, 34].

The optimal hyperplane is represented by a veat@nd a scalab such that the
inner product ofw with vectors¢(x) of the two classes are separated by an interval
between-1 and+1 subject tdb:

W, ¢(x))y + b > +1, for x in class 1,
(W, ¢(x)) + b < =1, for x in class 2.

The optimization problem to be solved for findimgandb can be solely formulated
in terms of inner product$p(x), ¢(x;)) between data points. In practice these inner
products are computed by so callegrnel functionswhich lead to non-linear classifi-
cation surfaces. For example, the kernel funckdar polynomials of degred used in
our experiments is given by

K(%, X)) = ((3(%), ¢(x})) + 1)°.

Once trained, an SVM classifies a new repaly computing its distance(x) from
the separating hyperplane as

h() = (W, ¢() +b =" aryik(%, %) + b,
i=1

whereq; are parameters obtained during training gnthbels ¢-1 or —1) of training
data points. The distand®x) can then be used for multi-class classification among
malware families in one of the following ways:

1. Maximum distanceA label is assigned to a new behavior report by choosing the
classifier with the highest positive score, reflecting trstatice to the most discrim-
inative hyperplane.

2. Maximum probability estimatédditional calibration of the outputs of SVM clas-
sifiers allows to interpret them as probability estimatesdér some mild proba-
bilistic assumptions, the conditional posterior prohiapibf the class+1 can be
expressed as: L

1+ exp(Ah(x) + B)’

where the parametess and B are estimated by a logistic regression fit on an in-

dependent training data set [26]. Using these probabiditymates, we choose the

malware family with the highest estimate as our classificatesult.

P(y = +11h(x)) =

In the following experiments we will use the maximum distaapproach for com-
bining the output of individual SVM classifiers. The prolasic approach is applicable
to prediction as well as detection of novel malware behaaiat will be considered in
Section 4.3.

3.5 Explanation of Classification

A security practitioner is not only interested in how actera learning system per-
forms, but also needs to understand how such performancaisved — a requirement
not satisfied by many “black-box” applications of machingriténg. In this section we
supplement our proposed methodology and provide a proedduexplaining classifi-
cation results obtained using our method.

The discriminative model for classification of a malware iigns the hyperplane
w in the vector spac®”! learned by an SVM. As the underlying feature $etorre-
sponds to strings € ¥ reflecting observed malware operations, each dimengiar
w expresses the contribution of an operation to the decisinationh. Dimensionsw;
with high values indicate strong discriminative influenadiile dimensions with low
values express few impact on the decision function. By sgttie components; of w
one obtains &eature rankingsuch that; > w; implies higher relevance of overs;.
The most prominent strings associated with the highest ooets ofv can be used to
gain insights into the trained decision function and regnésypical behavioral patterns
of the corresponding malware family.

Please note that an explicit representatioma$ required for computing a feature
ranking, so that in the following we provide explanationded#rned models only for
polynomial kernel functions of degree 1.

4 Experiments

We now proceed to evaluate the performance afiectveness of our methodology
in different setups. For all experiments we pursue the followirgeemental proce-
dure: The malware corpus of 10,072 samples introduced itidde8.1 is randomly
split into three partitions, &aining, validationandtestingpartition. For each partition
behavior-based reports are generated and transformed ugctorial representation as
discussed in Section 3. The training partition is used tenl@adividual SVM classi-
fiers for each of the 14 malware families usingfelient parameters for regularization
and kernel functions. The best classifier for each malwarelyas then selected us-
ing the classification accuracy obtained on the validatiantitoon. Finally, the overall
performance is measured using the combined classifier desktiag partition.

This procedure, including randomly partitioning the malvaorpus, is repeated
over five experimental runs and corresponding results ageaged. For experiments
involving data not contained in the malware corpus (Sectichand 4.3), the test-
ing partition is replaced with malware binaries from #efient source. The machine
learning toolboxShogun32] has been chosen as an implementation of the SVM. The
toolbox has been designed for large-scale experimentsraaides learning and classi-
fication of 1,700 samples per minute and malware family.

4.1 Classification of Malware Behavior

In the first experiment we examine the general classificgiEnfiormance of our mal-
ware behavior classifier. Testing data is taken from the mi@vweorpus introduced in

Section 3.1. In Figure 2 the per-family accuracy and a caafusatrix for this exper-

iment is shown. The plot in Figure 2 (a) depicts the percentafgcorrectly assigned
labels for each of the 14 selected malware families. Erros badicate the variance
measured during the experimental runs. The matrix in Figbd illustrates confusions
made by the malware behavior classifier. The density of ealtlyiwes the percentage
of a true malware family assigned to a predicted family by ¢lassifier. The matrix

diagonal corresponds to correct classification assigrsnent

Accuracy of classification Confusion matrix for classification
1
LB T 1
I I 2 0.9
08 I 3 08
I 0 4
> k] 0.7
£ Z 5
& 06 8 6 0.6
g g7
IS % s 0.5
£ 04 £ o 0.4
g $ 10
< g 0.3

[
[

0.2

o

N}
-
N

[N
w

0.1

[N
N

12345678 91011121314 123456 78 91011121314
Malware families Predicted malware families
(a) Accuracy per malware family (b) Confusion of malware families

Fig. 2. Performance of malware behavior classifier using operation featurdesting partition
of malware corpus. Results are averaged over five experimental ru

On average 88% of the provided testing binaries are coyrasdigned to malware
families. In particular, the malware families Worm.Allap{4), Worm.Doomber (5),
Worm.Gobot (6) and Worm.Sality (12) are identified almosftexetly. The precise clas-
sification of Worm.Allaple demonstrates the potential of methodology, as this type
of malware is hard to detect using static methods: Allapfmlgmorphically encrypted,
i.e., every copy of the worm is filerent from each other. This means that static analysis
can only rely on small parts of the malware samples, e.gtotdetect the decryptor.
However, when the binary is started, it goes through themolyhic decryptor, un-
packs itself, and then proceeds to the static part of the,coldieh we observe with
our methodology. All samples express a set of shared betahyiatterns sfiicient for
classification using our behavior-based learning approach

The accuracy for Backdoor.VanBot (1) and Worm.IRCBot (Actees around 60%
and expresses larger variance — an indication for a gen¥friat®el characterizing mul-
tiple malware strains. In fact, the samples of Worm.IRCBQtii our corpus comprise
over 80 diferent mutex names, such §8MMeC, itcrew Or hidd3n, giving evidence of
the heterogeneous labeling.

4.2 Prediction of Malware Families

In order to evaluate how good we can evaedict malware families which are not
detected by anti-virus products, we extended our first eéxygrt. As outlined in Sec-
tion 3.1, our malware corpus is generated by collecting rasdveamples with the help
of honeypots and spam-traps. The anti-virus engine Avird\Am used to assign la-
bels to the 10,072 binaries in our malware corpus, failedlémiify additional 8,082
collected malware binaries. At this point, however, we cahimmediately assess the
performance of our malware behavior classifier asgitoeind truth the true malware
families of these 8,082 binaries, is unknown.

We resolve this problem by re-scanning the undetectedibmuaith the Avira An-
tiVir engine after a period of four weeks. The rationale Ipelthis approach is that the
AV vendor had time to generate and add missing signaturethéomalware binaries
and thus several previously undetected samples could bé&fidd. From the total of
8,082 undetected binaries, we now obtain labels for 3,18fpkss belonging to the 14
selected malware families. Table 2 lists the number of @seor each of the 14 fam-
ilies. Samples for Worm.Doomber, Worm.Gobot and Wormt$aliere not present,
probably because these malware families did not evolve anermt signatures were
suficient for accurate detection.

Table 2. Undetected malware families of 3,139 samples, labeled by Avira Anti\ir feeeks
after learning phase. Numbers in brackets indicate occurrencestoMedware family.

1: Backdoor.VanBot (169) 8: Worm.Korgo (4)
2: Trojan.Bancos (208) 9: Worm.Parite (19)
3: Trojan.Banker (185) 10: Worm.PoeBot (188)
4: Worm.Allaple (614) 11: Worm.RBot (904)
5: Worm.Doomber ©) 12: Worm.Sality ©)
6: Worm.Gobot 0) 13: Worm.SdBot (597)
7: Worm.IRCBot (107) 14: Worm.Virut (144)

Based on the experimental procedure used in the first expatjmve replace the
original testing data with the embedded behavior-baseartepf the new 3,139 labeled
samples and again perform five experimental runs.

Figure 3 provides the per-family accuracy and the confusiatrix achieved on
the 3,139 malware samples. The overall result of this erpent is twofold. On aver-
age, 69% of the malware behavior is classified correctly. &oralware, most notably
Worm.Allaple (4), is detected with high accuracy, while dw tother hand malware
families such as Worm.IRCBot (7) and Worm.Virut (14) are pypoecognized. Still,
the performance of our malware behavior classifier is primmgjgrovided that during
the learning phaseoneof these malware samples was detected by the Avira AntiVir
engine. Moreover, the fact that AV signatures present dugarning did not stlice for
detecting these binaries might also indicate truly novéldveor of malware, which is
impossible to predict using behavioral patterns containedir malware corpus.

Accuracy of prediction Confusion matrix for prediction

_ ‘ .
1 09
2
038 I 3 0.8
> { 3 07
E 1 £ 4)
£ 06 g 7 06
g o
= g 8 0.5
3 =
€ 04 g o 0.4
8 @
< 210 03
0.2 [1 0.2
s IR
14
1 2 3 4 7 8 9 10 11 13 14 12345678 91011121314
Malware families Predicted malware families
(a) Accuracy per malware family (b) Confusion of malware families

Fig. 3. Performance of malware behavior classifier on undetected data asérgtion features.
Malware families 5, 6 and 12 are not present in the testing data.

4.3 Identification of Unknown Behavior

In the previous experiments we considered the performahoeromalware behavior
classifier on 14 fixed malware families. In a general settirogyever, a classifier might
also be exposed to malware binaries thabdthelong to one of these 14 families. Even
if the majority of current malware families would be inclutie a large learning system,
future malware families could express activity not matghémy patterns of previously
monitored behavior. Moreover, a malware behavior classifight also be exposed to
benign binaries either by accident or in terms of a deniades¥ice attack. Hence, it is
crucial for such a classifier to not only identify particutaalware families with high
accuracy, but also to verify the confidence of its decisichraport unknown behavior.

We extend our behavior classifier to identify and rejggtnown behavidoy chang-
ing the way individual SVM classifiers are combined. Insteddsing the maximum
distance to determine the current family, we consider fiiba estimates for each
family as discussed in Section 3.4. Given a malware sammenaw requireexactly
oneSVM classifier to yield a probability estimate larger 50% agjgctall other cases
as unknown behavior.

For evaluation of this extended behavior classifier we aersadditional malware
families not part of our malware corpus and benign binarseglomly chosen from
several desktop workstations running Windows XP SP2. Talgeovides an overview
of the additional malware families. We perform three experits: first, we repeat the
experiment of Section 4.1 with the extended classifier dapabrejecting unknown
behavior, second we consider 530 samples of the unknown arafiamilies given in
Table 3 and third we provide 498 benign binaries to the exddrudassifier.

Figure 4 shows results of the first two experiments averaged five individual
runs. The confusion matrices in both sub-figures are exteihgea column labeled
u which contains the percentage of predicted unknown behdvigure 4 (a) depicts
the confusion matrix for the extended behavior classifietesting data used in Sec-

Table 3. Malware families of 530 samples not contained in malware learningusoifhe num-
bers in brackets indicate occurrences of each malware family.

a: Worm.Spybot (63) f: Trojan.Proxy.Cimuz (73)
b: Worm.Sasser (23) g: Backdoor.Zapchast (25)
¢: Worm.Padobot (62) h: Backdoor.Prorat 77)
d: Worm.Bagle (20) i: Backdoor.Hupigon (96)

e: Trojan.Proxy.Horst (29)

tion 4.1. In comparison to Section 4.1 the overall accurazyehses from 88% to 76%,
as some malware behavior is classified as unknown, e.ghédogeneric AV labels of
Worm.IRCBot (7). Yet this increase in false-positives @iiles with decreasing con-
fusions among malware families, so that the confusion matriFigure 4 (a) yields
fewer df-diagonal elements in comparison to Figure 2 (b). Hencerehelt of using
a probabilistic combination of SVM classifiers is twofoldh the one hand behavior of
some malware samples is indicated as unknown, while on tier bind the amount of
confusions is reduced leading to classification resultpatpd by strong confidence.

Confusion matrix for extended classification Confusion matrix for extended classification

1 a

2 0.9 0.9

3 0.8 b 08
12 4 1 c
L 5 0.7 2 0.7
56 0.6 &d 0.6
L 7 <4
N 05 Se 0.5
© ©
€ 9 0.4 =3 0.4
(%] ()
> 10 =1
= 0.3 = 0.3
o Fg

12 0.2 h 0.2

13 0.1) 0.1

14 o ! 0

1234567 8910111213 u 1 1234567 8 91011121314 u
Predicted malware families Predicted malware families
(a) Confusion on testing data (b) Confusion on unknown malware

Fig. 4. Performance of extended behavior classifier on (a) original testitegashe (b) malware
families not contained in learning corpus. The column labeled “u” cpmeds to malware bina-
ries classified agnknown behavior

Figure 4 (b) now provides the confusion matrix for the unknawalware fami-
lies given in Table 3. For several of these families no caofusccurs at all, e.g., for
Worm.Bagle (d), Trojan.Proxy.Horst (e) and Trojan.Pr&muz (f). The malware be-
havior classifier precisely recognizes that these binagesot belong to one of the 14
malware families used in our previous experiments. Therddsted unknown malware
families show little confusion with one of the learned faes| yet the majority of these

confusions can be explained and emphasizes the capalfitityranethodology to not
discriminate AV labels of malware but its behavior.

— Worm.Spybot (a) is similar to other IRC-bots in that it uie€ as command in-
frastructure. Moreover, it exploits vulnerabilities intwerk services and creates
auto-start keys to enable automatic start-up after systéwot. This behavior leads
to confusion with Worm.IRCBot (7) and Worm.RBot (11), whiskhave in exactly
the same way.

— Worm.Padobot (c) is a synonym for Worm.Korgo (8): sevendlghgines name
this malware family Worm.Padobot, whereas others dentg\Worm.Korgo. The
corresponding confusion in Figure 4 (b) thus results froenghility of our learning
method to generalize beyond the restricted set of providieels.

— Backdoor.Zapchast (g) is a network backdoor controlledIRC. Some binaries
contained in variants of this malware are infected with Wétamite (9). This cou-
pling of two different malware families, whether intentional by the malvearénor
or accidental, is precisely reflected in a small amount ofwgion shown in Fig-
ure 4 (b).

In the third experiment focusing on benign binaries, albrepof benign behavior
are correctly assigned to the unknown class and rejectdubgxtended classifier. This
result shows that the proposed learning method capturésatypehavioral patterns
of malware, which leads to few confusions with other malwi@milies but enables
accurate discrimination of normal program behavior if pded as input to a classifier.

4.4 Explaining Malware Behavior Classification

The experiments in the previous sections demonstrate ftlity af machine learning
techniques to féectively discriminate malware behavior. In this section ex@mine
the discriminative models learned by the SVM classifiers simolv that relations of
malware beyond the provided AV labels can be deduced frone#raed classifiers. For
each of the 14 considered malware families we learn an SVBkitlar, such that there
exist 14 hyperplanes separating the behavior of one malaariy from all others. We
present the learned decision functions for the Sality andnilzer classifiers as outlined
in Section 3.5 by considering the most prominent patteriiseir weight vectors.

Sality Classifier Figure 5 depicts the top five discriminating operation feagufor
the family Worm.Sality learned by our classifier. Based drs #xample, we see that
operation features can be used by a human analyst to unat i@ actual behavior
of the malware family, e.g., the first two features show thaitg creates a file within
the Windows system directory. Since both variants createthd the preprocessing
step (see Section 3.3 for details) are included, this indgthat Sality commonly uses
the source filenamecmgcd32.d1_. Moreover, this malware family also deletes at least
one file within the Windows system directory. Furthermohés family creates a mutex
containing the stringkuku_joker (e.g.,kuku_joker_v3.89 as shown in Figure 5 and

0.0142:create_file_2 (srcpath="C:\windows\...")

0.0073:create_file_1 (srcpath="C:\windows\...", srcfile="vcmgcd32.d1_")
0.0068:delete_file_2 (srcpath="C:\windows\...")

0.0051:create_mutex_1 (name="kuku_joker_v3.09")

0.0035:enum_processes_1 (apifunction="Process32First")

Fig. 5. Discriminative operation features extracted from the SVM classifier offthenalware
family Sality. The numbers to the left are the sorted components of the hyperpletoe we

0.0084:create_mutex_1 (name="GhostBOT0.58c")

0.0073:create_mutex_1 (name="GhostBOT0.58b")

0.0052:create_mutex_1 (name="GhostBOT®.58a")

0.0014:enum_processes_1 (apifunction="Process32First")
0.0011:query_value_2 (key="HKEY_LOCAL...\run", subkey_or_value="GUARD")

Fig. 6. Discriminative operation features extracted from the SVM classifier otithemalware
family Doomber The numbers to the left are the sorted components of the hyperplaioe we

kuku_joker_v3.04 as sixth most significant feature) such that only one ingtariche
binary is executed at a time. Last, Sality commonly enunesrtite running processes.

Based on these operation features, we get an overview of speaific behavior
is characteristic for a given malware family; we camderstandwhat the behavioral
patterns for one family are and how a learned classifier oggra

Doomber Classifier In Figure 6, we depict the top five discriminating operatiea-f
tures for Worm.Doomber. Merent features are significant for Doomber compared to
Sality: the three most significant components for this fgraile similar mutex names,
indicating diferent versions contained in our malware corpus. Furthexnvee can see
that Doomber enumerates the running processes and queriamaegistry keys.

In addition, we make another interesting observation: earrling-based system
identified the mutex name&aostBOT-0.57a, GhostBOT-0.57 andGhostBOT to be among
the top five operation features for Worm.Gobot. The incréasgsion number reveals
that Gobot and Doomber are closely related. Furthermoresymiem identified several
characteristic, additional features contained in redoots both malware families, e.g.,
registry keys accessed and modified by both of them. We migneerified that both
families are closely related and that Doomber is indeed harmed version of Gobot.
This illustrates that our system may also help to identi#iations between dierent
malware families based on observed run-time behavior.

5 Limitations

In this section, we examine the limitations of our learning &lassification methodol-
ogy. In particular, we discuss the drawbacks of our anabetisp and examine evasion
techniques.

One drawback of our current approach is that we rely on onglesiprogram ex-
ecution of a malware binary: we start the binary within thedd®ox environment and
observe one execution path of the sample, which is stoppeet & a timeout is reached
or if the malware exits from the run by itself. We thus do natayéull overview of what
the binary intends to do, e.g., we could miss certain actibasare only executed on
a particular date. However, this deficit can be addressexdjasiechnique calleahulti-
path executionrecently introduced by Moser et al. [23], which essentititicks input
to a running binary and selects a feasible subset of possilleution paths. Moreover,
our results indicate that a single program execution oftentains enough information
for accurate classification of malware behavior, as malwaramonly tries to aggres-
sively propagate further or quickly contacts a Command &t@dservers.

Another drawback of our methodology is potential evasiom loyalware, either by
detecting the existence of a sandbox environment or via enynuf different behavior.
However, detecting of the analysis environment is no getieriation of our approach:
to mitigate this risk, we can easily substitute our analpksform with a more resilient
platform or even use severalidirent analysis platforms to generate the behavior-based
report. Second, a malware binary might try to mimic the baraf a different malware
family or even benign binaries, e.g. using methods propwsg®, 37]. The considered
analysis reports, however, filir from sequential representations such as system call
traces in that multiple occurrences of identical actigitiee discarded. Thus, mimicry
attacks can not arbitrarily blend the frequencies or ordeperation features, so that
only very little activity may be covered in a single mimicrigack.

A further weakness of the proposed supervised classifitapproach is its inability
to find structure in new malware families not present in antregj corpus. The presence
of unknown malware families can be detected by the rejectienhanism used in our
classifiers, yet no further distinction among rejecteddnses is possible. Whether this
is a serious disadvantage in comparison to clustering rdstisdo be seen in practice.

6 Conclusions

The main contribution of this paper is a learning-based @gghr to automatic classifi-
cation of malware behavior. The key ideas of our approach(ay¢he incorporation of
labels assigned by anti-virus software to define classdauitding discriminative mod-
els; (b) the use of string features describing specific behalvpatterns of malware;
(c) automatic construction of discriminative models usiegrning algrithms and (d)
identification of explanatory features of learned modelsdmking behavioral patterns
according to their weights. To apply our method in practicsyffices to collect a large
number of malware samples, analyse its behavior using &sarehvironment, iden-
tify typical malware families to be classified by running arsdard anti-virus software
and construct a malware behavior classifier by learningleifegnily models using a
machine learning toolbox.

As a proof of concept, we have evaluated our method by amagjyaitraining cor-
pus collected from honeypots and spam-traps. The set of ikrfamilies consisted
of 14 common malware families; 9 additional families werediso test the ability
of our method to identify behavior of unknown families. In experiment with over

3,000 previouslyundetectednalware binaries, our system correctly predicted almost
70% of labels assigned by an anti-virus scarfoar weeks laterOur method also de-
tects unknown behavior, so that malware families not presethe learning corpus
are correctly identified as unknown. The analysis of promiifieatures inferred by our
discriminative models has shown interesting similaribesveen malware families; in
particular, we have discovered that Doomber and Gobot walense from the same
origin, with Doomber being an extension of Gobot.

Despite certain limitations of our current method, suchiagls-path execution in
a sandbox and the use of imperfect labels from an anti-vioftsvare, the proposed
learning-based approaciffers the possibility for accurate automatic analysis of mal-
ware behavior, which should help developers of anti-madvsaftware to keep apace
with the rapid evolution of malware.

Bibliography

[1] Microsoft Security Intelligence Report, October 2007. http:
//www.microsoft.com/downloads/details.aspx?FamilyID=
4EDE2572-1D39-46EA-94C6-4851750A2CB0.

[2] Avira. AntiVir PersonalEdition Classic, 2007 http://www.avira.de/en/
products/personal.html.

[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C.ikng. The nepenthes
platform: An dficient approach to collect malware. Rroceedings of the 9th
Symposium on Recent Advances in Intrusion Detection (R&)DPpages 165—
184, 2006.

[4] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanand J. Nazario.
Automated classification and analysis of internet malwand?roceedings of the
10th Symposium on Recent Advances in Intrusion Detecti&iiD(BR7), pages
178-197, 2007.

[5] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool fanayzing malware. In
Proceedings of EICAR 2008pril 2006.

[6] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic ayjsi$ of malicious
code.Journal in Computer Virology2:67—77, 2006.

[7] C. Burges. A tutorial on support vector machines for gattrecognition Knowl-
edge Discovery and Data Mining(2):121-167, 1998.

[8] M. Christodorescu and S. Jha. Static analysis of exétesao detect malicious
patterns. InProceedings of the 12th USENIX Security Sympospages 12-12,
2003.

[9] M. Christodorescu, S. Jha, and C. Kruegel. Mining speaffons of malicious
behavior. InProceedings of the 6th Joint Meeting of the European Soéwar-
gineering Conference and the ACM SIGSOFT Symposium on threl&tons of
Software Engineering (ESHESE) 2007.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, ariel Bryant. Semantics-
aware malware detection. IEEE Symposium on Security and Privapages
32-46, 2005.

[11] H. Flake. Structural comparison of executable objetridProceedings of Detec-
tion of Intrusions and Malwaré- Vulnerability Assessment (DIMVA'Q4)004.

[12] P.Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and Wel. Polymorphic blending
attacks. InProceedings of the 15th USENIX Security Sympogpages 241-256,
2006.

[13] G. C. Huntand D. Brubacker. Detours: Binary interceptbf Win32 functions. In
Proceedings of the 3rd USENIX Windows NT Sympasiages 135-143, 1999.

[14] X. Jiang and D. Xu. Collapsar: A VM-based architectuve rietwork attack de-
tention center. IiProceedings of the 13th USENIX Security Symposioo4.

[15] T. Joachims. Text categorization with support vect@cirines: Learning with

many relevant features. roceedings of the European Conference on Machine

Learning pages 137 — 142. Springer, 1998.

[16] T. Joachims.Learning to Classify Text using Support Vector Machinkiiwer
Academic Publishers, 2002.

[17] M. Karim, A. Walenstein, A. Lakhotia, and P. Laxmi. Mawe phylogeny gener-
ation using permutations of coddournal in Computer Virologyl(1-2):13-23,
2005.

[18] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. KemererBehavior-based
spyware detection. IRroceedings of the 15th USENIX Security Symposiages
19-19, 2006.

[19] J. Kolter and M. Maloof. Learning to detect and classifglicious executables in
the wild. Journal of Machine Learning Researci{Dec):2721 — 2744, 2006.

[20] C. Kruegel, W. Robertson, and G. Vigna. Detecting keteeel rootkits through
binary analysis. IrProceedings of the 20th Annual Computer Security Applica-
tions Conference (ACSAQ)004.

[21] T. Lee and J. J. Mody. Behavioral classification.Pimceedings of EICAR 2006
April 2006.

[22] C. Leita, M. Dacier, and F. Massicotte. Automatic hamgllof protocol dependen-
cies and reaction to 0-day attacks with ScriptGen basedy/pot® InProceedings
of the 9th Symposium on Recent Advances in Intrusion Dete®AID’'06) Sep
2006.

[23] A. Moser, C. Kruegel, and E. Kirda. Exploring multiplgezution paths for mal-
ware analysis. IfProceedings of 2007 IEEE Symposium on Security and Prjvacy
2007.

[24] A. Moser, C. Kruegel, and E. Kirda. Limits of static agsik for malware detec-
tion. In Proceedings of the 23rd Annual Computer Security ApplicegiConfer-
ence (ACSACYRO007. to appear.

[25] Norman. Norman sandbox information center. Interiettp://sandbox.
norman.no/, Accessed:; 2007.

[26] J. Platt. Probabilistic outputs for Support Vector Manes and comparison to reg-
ularized likelihood methods. In A. Smola, P. Bartlett, Bh8lkopf, and D. Schu-
urmans, editorsidvances in Large Margin Classifief8lIT Press, 2001.

[27] F. Pouget, M. Dacier, and V. H. Pham. Leurre.com: on theatages of deploying
a large scale distributed honeypot platform BECE'05, E-Crime and Computer
Conference, 29-30th March 2005, Monaddar 2005.

[28] K. Rieck and P. Laskov. Linear-time computation of darity measures for se-
guential dataJournal of Machine Learning Researc¥(Jan):23—-48, 2008.

[29] G. Salton, A. Wong, and C. Yang. A vector space model tdomatic indexing.
Communications of the ACM8(11):613—-620, 1975.

[30] B. Schovlkopf and A. Smolalearning with KernelsMIT Press, Cambridge, MA,
2002.

[31] J. Shawe-Taylor and N. CristianinKernel Methods for Pattern Analysiam-
bridge University Press, 2004.

[32] S. Sonnenburg, G.&sch, C. Scéfer, and B. Sablkopf. Large scale multiple
kernel learningJournal of Maching Learning Research1531-1565, 2006.

[33] P. Szor.The Art of Computer Virus Research and Deferdsidison-Wesley, 2005.

[34] V. Vapnik. Statistical Learning TheoryJohn Wiley & Sons, 1998.

[35] Virus Bulletin. AVK tops latest AV-Test charts, Augug007. http://www.
virusbtn.com/news/2007/08_22a.xml.

[36] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. @o8ren, G. M. Voelker,
and S. Savage. Scalability, fidelity, and containment inpthiemkin virtual hon-
eyfarm. SIGOPS Oper. Syst. Re89(5):148-162, 2005.

[37] D.Wagner and P. Soto. Mimicry attacks on host basedsintn detection systems.
In Proceedings of the 9th ACM Conference on Computer and Coiatioms
Security (CCS'02)pages 255-264, 2002.

[38] C. Willems, T. Holz, and F. Freiling. CWSandbox: Towaalgomated dynamic
binary analysislEEE Security and Privacys(2), 2007.

