
Learning and Classification of Malware Behavior

Konrad Rieck1, Thorsten Holz2, Carsten Willems2,
Patrick D̈ussel1, and Pavel Laskov1,3

1 Fraunhofer Institute FIRST
Intelligent Data Analysis Department, Berlin, Germany

2 University of Mannheim
Laboratory for Dependable Distributed Systems, Mannheim, Germany

3 University of Tübingen
Wilhelm-Schickard-Institute for Computer Science, Tübingen, Germany

Abstract. Malicious software in form of Internet worms, computer viruses, and
Trojan horses poses a major threat to the security of networked systems. The
diversity and amount of its variants severely undermine the effectiveness of clas-
sical signature-based detection. Yet variants of malware families share typical
behavioral patternsreflecting its origin and purpose. We aim to exploit these
shared patterns for classification of malware and propose a method for learning
and discrimination of malware behavior. Our method proceeds in three stages: (a)
behavior of collected malware is monitored in a sandbox environment, (b) based
on a corpus of malware labeled by an anti-virus scanner amalware behavior
classifieris trained using learning techniques and (c) discriminative features of
the behavior models are ranked for explanation of classification decisions. Exper-
iments with different heterogeneous test data collected over several months using
honeypots demonstrate the effectiveness of our method, especially in detecting
novel instances of malware families previously not recognized by commercial
anti-virus software.

1 Introduction

Proliferation of malware poses a major threat to modern information technology. Ac-
cording to a recent report by Microsoft [1], every third scanfor malware results in a
positive detection. Security of modern computer systems thus critically depends on the
ability to keep anti-malware products up-to-date and abreast of current malware devel-
opments. This has proved to be a daunting task. Malware has evolved into a powerful
instrument for illegal commercial activity, and a significant effort is made by its authors
to thwart detection by anti-malware products. As a result, new malware variants are dis-
covered at an alarmingly high rate, some malware families featuring tens of thousands
of currently known variants.

In order to stay alive in the arms race against malware writers, developers of anti-
malware software heavily rely on automatic malware analysis tools. Unfortunately,
malware analysis is obstructed by hiding techniques such aspolymorphism and ob-
fuscation. These techniques are especially effective against byte-level content analy-
sis [17, 19] and static malware analysis methods [8, 10, 11].In contrast to static tech-
niques, dynamic analysis of binaries during run-time enables monitoring of malware

behavior, which is more difficult to conceal. Hence, a substantial amount of recent work
has focused on development of tools for collecting, monitoring and run-time analysis
of malware [3, 5, 6, 14, 22, 23, 25, 27, 36, 38].

Yet the means for collection and run-time analysis of malware by itself is not suf-
ficient to alleviate a threat posed by novel malware. What is needed is the ability to
automaticallyinfer characteristics from observed malware behavior thatare essential
for detection and categorization of malware. Such characteristics can be used for sig-
nature updates or as an input for adjustment of heuristic rules deployed in malware
detection tools. The method for automatic classification ofmalware behavior proposed
in this contribution develops such a characterization of previously unknown malware
instances by providing answers to the following questions:

1. Does an unknown malware instance belong to a known malwarefamily or does it
constitute a novel malware strain?

2. What behavioral features are discriminative for distinguishing instances of one
malware family from those of other families?

We address these questions by proposing a methodology forlearning the behavior
of malware from labeled samples and constructing models capable of classifying un-
known variants of known malware families while rejecting behavior of benign binaries
and malware families not considered during learning. The key elements of this approach
are the following:

(a) Malware binaries are collected via honeypots and spam-traps, and malware family
labels are generated by running an anti-virus tool on each binary. To assessbehav-
ioral patternsshared by instances of the same malware family, the behaviorof each
binary is monitored in a sandbox environment and behavior-based analysis reports
summarizing operations, such as opening an outgoing IRC connection or stopping
a network service, are generated. Technical details on the collection of our malware
corpus and the monitoring of malware behavior are provided in Sections 3.1–3.2.

(b) The learning algorithm in our methodology embeds the generated analysis reports
in a high-dimensional vector space and learns adiscriminative modelfor each mal-
ware family, i.e., a function that, being applied to behavioral patterns of an unknown
malware instance, predicts whether this instance belongs to a known family or not.
Combining decisions of individual discriminative models provides an answer to the
first question stated above. The embedding and learning procedures are presented
in Sections 3.3– 3.4.

(c) To understand the importance of specific features for classification of malware be-
havior, we exploit the fact that our learning model is definedby weights of behav-
ioral patterns encountered during the learning phase. By sorting these weights and
considering the most prominent patterns, we obtain characteristic features for each
malware family. Details of this feature ranking are provided in Section 3.5.

We have evaluated our method on a large corpus of recent malware obtained from
honeypots and spam-traps. Our results show that 70% of malware instances not identi-
fied by an anti-virus software can be correctly classified by our approach. Although such

accuracy may not seem impressive, in practice it means that the proposed method would
provide correct detections in two thirds of hard caseswhen anti-malware products fail.
We have also performed, as a sanity check, classification of benign executables against
known malware families, and observed 100% detection accuracy. This confirms that
the features learned from the training corpus are indeed characteristic for malware and
not obtained by chance. The manual analysis of most prominent features produced by
our discriminative models has produced insights into the relationships between known
malware families. Details of experimental evaluation of our method are provided in
Section 4.

2 Related work

Extensive literature exists on static analysis of malicious binaries, e.g. [8, 10, 18, 20].
While static analysis offers a significant improvement in malware detection accuracy
compared to traditional pattern matching, its main weakness lies in the difficulty to
handle obfuscated and self-modifying code [33]. Moreover,recent work of Moser et al.
presents obfuscation techniques that are provably NP-hardfor static analysis [24].

Dynamic malware analysis techniques have previously focused on obtaining reli-
able and accurate information on execution of malicious programs [5, 6, 23, 38]. As
it was mentioned in the introduction, the main focus of our work lies in automatic
processingof information collected from dynamic malware analysis. Two techniques
for behavior-based malware analysis using clustering of behavior reports have been
recently proposed [4, 21]. Both methods transform reports of observed behavior into
sequences and use sequential distances (the normalized compression distance and the
edit distance, respectively) to group them into clusters which are believed to correspond
to malware families. The main difficulty of clustering methods stems from their unsu-
pervised nature, i.e., the lack of any external informationprovided to guide analysis of
data. Let us illustrate some practical problems of clustering-based approaches.

A major issue for any clustering method is to decide how many clusters are present
in the data. As it is pointed out by Bailey et al. [4], there is atrade-off between cluster
size and the number of clusters controlled by a parameter calledconsistencywhich mea-
sures a ratio between intra-cluster and inter-cluster variation. A good clustering should
exhibit high consistency, i.e., uniform behavior should beobserved within clusters and
heterogeneous behavior between different clusters. Yet in the case of malware behavior
– which is heterogeneous by its nature – this seemingly trivial observation implies that
a large number ofsmall classes is observed if consistency is to be kept high. The re-
sults in [4] yield a compelling evidence to this phenomenon:given 100% consistency,
a clustering algorithm generated from a total of 3,698 malware samples 403 clusters,
of which 206 (51%) contain just one single executable. What a practitioner is looking
for, however, is exactly the opposite: asmall number oflarge clusters in which vari-
ants belong to the same family. The only way to attain this effect using consistency is
to play with different consistency levels, which (a) defeats the purpose of automatic
classification and (b) may still be difficult to attain at a single consistency level.

Another recent approach to dynamic malware analysis is based on mining of ma-
licious behavior reports [9]. Its main idea is to identify differences between malware

samples and benign executables, which can be used as specification of malicious be-
havior (malspecs). In contrast to this work, the aim of our approach is discrimination
between families of malware instead of discrimination between specific malware in-
stances and benign executables.

3 Methodology

Current malware is characterized by rich and versatile behavior, although large families
of malware, such as all variants of the Allaple worm, share common behavioral patterns,
e.g., acquiring and locking of particular mutexes on infected systems. We aim to exploit
these shared patterns usingmachine learning techniquesand propose a method capable
of automatically classifying malware families based on their behavior. An outline of our
learning approach is given by the following basic steps:

1. Data acquisition.A corpus of malware binaries currently spreading in the wildis
collected using a variety of techniques, such as honeypots and spam-traps. An anti-
virus engine is applied to identify known malware instancesand to enable learning
and subsequent classification of family-specific behavior.

2. Behavior Monitoring. Malware binaries are executed and monitored in a sandbox
environment. Based on state changes in the environment – in terms of API function
calls – a behavior-based analysis report is generated.

3. Feature Extraction. Features reflecting behavioral patterns, such as opening afile,
locking a mutex, or setting a registry key, are extracted from the analysis reports
and used to embed the malware behavior into a high-dimensional vector space.

4. Learning and Classification.Machine learning techniques are applied for identify-
ing the shared behavior of each malware family. Finally, a combined classifier for
all families is constructed and applied to different testing data.

5. Explanation.The discriminative model for each malware family is analyzed us-
ing the weight vector expressing the contribution of behavioral patterns. The most
prominent patterns yield insights into the classification model and reveal relations
between malware families.

In the following sections we discuss these individual stepsand corresponding tech-
nical background in more detail – providing examples of analysis reports, describing
the vectorial representation, and explaining the applied learning algorithms.

3.1 Malware Corpus for Learning

Our malware collection used for learning and subsequent classification of malware be-
havior comprises more than 10,000 unique samples obtained using different collection
techniques. The majority of these samples was gathered vianepenthes, a honeypot solu-
tion optimized for malware collection [3]. The basic principle of nepenthes is to emulate
only thevulnerableparts of an exploitable network service: a piece of self-replicating
malware spreading in the wild will be tricked into exploiting the emulated vulnerabil-
ity. By automatically analyzing the received payload, we can then obtain a binary copy

of the malware itself. This leads to an effective solution for collecting self-propagating
malware such as a wide variety of worms and bots. Additionally, our data corpus con-
tains malware samples collected viaspam-traps. We closely monitor several mailboxes
and catch malware propagating via malicious e-mails, e.g.,via links embedded in mes-
sage bodies or attachments of e-mails. With the help of spam-traps, we are able to obtain
malware such as Trojan horses and network backdoors.

The capturing procedure based on honeypots and spam-traps ensures that all sam-
ples in the corpus aremalicious, as they were either collected while exploiting a vul-
nerability in a network service or contained in malicious e-mail content. Moreover, the
resulting learning corpus iscurrent, as all malware binaries were collected within 5
months (starting from May 2007) and reflect malware familiesactively spreading in
the wild. In the current prototype, we focus on samples collected via honeypots and
spam-traps. However, our general methodology on malware classification can be easily
extended to include further malware classes, such as rootkits and other forms of non-
self-propagating malware, by supplying the corpus with additional collection sources.

After collecting malware samples, we applied the anti-virus (AV) engineAvira An-
tiVir [2] to partition the corpus into common families of malware,such as variants
of RBot, SDBot and Gobot. We chose Avira AntiVir as it had one of the best detec-
tion rates of 29 products in a recent AV-Test and detected 99.29% of 874,822 unique
malware samples [35]. We selected the 14 malware families obtained from the most
common labels assigned by Avira AntiVir on our malware corpus. These families listed
in Table 1 represent a broad range of malware classes such as Trojan horses, Internet
worms and bots. Note that binaries not identified by Avira AntiVir are excluded from
the malware corpus. Furthermore, the contribution of each family is restricted to a max-
imum of 1,500 samples resulting in 10,072 unique binaries of14 families.

Table 1.Malware families assigned by Avira AntiVir in malware corpus of 10,072samples. The
numbers in brackets indicate occurrences of each malware family in thecorpus.

1: Backdoor.VanBot (91) 8: Worm.Korgo (244)
2: Trojan.Bancos (279) 9: Worm.Parite (1215)
3: Trojan.Banker (834) 10: Worm.PoeBot (140)
4: Worm.Allaple (1500) 11: Worm.RBot (1399)
5: Worm.Doomber (426) 12: Worm.Sality (661)
6: Worm.Gobot (777) 13: Worm.SdBot (777)
7: Worm.IRCBot (229) 14: Worm.Virut (1500)

Using an AV engine for labeling malware families introducesa problem: AV labels
are generated by human analysts and are prone to errors. However, the learning method
employed in our approach (Section 3.4) is well-known for itsgeneralization ability
in presence of classifcation noise [34]. Moreover, our methodology is not bound to a
particular AV engine and our setup can easily be adapted to other AV engines and labels
or a combination thereof.

3.2 Monitoring Malware Behavior

The behavior of malware samples in our corpus is monitored using CWSandbox– an
analysis software generating reports of observed program operations [38]. The samples
are executed for a limited time in a native Windows environment and their behavior is
logged during run-time. CWSandbox implements this monitoring by using a technique
calledAPI hooking[13]. Based on the run-time observations, a detailed reportis gener-
ated comprising, among others, the following information for each analyzed binary:

– Changes to the file system, e.g., creation, modification or deletion of files.
– Changes to the Windows registry, e.g., creation or modification of registry keys.
– Infection of running processes, e.g., to insert maliciouscode into other processes.
– Creation and acquiring of mutexes, e.g. for exclusive access to system resources.
– Network activity and transfer, e.g., outbound IRC connections or ping scans.
– Starting and stopping of Windows services, e.g., to stop common AV software.

Figure 1 provides examples of observed operations contained in analysis reports,
e.g., copying of a file to another location or setting a registry key to a particular value.
Note, that the tool provides a high-level summary of the observed events and often more
than one related API call is aggregated into a single operation.

copy_file (filetype="File" srcfile="c:\1ae8b19ecea1b65705595b245f2971ee.exe",

dstfile="C:\WINDOWS\system32\urdvxc.exe", flags="SECURITY_ANONYMOUS")

set_value (key="HKEY_CLASSES_ROOT\CLSID\{3534943...2312F5C0&}",

data="lsslwhxtettntbkr")

create_process (commandline="C:\WINDOWS\system32\urdvxc.exe /start",

targetpid="1396", showwindow="SW_HIDE", apifunction="CreateProcessA")

create_mutex (name="GhostBOT0.58b", owned="1")

connection (transportprotocol="TCP", remoteaddr="XXX.XXX.XXX.XXX",

remoteport="27555", protocol="IRC", connectionestablished="1", socket="1780")

irc_data (username="XP-2398", hostname="XP-2398", servername="0",

realname="ADMINISTRATOR", password="r0flc0mz", nick="[P33-DEU-51371]")

Fig. 1. Examples of operations as reported by CWSandbox during run-time analysis of different
malware binaries. The IP address in the fifth example is sanitized.

3.3 Feature Extraction and Embedding

The analysis reports provide detailed information about malware behavior, yet raw re-
ports are not suitable for application of learning techniques as these usually operate on
vectorial data. To address this issue we derive a generic technique for mapping analysis
reports to a high-dimensional feature space.

Our approach builds on thevector space modelandbag-of-words model; two sim-
ilar techniques previously used in the domains of information retrieval [29] and text
processing [15, 16]. A document – in our case an analysis report – is characterized
by frequencies of contained strings. We refer to the set of considered strings as fea-
ture setF and denote the set of all possible reports byX. Given a strings ∈ F and
a reportx ∈ X, we determine the number of occurrences ofs in x and obtain the fre-
quency f (x, s). The frequency of a strings acts as a measure of its importance inx,
e.g., f (x, s) = 0 corresponds to no importance ofs, while f (x, s) > 0.5 indicates domi-
nance ofs in x. We derive an embedding functionφ which maps analysis reports to an
|F |-dimensional vector space by considering the frequencies of all strings inF :

φ : X → R|F |, φ(x) 7→ (f (x, s))s∈F

For example, ifF contains the stringscopy_file andcreate_mutex, two dimen-
sions in the resulting vector space correspond to the frequencies of these strings in
analysis reports. Computation of these high-dimensional vectors seems infeasible at
a first glance, asF may contain arbitrary many strings, yet there exist efficient algo-
rithms that exploit the sparsity of this vector representation to achieve linear run-time
complexity in the number of input bytes [28, 31].

In contrast to textual documents we can not define a feature set F a priori, simply
because not all important strings present in reports are known in advance. Instead, we
defineF implicitly by deriving string features from the observed malware operations.
Each monitored operation can be represented by a string containing its name and a list
of key-value pairs, e.g., a simplified strings for copying a file is given by

“copy_file (srcfile=A, dstfile=B)”

Such representation yields a very specific feature setF , so that slightly deviating be-
havior is reflected in different strings and vector space dimensions. Behavioral patterns
of malware, however, often express variability induced by obfuscation techniques, e.g.,
the destination for copying a file might be a random file name. To address this problem,
we represent each operation bymultiple stringsof different specificity. For each oper-
ation we obtain these strings by defining subsets of key-value pairs ranging from the
full to a coarse representation. E.g. the previous example for copying a file is associated
with three strings in the feature setF

“copy_file ...” −→

“copy_file_1 (srcfile=A, dstfile=B)”

“copy_file_2 (srcfile=A)”

“copy_file_3 ()”

The resulting implicit feature setF and the vector space induced byφ correspond
to various strings of possible operations, values and attributes, thus covering a wide
range of potential malware behavior. Note, that the embedding of analysis reports using
a feature setF and functionφ is generic, so that it can be easily adapted to different
report formats of malware analysis software.

3.4 Learning and Classification

The embedding functionφ introduced in the previous section maps analysis reports
into a vector space in which various learning algorithms canbe applied. We use the
well-established method ofSupport Vector Machines(SVM), which provides strong
generalization even in presence of noise in features and labels. Given data of two classes
an SVM determines anoptimal hyperplanethat separates points from both classes with
maximal margin [e.g. 7, 30, 34].

The optimal hyperplane is represented by a vectorw and a scalarb such that the
inner product ofw with vectorsφ(xi) of the two classes are separated by an interval
between−1 and+1 subject tob:

〈w, φ(xi)〉 + b ≥ +1, for xi in class 1,

〈w, φ(xi)〉 + b ≤ −1, for xi in class 2.

The optimization problem to be solved for findingw andb can be solely formulated
in terms of inner products〈φ(xi), φ(x j)〉 between data points. In practice these inner
products are computed by so calledkernel functions, which lead to non-linear classifi-
cation surfaces. For example, the kernel functionk for polynomials of degreed used in
our experiments is given by

k(xi , x j) = (〈φ(xi), φ(x j)〉 + 1)d.

Once trained, an SVM classifies a new reportx by computing its distanceh(x) from
the separating hyperplane as

h(x) = 〈w, φ(x)〉 + b =
n
∑

i=1

αiyik(xi , x) + b,

whereαi are parameters obtained during training andyi labels (+1 or −1) of training
data points. The distanceh(x) can then be used for multi-class classification among
malware families in one of the following ways:

1. Maximum distance.A label is assigned to a new behavior report by choosing the
classifier with the highest positive score, reflecting the distance to the most discrim-
inative hyperplane.

2. Maximum probability estimate.Additional calibration of the outputs of SVM clas-
sifiers allows to interpret them as probability estimates. Under some mild proba-
bilistic assumptions, the conditional posterior probability of the class+1 can be
expressed as:

P(y = +1 |h(x)) =
1

1+ exp(Ah(x) + B)
,

where the parametersA andB are estimated by a logistic regression fit on an in-
dependent training data set [26]. Using these probability estimates, we choose the
malware family with the highest estimate as our classification result.

In the following experiments we will use the maximum distance approach for com-
bining the output of individual SVM classifiers. The probabilistic approach is applicable
to prediction as well as detection of novel malware behaviorand will be considered in
Section 4.3.

3.5 Explanation of Classification

A security practitioner is not only interested in how accurate a learning system per-
forms, but also needs to understand how such performance is achieved – a requirement
not satisfied by many “black-box” applications of machine learning. In this section we
supplement our proposed methodology and provide a procedure for explaining classifi-
cation results obtained using our method.

The discriminative model for classification of a malware family is the hyperplane
w in the vector spaceR|F | learned by an SVM. As the underlying feature setF corre-
sponds to stringssi ∈ F reflecting observed malware operations, each dimensionwi of
w expresses the contribution of an operation to the decision functionh. Dimensionswi

with high values indicate strong discriminative influence,while dimensions with low
values express few impact on the decision function. By sorting the componentswi of w
one obtains afeature ranking, such thatwi > w j implies higher relevance ofsi over sj .
The most prominent strings associated with the highest components ofw can be used to
gain insights into the trained decision function and represent typical behavioral patterns
of the corresponding malware family.

Please note that an explicit representation ofw is required for computing a feature
ranking, so that in the following we provide explanations oflearned models only for
polynomial kernel functions of degree 1.

4 Experiments

We now proceed to evaluate the performance and effectiveness of our methodology
in different setups. For all experiments we pursue the following experimental proce-
dure: The malware corpus of 10,072 samples introduced in Section 3.1 is randomly
split into three partitions, atraining, validationandtestingpartition. For each partition
behavior-based reports are generated and transformed intoa vectorial representation as
discussed in Section 3. The training partition is used to learn individual SVM classi-
fiers for each of the 14 malware families using different parameters for regularization
and kernel functions. The best classifier for each malware family is then selected us-
ing the classification accuracy obtained on the validation partition. Finally, the overall
performance is measured using the combined classifier on thetesting partition.

This procedure, including randomly partitioning the malware corpus, is repeated
over five experimental runs and corresponding results are averaged. For experiments
involving data not contained in the malware corpus (Section4.2 and 4.3), the test-
ing partition is replaced with malware binaries from a different source. The machine
learning toolboxShogun[32] has been chosen as an implementation of the SVM. The
toolbox has been designed for large-scale experiments and enables learning and classi-
fication of 1,700 samples per minute and malware family.

4.1 Classification of Malware Behavior

In the first experiment we examine the general classificationperformance of our mal-
ware behavior classifier. Testing data is taken from the malware corpus introduced in

Section 3.1. In Figure 2 the per-family accuracy and a confusion matrix for this exper-
iment is shown. The plot in Figure 2 (a) depicts the percentage of correctly assigned
labels for each of the 14 selected malware families. Error bars indicate the variance
measured during the experimental runs. The matrix in Figure2 (b) illustrates confusions
made by the malware behavior classifier. The density of each cell gives the percentage
of a true malware family assigned to a predicted family by theclassifier. The matrix
diagonal corresponds to correct classification assignments.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.2

0.4

0.6

0.8

1

Malware families

A
cc

ur
ac

y
pe

r
fa

m
ily

Accuracy of classification

(a) Accuracy per malware family

T
ru

e
m

al
w

ar
e

fa
m

ili
es

Predicted malware families

Confusion matrix for classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Confusion of malware families

Fig. 2. Performance of malware behavior classifier using operation features on testing partition
of malware corpus. Results are averaged over five experimental runs.

On average 88% of the provided testing binaries are correctly assigned to malware
families. In particular, the malware families Worm.Allaple (4), Worm.Doomber (5),
Worm.Gobot (6) and Worm.Sality (12) are identified almost perfectly. The precise clas-
sification of Worm.Allaple demonstrates the potential of our methodology, as this type
of malware is hard to detect using static methods: Allaple ispolymorphically encrypted,
i.e., every copy of the worm is different from each other. This means that static analysis
can only rely on small parts of the malware samples, e.g., tryto detect the decryptor.
However, when the binary is started, it goes through the polymorphic decryptor, un-
packs itself, and then proceeds to the static part of the code, which we observe with
our methodology. All samples express a set of shared behavioral patterns sufficient for
classification using our behavior-based learning approach.

The accuracy for Backdoor.VanBot (1) and Worm.IRCBot (7) reaches around 60%
and expresses larger variance – an indication for a generic AV label characterizing mul-
tiple malware strains. In fact, the samples of Worm.IRCBot (7) in our corpus comprise
over 80 different mutex names, such asSyMMeC, itcrew or h1dd3n, giving evidence of
the heterogeneous labeling.

4.2 Prediction of Malware Families

In order to evaluate how good we can evenpredict malware families which are not
detected by anti-virus products, we extended our first experiment. As outlined in Sec-
tion 3.1, our malware corpus is generated by collecting malware samples with the help
of honeypots and spam-traps. The anti-virus engine Avira AntiVir, used to assign la-
bels to the 10,072 binaries in our malware corpus, failed to identify additional 8,082
collected malware binaries. At this point, however, we can not immediately assess the
performance of our malware behavior classifier as theground truth, the true malware
families of these 8,082 binaries, is unknown.

We resolve this problem by re-scanning the undetected binaries with the Avira An-
tiVir engine after a period of four weeks. The rationale behind this approach is that the
AV vendor had time to generate and add missing signatures forthe malware binaries
and thus several previously undetected samples could be identified. From the total of
8,082 undetected binaries, we now obtain labels for 3,139 samples belonging to the 14
selected malware families. Table 2 lists the number of binaries for each of the 14 fam-
ilies. Samples for Worm.Doomber, Worm.Gobot and Worm.Sality were not present,
probably because these malware families did not evolve and current signatures were
sufficient for accurate detection.

Table 2. Undetected malware families of 3,139 samples, labeled by Avira AntiVir four weeks
after learning phase. Numbers in brackets indicate occurrences of each Malware family.

1: Backdoor.VanBot (169) 8: Worm.Korgo (4)
2: Trojan.Bancos (208) 9: Worm.Parite (19)
3: Trojan.Banker (185) 10: Worm.PoeBot (188)
4: Worm.Allaple (614) 11: Worm.RBot (904)
5: Worm.Doomber (0) 12: Worm.Sality (0)
6: Worm.Gobot (0) 13: Worm.SdBot (597)
7: Worm.IRCBot (107) 14: Worm.Virut (144)

Based on the experimental procedure used in the first experiment, we replace the
original testing data with the embedded behavior-based reports of the new 3,139 labeled
samples and again perform five experimental runs.

Figure 3 provides the per-family accuracy and the confusionmatrix achieved on
the 3,139 malware samples. The overall result of this experiment is twofold. On aver-
age, 69% of the malware behavior is classified correctly. Some malware, most notably
Worm.Allaple (4), is detected with high accuracy, while on the other hand malware
families such as Worm.IRCBot (7) and Worm.Virut (14) are poorly recognized. Still,
the performance of our malware behavior classifier is promising, provided that during
the learning phasenoneof these malware samples was detected by the Avira AntiVir
engine. Moreover, the fact that AV signatures present during learning did not suffice for
detecting these binaries might also indicate truly novel behavior of malware, which is
impossible to predict using behavioral patterns containedin our malware corpus.

1 2 3 4 7 8 9 10 11 13 14
0

0.2

0.4

0.6

0.8

1

Malware families

A
cc

ur
ac

y
pe

r
fa

m
ily

Accuracy of prediction

(a) Accuracy per malware family

T
ru

e
m

al
w

ar
e

fa
m

ili
es

Predicted malware families

Confusion matrix for prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

7

8

9

10

11

13

14
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Confusion of malware families

Fig. 3. Performance of malware behavior classifier on undetected data usingoperation features.
Malware families 5, 6 and 12 are not present in the testing data.

4.3 Identification of Unknown Behavior

In the previous experiments we considered the performance of our malware behavior
classifier on 14 fixed malware families. In a general setting,however, a classifier might
also be exposed to malware binaries that donotbelong to one of these 14 families. Even
if the majority of current malware families would be included in a large learning system,
future malware families could express activity not matching any patterns of previously
monitored behavior. Moreover, a malware behavior classifier might also be exposed to
benign binaries either by accident or in terms of a denial-of-service attack. Hence, it is
crucial for such a classifier to not only identify particularmalware families with high
accuracy, but also to verify the confidence of its decision and report unknown behavior.

We extend our behavior classifier to identify and rejectunknown behaviorby chang-
ing the way individual SVM classifiers are combined. Insteadof using the maximum
distance to determine the current family, we consider probability estimates for each
family as discussed in Section 3.4. Given a malware sample, we now requireexactly
oneSVM classifier to yield a probability estimate larger 50% andrejectall other cases
as unknown behavior.

For evaluation of this extended behavior classifier we consider additional malware
families not part of our malware corpus and benign binaries randomly chosen from
several desktop workstations running Windows XP SP2. Table3 provides an overview
of the additional malware families. We perform three experiments: first, we repeat the
experiment of Section 4.1 with the extended classifier capable of rejecting unknown
behavior, second we consider 530 samples of the unknown malware families given in
Table 3 and third we provide 498 benign binaries to the extended classifier.

Figure 4 shows results of the first two experiments averaged over five individual
runs. The confusion matrices in both sub-figures are extended by a column labeled
u which contains the percentage of predicted unknown behavior. Figure 4 (a) depicts
the confusion matrix for the extended behavior classifier ontesting data used in Sec-

Table 3. Malware families of 530 samples not contained in malware learning corpus. The num-
bers in brackets indicate occurrences of each malware family.

a: Worm.Spybot (63) f: Trojan.Proxy.Cimuz (73)
b: Worm.Sasser (23) g: Backdoor.Zapchast (25)
c: Worm.Padobot (62) h: Backdoor.Prorat (77)
d: Worm.Bagle (20) i: Backdoor.Hupigon (96)
e: Trojan.Proxy.Horst (29)

tion 4.1. In comparison to Section 4.1 the overall accuracy decreases from 88% to 76%,
as some malware behavior is classified as unknown, e.g., for the generic AV labels of
Worm.IRCBot (7). Yet this increase in false-positives coincides with decreasing con-
fusions among malware families, so that the confusion matrix in Figure 4 (a) yields
fewer off-diagonal elements in comparison to Figure 2 (b). Hence, theresult of using
a probabilistic combination of SVM classifiers is twofold: on the one hand behavior of
some malware samples is indicated as unknown, while on the other hand the amount of
confusions is reduced leading to classification results supported by strong confidence.

T
ru

e
m

al
w

ar
e

fa
m

ili
es

Predicted malware families

Confusion matrix for extended classification

1 2 3 4 5 6 7 8 9 10 11 12 13 u 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Confusion on testing data

T
ru

e
m

al
w

ar
e

fa
m

ili
es

Predicted malware families

Confusion matrix for extended classification

1 2 3 4 5 6 7 8 9 10 11 12 13 14 u

a

b

c

d

e

f

g

h

i
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Confusion on unknown malware

Fig. 4. Performance of extended behavior classifier on (a) original testing data and (b) malware
families not contained in learning corpus. The column labeled “u” corresponds to malware bina-
ries classified asunknown behavior.

Figure 4 (b) now provides the confusion matrix for the unknown malware fami-
lies given in Table 3. For several of these families no confusion occurs at all, e.g., for
Worm.Bagle (d), Trojan.Proxy.Horst (e) and Trojan.Proxy.Cimuz (f). The malware be-
havior classifier precisely recognizes that these binariesdo not belong to one of the 14
malware families used in our previous experiments. The other tested unknown malware
families show little confusion with one of the learned families, yet the majority of these

confusions can be explained and emphasizes the capability of our methodology to not
discriminate AV labels of malware but its behavior.

– Worm.Spybot (a) is similar to other IRC-bots in that it usesIRC as command in-
frastructure. Moreover, it exploits vulnerabilities in network services and creates
auto-start keys to enable automatic start-up after system reboot. This behavior leads
to confusion with Worm.IRCBot (7) and Worm.RBot (11), whichbehave in exactly
the same way.

– Worm.Padobot (c) is a synonym for Worm.Korgo (8): several AV engines name
this malware family Worm.Padobot, whereas others denote itby Worm.Korgo. The
corresponding confusion in Figure 4 (b) thus results from the ability of our learning
method to generalize beyond the restricted set of provided labels.

– Backdoor.Zapchast (g) is a network backdoor controlled via IRC. Some binaries
contained in variants of this malware are infected with Worm.Parite (9). This cou-
pling of two different malware families, whether intentional by the malwareauthor
or accidental, is precisely reflected in a small amount of confusion shown in Fig-
ure 4 (b).

In the third experiment focusing on benign binaries, all reports of benign behavior
are correctly assigned to the unknown class and rejected by the extended classifier. This
result shows that the proposed learning method captures typical behavioral patterns
of malware, which leads to few confusions with other malwarefamilies but enables
accurate discrimination of normal program behavior if provided as input to a classifier.

4.4 Explaining Malware Behavior Classification

The experiments in the previous sections demonstrate the ability of machine learning
techniques to effectively discriminate malware behavior. In this section weexamine
the discriminative models learned by the SVM classifiers andshow that relations of
malware beyond the provided AV labels can be deduced from thelearned classifiers. For
each of the 14 considered malware families we learn an SVM classifier, such that there
exist 14 hyperplanes separating the behavior of one malwarefamily from all others. We
present the learned decision functions for the Sality and Doomber classifiers as outlined
in Section 3.5 by considering the most prominent patterns intheir weight vectors.

Sality Classifier Figure 5 depicts the top five discriminating operation features for
the family Worm.Sality learned by our classifier. Based on this example, we see that
operation features can be used by a human analyst to understand the actual behavior
of the malware family, e.g., the first two features show that Sality creates a file within
the Windows system directory. Since both variants created during the preprocessing
step (see Section 3.3 for details) are included, this indicates that Sality commonly uses
the source filenamevcmgcd32.dl . Moreover, this malware family also deletes at least
one file within the Windows system directory. Furthermore, this family creates a mutex
containing the stringkuku joker (e.g., kuku joker v3.09 as shown in Figure 5 and

0.0142:create_file_2 (srcpath="C:\windows\...")
0.0073:create_file_1 (srcpath="C:\windows\...", srcfile="vcmgcd32.dl_")
0.0068:delete_file_2 (srcpath="C:\windows\...")
0.0051:create_mutex_1 (name="kuku_joker_v3.09")
0.0035:enum_processes_1 (apifunction="Process32First")

Fig. 5. Discriminative operation features extracted from the SVM classifier of thethe malware
family Sality. The numbers to the left are the sorted components of the hyperplane vector w.

0.0084:create_mutex_1 (name="GhostBOT0.58c")
0.0073:create_mutex_1 (name="GhostBOT0.58b")
0.0052:create_mutex_1 (name="GhostBOT0.58a")
0.0014:enum_processes_1 (apifunction="Process32First")
0.0011:query_value_2 (key="HKEY_LOCAL...\run", subkey_or_value="GUARD")

Fig. 6. Discriminative operation features extracted from the SVM classifier of thethe malware
family Doomber. The numbers to the left are the sorted components of the hyperplane vector w.

kuku joker v3.04 as sixth most significant feature) such that only one instance of the
binary is executed at a time. Last, Sality commonly enumerates the running processes.

Based on these operation features, we get an overview of whatspecific behavior
is characteristic for a given malware family; we canunderstandwhat the behavioral
patterns for one family are and how a learned classifier operates.

Doomber Classifier In Figure 6, we depict the top five discriminating operation fea-
tures for Worm.Doomber. Different features are significant for Doomber compared to
Sality: the three most significant components for this family are similar mutex names,
indicating different versions contained in our malware corpus. Furthermore, we can see
that Doomber enumerates the running processes and queries certain registry keys.

In addition, we make another interesting observation: our learning-based system
identified the mutex namesGhostBOT-0.57a, GhostBOT-0.57 andGhostBOT to be among
the top five operation features for Worm.Gobot. The increased version number reveals
that Gobot and Doomber are closely related. Furthermore, our system identified several
characteristic, additional features contained in reportsfrom both malware families, e.g.,
registry keys accessed and modified by both of them. We manually verified that both
families are closely related and that Doomber is indeed an enhanced version of Gobot.
This illustrates that our system may also help to identifyrelationsbetween different
malware families based on observed run-time behavior.

5 Limitations

In this section, we examine the limitations of our learning and classification methodol-
ogy. In particular, we discuss the drawbacks of our analysissetup and examine evasion
techniques.

One drawback of our current approach is that we rely on one single program ex-
ecution of a malware binary: we start the binary within the sandbox environment and
observe one execution path of the sample, which is stopped either if a timeout is reached
or if the malware exits from the run by itself. We thus do not get a full overview of what
the binary intends to do, e.g., we could miss certain actionsthat are only executed on
a particular date. However, this deficit can be addressed using a technique calledmulti-
path execution, recently introduced by Moser et al. [23], which essentially tracks input
to a running binary and selects a feasible subset of possibleexecution paths. Moreover,
our results indicate that a single program execution often contains enough information
for accurate classification of malware behavior, as malwarecommonly tries to aggres-
sively propagate further or quickly contacts a Command & Control servers.

Another drawback of our methodology is potential evasion bya malware, either by
detecting the existence of a sandbox environment or via mimicry of different behavior.
However, detecting of the analysis environment is no general limitation of our approach:
to mitigate this risk, we can easily substitute our analysisplatform with a more resilient
platform or even use several different analysis platforms to generate the behavior-based
report. Second, a malware binary might try to mimic the behavior of a different malware
family or even benign binaries, e.g. using methods proposedin [12, 37]. The considered
analysis reports, however, differ from sequential representations such as system call
traces in that multiple occurrences of identical activities are discarded. Thus, mimicry
attacks can not arbitrarily blend the frequencies or order of operation features, so that
only very little activity may be covered in a single mimicry attack.

A further weakness of the proposed supervised classification approach is its inability
to find structure in new malware families not present in a training corpus. The presence
of unknown malware families can be detected by the rejectionmechanism used in our
classifiers, yet no further distinction among rejected instances is possible. Whether this
is a serious disadvantage in comparison to clustering methods is to be seen in practice.

6 Conclusions

The main contribution of this paper is a learning-based approach to automatic classifi-
cation of malware behavior. The key ideas of our approach are: (a) the incorporation of
labels assigned by anti-virus software to define classes forbuilding discriminative mod-
els; (b) the use of string features describing specific behavioral patterns of malware;
(c) automatic construction of discriminative models usinglearning algrithms and (d)
identification of explanatory features of learned models byranking behavioral patterns
according to their weights. To apply our method in practice,it suffices to collect a large
number of malware samples, analyse its behavior using a sandbox environment, iden-
tify typical malware families to be classified by running a standard anti-virus software
and construct a malware behavior classifier by learning single-family models using a
machine learning toolbox.

As a proof of concept, we have evaluated our method by analyzing a training cor-
pus collected from honeypots and spam-traps. The set of known families consisted
of 14 common malware families; 9 additional families were used to test the ability
of our method to identify behavior of unknown families. In anexperiment with over

3,000 previouslyundetectedmalware binaries, our system correctly predicted almost
70% of labels assigned by an anti-virus scannerfour weeks later. Our method also de-
tects unknown behavior, so that malware families not present in the learning corpus
are correctly identified as unknown. The analysis of prominent features inferred by our
discriminative models has shown interesting similaritiesbetween malware families; in
particular, we have discovered that Doomber and Gobot wormsderive from the same
origin, with Doomber being an extension of Gobot.

Despite certain limitations of our current method, such as single-path execution in
a sandbox and the use of imperfect labels from an anti-virus software, the proposed
learning-based approach offers the possibility for accurate automatic analysis of mal-
ware behavior, which should help developers of anti-malware software to keep apace
with the rapid evolution of malware.

Bibliography

[1] Microsoft Security Intelligence Report, October 2007. http:

//www.microsoft.com/downloads/details.aspx?FamilyID=

4EDE2572-1D39-46EA-94C6-4851750A2CB0.
[2] Avira. AntiVir PersonalEdition Classic, 2007.http://www.avira.de/en/
products/personal.html.

[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. C. Freiling. The nepenthes
platform: An efficient approach to collect malware. InProceedings of the 9th
Symposium on Recent Advances in Intrusion Detection (RAID’06), pages 165–
184, 2006.

[4] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario.
Automated classification and analysis of internet malware.In Proceedings of the
10th Symposium on Recent Advances in Intrusion Detection (RAID’07), pages
178–197, 2007.

[5] U. Bayer, C. Kruegel, and E. Kirda. TTAnalyze: A tool for analyzing malware. In
Proceedings of EICAR 2006, April 2006.

[6] U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis of malicious
code.Journal in Computer Virology, 2:67–77, 2006.

[7] C. Burges. A tutorial on support vector machines for pattern recognition.Knowl-
edge Discovery and Data Mining, 2(2):121–167, 1998.

[8] M. Christodorescu and S. Jha. Static analysis of executables to detect malicious
patterns. InProceedings of the 12th USENIX Security Symposium, pages 12–12,
2003.

[9] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious
behavior. InProceedings of the 6th Joint Meeting of the European Software En-
gineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2007.

[10] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and R. E. Bryant. Semantics-
aware malware detection. InIEEE Symposium on Security and Privacy, pages
32–46, 2005.

[11] H. Flake. Structural comparison of executable objects. In Proceedings of Detec-
tion of Intrusions and Malware& Vulnerability Assessment (DIMVA’04), 2004.

[12] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic blending
attacks. InProceedings of the 15th USENIX Security Symposium, pages 241–256,
2006.

[13] G. C. Hunt and D. Brubacker. Detours: Binary interception of Win32 functions. In
Proceedings of the 3rd USENIX Windows NT Symposium, pages 135–143, 1999.

[14] X. Jiang and D. Xu. Collapsar: A VM-based architecture for network attack de-
tention center. InProceedings of the 13th USENIX Security Symposium, 2004.

[15] T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. InProceedings of the European Conference on Machine
Learning, pages 137 – 142. Springer, 1998.

[16] T. Joachims.Learning to Classify Text using Support Vector Machines. Kluwer
Academic Publishers, 2002.

[17] M. Karim, A. Walenstein, A. Lakhotia, and P. Laxmi. Malware phylogeny gener-
ation using permutations of code.Journal in Computer Virology, 1(1–2):13–23,
2005.

[18] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. A. Kemmerer. Behavior-based
spyware detection. InProceedings of the 15th USENIX Security Symposium, pages
19–19, 2006.

[19] J. Kolter and M. Maloof. Learning to detect and classifymalicious executables in
the wild. Journal of Machine Learning Research, 7(Dec):2721 – 2744, 2006.

[20] C. Kruegel, W. Robertson, and G. Vigna. Detecting kernel-level rootkits through
binary analysis. InProceedings of the 20th Annual Computer Security Applica-
tions Conference (ACSAC), 2004.

[21] T. Lee and J. J. Mody. Behavioral classification. InProceedings of EICAR 2006,
April 2006.

[22] C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol dependen-
cies and reaction to 0-day attacks with ScriptGen based honeypots. InProceedings
of the 9th Symposium on Recent Advances in Intrusion Detection (RAID’06), Sep
2006.

[23] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for mal-
ware analysis. InProceedings of 2007 IEEE Symposium on Security and Privacy,
2007.

[24] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detec-
tion. In Proceedings of the 23rd Annual Computer Security Applications Confer-
ence (ACSAC), 2007. to appear.

[25] Norman. Norman sandbox information center. Internet:http://sandbox.
norman.no/, Accessed: 2007.

[26] J. Platt. Probabilistic outputs for Support Vector Machines and comparison to reg-
ularized likelihood methods. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schu-
urmans, editors,Advances in Large Margin Classifiers. MIT Press, 2001.

[27] F. Pouget, M. Dacier, and V. H. Pham. Leurre.com: on the advantages of deploying
a large scale distributed honeypot platform. InECCE’05, E-Crime and Computer
Conference, 29-30th March 2005, Monaco, Mar 2005.

[28] K. Rieck and P. Laskov. Linear-time computation of similarity measures for se-
quential data.Journal of Machine Learning Research, 9(Jan):23–48, 2008.

[29] G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

[30] B. Scḧolkopf and A. Smola.Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[31] J. Shawe-Taylor and N. Cristianini.Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[32] S. Sonnenburg, G. R̈atsch, C. Scḧafer, and B. Scḧolkopf. Large scale multiple
kernel learning.Journal of Maching Learning Research, 7:1531–1565, 2006.

[33] P. Szor.The Art of Computer Virus Research and Defense. Addison-Wesley, 2005.
[34] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[35] Virus Bulletin. AVK tops latest AV-Test charts, August2007. http://www.
virusbtn.com/news/2007/08_22a.xml.

[36] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker,
and S. Savage. Scalability, fidelity, and containment in thepotemkin virtual hon-
eyfarm.SIGOPS Oper. Syst. Rev., 39(5):148–162, 2005.

[37] D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS’02), pages 255–264, 2002.

[38] C. Willems, T. Holz, and F. Freiling. CWSandbox: Towardsautomated dynamic
binary analysis.IEEE Security and Privacy, 5(2), 2007.

