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Fingerprinting Mobile Devices
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Abstract: Recently, Apple removed access to various de-
vice hardware identifiers that were frequently misused
by iOS third-party apps to track users. We are, there-
fore, now studying the extent to which users of smart-
phones can still be uniquely identified simply through
their personalized device configurations. Using Apple’s
iOS as an example, we show how a device fingerprint can
be computed using 29 different configuration features.
These features can be queried from arbitrary third-
party apps via the official SDK. Experimental evalu-
ations based on almost 13,000 fingerprints from approx-
imately 8,000 different real-world devices show that (1)
all fingerprints are unique and distinguishable; and (2)
utilizing a supervised learning approach allows return-
ing users or their devices to be recognized with a total
accuracy of 97% over time.
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1 Introduction
As of mid-2014, more than 1.2 million apps have been
made available in Apple’s App Store—and downloaded
more than 50 billion times [1]. Google’s Play Store also
contains over 1.3 million apps, including more than 1.1
million free apps [2]. Free apps often raise the question
of their business model. If downloading an app costs
nothing, users often become unwitting products, with
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app providers using advertising in an attempt to make
the app financially viable.

In the past, various studies have shown that, in
the case of Apple’s App Store, around half of all the
free apps contain advertising or tracking libraries [3–
5]. It can be expected that apps from Google Play ex-
hibit similar properties. These libraries observe user be-
havior and collect personal information about users. In
some cases, they send this collected data to advertising
networks—which allows in-app advertising to be tar-
geted as accurately as possible—or sell the user profile.
Although most users do not notice these background ac-
tivities and, therefore, cannot opt out of them, their im-
pact on user privacy is obvious. Advertising and tracking
providers continuously receive comprehensive, partially
cross-app profiles of app users’ usage habits.

In order to match the collected data and activities
to an individual user, the user’s device must be uniquely
identifiable, a task usually called device fingerprinting.
It is well known that Android allows access to the unique
device ID (IMEI for GSM and MEID/ESN for CDMA
phones) which makes it almost trivial to perfectly fin-
gerprint devices [6]. Until the release of iOS 7, various
hardware identifiers were also available on Apple’s mo-
bile platform. In addition to the Unique Device Identi-
fier (UDID), which is based, among other elements, on
the device serial number, the WiFi MAC address was,
in many cases, used to uniquely identify users or their
devices [3, 7]. As a response to privacy concerns, Apple
started to restrict access to hardware-based identifying
features in 2013 [8]. App providers, therefore, have no
longer been able to use hardware identifiers to recognize
returning devices. As we show in this paper, however,
this does not necessarily mean that devices cannot be
fingerprinted.

1.1 Challenges

To the best of our knowledge, there has, until now, been
no study focusing on fingerprinting mobile devices using
personalized device configurations. This is a fundamen-
tally different approach to previous work since it as-
sumes that the user voluntarily installs software (the
app) and that the app operates silently without the
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user’s further cooperation (apart from regularly using
the app for its intended purpose).

The biggest real-world challenge with all finger-
printing approaches is balancing out the fingerprint fea-
tures with regards to diversity and stability. The more
features that are used in creating a fingerprint, the more
likely it is that all data records will be different—and
therefore distinguishable. In practice, however, features
change over time, particularly on mobile devices, which
are used multiple times a day. In turn, the more features
are used, the higher the probability that individual data
fields will change, thus affecting the fingerprint’s stabil-
ity. In most cases, therefore, a high level of diversity in
features reduces the stability. A high level of stability
can often be achieved only by including as few features
as possible. In a fingerprinting context, the trade-off be-
tween diversity and stability has to be mastered.

1.2 Contributions

In this paper, we present a purely software-based ap-
proach to fingerprinting mobile devices based on their
personalized configurations, and point out the result-
ing privacy risks. Instead of focusing on web browsers,
which were the main objects of interest in the past when
it came to client fingerprinting, we take the viewpoint of
a third-party app that can collect information about the
entire device configuration. Since Apple iOS is currently
the platform with the most preventive mechanisms, iOS
was deliberately chosen for our study. It is, however,
clear that our findings can be similarly applied to other
platforms.

First, we systematically searched the iOS SDK for
uniquely distinguishable (=identifying) fingerprint fea-
tures. This process revealed 29 features, which were then
added to our fingerprinting algorithm. These include, for
example, device names, language settings, lists of apps
installed and most played songs. Finally, we created our
own app that combined these features and, if the user
gave permission, sent the data to our server for evalua-
tion. Any personally identifiable data was anonymized
before transmission using hashing. The app was then
placed in the App Store for download.

During our 140-day study period, we collected al-
most 13,000 data records from 8,000 different devices.
All the fingerprints we discovered were unique. Al-
though the fingerprints are clearly distinguishable in
theory, it is hard to use them for long-term tracking of
users. In practice, individual fingerprint features change
over time as the device is used. This aspect was also

investigated, as almost 57% of the data records trans-
mitted to us came from recurring devices. This enabled
us to observe the change in data over time and to de-
termine criteria for feature stability.

Following this, we propose a robust solution for
measuring the general similarity between any pair of
fingerprints, independent of their size and structure.
We then determine an optimal similarity threshold us-
ing a supervised learning approach that considers the
chronological order in which fingerprints would be re-
ceived in a real world scenario. This approach enables
us to uniquely identify devices with a total accuracy of
93.76% when all 29 features are included.

We then evaluate the collected data from various
different perspectives and gradually reduce the feature
space to determine features or combinations that would
lead to an accuracy increase. Some test cases, for ex-
ample, use only the list of installed apps or the top 50
most-played songs. Both pieces of information are freely
available to third-party apps and querying them is very
unobtrusive. Our approach proved capable of uniquely
identifying devices purely on the basis of the apps in-
stalled, with an overall accuracy of more than 97%.
Moreover, identifying devices based solely on the user’s
music taste succeeded with a total accuracy of 94.20%.
Finally, we discuss countermeasures and demonstrate
how identification accuracy could be drastically de-
creased if Apple further tightened the app sandbox to
prevent unrestricted access to only a few strong distin-
guishing features.

Summarizing, our main contributions are:
1. We present a novel and highly accurate software-

based approach to mobile device fingerprinting that
relies solely on correlating information provided by
the mobile operating system. We provide a taxon-
omy of mobile fingerprint data sources and describe
a set of 29 identifying properties within Apple’s
iOS platform. Moreover, we describe the concept
of a data collection app that was made available in
the App Store to collect these properties from real-
world devices.

2. We formulate the question of whether or not finger-
prints originate from the same device as a multi-
class classification problem. We then show that this
challenge can be accurately solved using a simple
threshold-based classifier based on fingerprint simi-
larity.
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3. We investigate the accuracy and robustness of our
approach by evaluating around 13,000 fingerprint
data records from nearly 8,000 different real-world
devices. The experimental results show our method
to be effective in identifying mobile devices with
high accuracy in a low-dimensional feature space.

2 Related Work
In his seminal work, Eckersley [9] pioneered the area of
browser fingerprinting and created fingerprints using the
browser version reported by the user agent and/or the
browser configuration (plugins, fonts etc.). He was then
able to use the fingerprints created using this method
to recognize returning browsers, even if their individual
features had changed over time. The false positive rate
was only 0.87%. This sparked several follow-up studies,
investigating new browser fingerprinting methods or ex-
amining how browser fingerprinting was used “in the
wild” for user tracking [10–13]. In principle, techniques
for browser fingerprinting can also be used on mobile de-
vices. Specialized apps have, however, replaced generic
browsers for many usage scenarios. Furthermore, mobile
browsers are barely customizable (no plugins, no fonts,
almost no differences between versions) and therefore do
not have as many distinguishing characteristics as desk-
top browsers. Even Eckersley admits that his approach
is not suitable for use on mobile devices, as “iPhone and
Android browsers [are] significantly more uniform and
harder to fingerprint than desktop browsers” [9].

Therefore, in the past, alternative methods for mo-
bile device fingerprinting have been proposed. These ap-
proaches evaluate different (mostly physical) character-
istics and draw inferences about the device platform.
Classic examples include methods for identifying image
sensors in digital cameras based on various aspects of
their processing pipelines, like the photo-response non-
uniformity (PRNU) of CCD sensors [14, 15]. While this
can also be used to identify smartphones (based on
their built-in cameras), these calculations are extremely
resource-intensive and require a large number of spe-
cially crafted images [16, 17].

Other work on mobile device fingerprinting also fo-
cuses on fingerprinting device sensors. Previous studies
have, for example, investigated embedded acoustic com-
ponents [18–20]. The frequency response of the speaker-
microphone system was measured by playing sound over
the speaker and simultaneously recording it using the
microphone. Due to differences identified in their fre-

quency responses, the authors were able to identify
95% of 17 devices [18], or to match 98% of the audio
clips recorded to 50 different Android smartphones [19].
Other sensor-based processes were used to analyze the
data reported by the accelerometer. The accuracy rates
were 53% [18], or 96% [21]. As all these methods re-
quire user cooperation, they cannot be used as easily
and silently as browser fingerprints.

In previous studies, information provided by mobile
SDKs to third-party apps has been used for various dif-
ferent purposes. For instance, the list of installed apps
has been successfully used to identify user traits [22].
Properties like running apps, the device model, or op-
erating system type have also been used within collab-
orative approaches to diagnose energy anomalies [23].
Although these approaches could obviously affect user
privacy in various ways, they are not directly related to
our objective—that of fingerprinting devices for long-
term user tracking purposes.

3 Background
In this section, we lay out the history of identifiers in
Apple’s iOS platform.

Until recently, third-party apps on Apple’s plat-
forms could make use of various hardware identifiers
(UDID, WiFi MAC), enabling them to uniquely iden-
tify devices. As these features were often misused to
match personal data and behavior patterns to individ-
ual users and to transmit this information to advertising
networks, Apple reacted by eliminating access to these
hardware features with the release of iOS 7.

Even before the hardware identifiers were removed,
two alternative software identifiers designed to be used
for ad tracking were introduced in iOS 6. These two
non-personal, non-permanent identifiers are designed to
provide better privacy protection: the Advertising Iden-
tifier (IDFA) is an alphanumeric string which is unique
to each device, while the Identifier For Vendor (IDFV)
is identical only for apps from the same provider. Both
identifiers are suitable for user tracking only to a lim-
ited extent. On the one hand, the IDFV is not identical
across apps and, although both identifiers are persisted
by the system, the values can be reset as desired. The
IDFV is, for example, automatically reset if all apps
from a provider are uninstalled, while the IDFA can be
manually reset via the Settings app. The identifiers are
also reset if a device restore is carried out. In addition,
Apple emphasizes that misusing the identifiers will lead
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to the app being rejected during the App Store review
process [24]. Neither identifier, therefore, fulfills the re-
quirements of a global identifier [9], which remains con-
stant over time and enables tracking without the user
either noticing or being able to opt out.

It is worth noting that our approach does not suf-
fer from these drawbacks, as our method involves fin-
gerprinting a user’s device configuration. As long as
their personal configurations do not change significantly,
users remain identifiable in the long-term to third-party
apps, even if they change their devices. Moreover, as all
required information is provided by the official SDK, the
App Store review process does not state any limitation
as shown below.

It should also be noted that, in the past, several al-
ternatives were proposed in response to Apple’s removal
of hardware identifiers. In response to the deprecation
of the official UDID, the OpenUDID project provided a
“persistent and sufficiently unique” identifier that was
based on a randomly generated universally unique iden-
tifier (UUID). This was then shared across apps through
private pasteboards [25]. This unofficial data exchange
mechanism was, however, disabled by Apple with the
release of iOS 7 [26]. Following this, in response to
Apple’s introduction of the IDFA (which may, accord-
ing to Apple, be used only for advertising purposes),
the OpenIDFA project proposed an alternative track-
ing identifier [27]. Like our approach, the OpenIDFA
identifier factors in various device and operating system
properties, including the device model, the iOS version,
the preferred language and the device boot time. From
these values, an SHA-256 hash is computed and con-
verted to a UUID-like format. The identifier generated
in this way is designed to persist only for a single day,
but its validity may be extended for up to three days if
required. If any of the included properties change earlier,
however, the identifier value is also instantly changed.
The OpenIDFA cannot, therefore, be used for long-term
tracking. According to its authors, this is not a limita-
tion: instead, it is a conscious decision in favor of user
privacy.

4 Methodology
In this section, we describe the overall methodology that
we used to determine whether or not today’s mobile de-
vice configurations are so personalized that they create
unique fingerprints—which can then be used for track-
ing purposes.

To do this, in Section 4.1, we describe the var-
ious data source classes from which features can be
extracted for configuration-based mobile device finger-
printing. From these classes, we then extract 29 fea-
tures that we considered suitable for fingerprinting Ap-
ple iOS devices. We then describe our app, which was
made available in the App Store in order to collect this
feature data from a large sample of real-world devices.
Finally, in Section 4.2, we introduce our evaluation ap-
proaches, focusing on the distance metric we used to
measure fingerprint similarity.

4.1 Data Collection

One method of fingerprinting mobile devices that has
gone unresearched until now involves correlating infor-
mation provided by the operating system and queried
by third-party apps via the SDK. This method distin-
guishes between device-dependent and person-related
data. As both categories are becoming increasingly
blurred on highly personalized mobile devices, however,
we distinguish data in the following sections by the con-
text in which it is made available.
1. Contextual Data: Information in this category is

strongly context-dependent and thus is subject to
frequent change. This category includes, for exam-
ple, location data reported by the GPS sensor. In
order to use this data to identify users or their de-
vices, it must first be collected over a longer pe-
riod of time and then be evaluated. As this type
of context-dependent data is usually only collected
when the app is actively used, it is of limited use
for fingerprinting, particularly when apps are rarely
used.

2. Non-Contextual Data: Non-contextual data can
be divided into constant and time-variant data.
Whereas constant data (such as the device model)
does not change over the lifetime of a device, time-
variant data (such as the operating system version)
can have slightly different values over time. The fre-
quency of the changes is, however, minor in com-
parison to contextual data. As non-contextual data
is complete at the time of the query, rather than
having to be observed over a longer period of time,
data from this second category is particularly suit-
able for software-based fingerprinting. In the follow-
ing section, we will, therefore, focus exclusively on
non-contextual data.
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4.1.1 iOS Fingerprint Features

The iOS SDK comprises four levels with a total of 57
frameworks for the most diverse purposes. All functions
of these frameworks are grouped by level and described
by Apple in the iOS Developer Library [28]. We system-
atically searched these documents for non-contextual
identifying features, eliminating frameworks that obvi-
ously contained neither user- nor device-related data,
such as OpenGL, CoreGraphics, MapKit, etc.

Since the release of iOS 6, some of the data acces-
sible via the SDK (personal user information such as
calendar and contact entries) can be accessed only if
the user gives his or her consent during the first access
attempt. Generally speaking, data in mobile SDKs can,
therefore, be categorized by its context, as well as by its
availability. We chose the following categorization:

Public Resources
Data in this category can be queried without the user’s
permission or knowledge. Most of this information re-
lates to the device or its configuration, including, for
example, the device model, the current iOS version, the
current time zone, installed keyboards, carrier name,
device name, etc. It should be noted that the device
name is freely configurable, but is configured using the
user’s first and last names when a new iOS device is
set up (e.g. <first name><last name>’s iPhone). More-
over, this category also contains personal information,
including the user’s media library. As information on
the song titles stored on the device can be requested
by any app unnoticed, the user’s music taste can be
analyzed and used as a fingerprinting feature. For this,
we retrieved the play count of each song from the full
list of each user’s music collection and determined the
top 50 most-played songs. We also included the apps
installed, as we expected them to be highly person-
alized. As iOS provides no official API for accessing
this information, alternative approaches have emerged
in the past. These determine installed apps by checking
whether or not certain app-specific URL schemes are
supported (canOpenURL). It should be noted that this
leads only to a subset of available apps, depending on
the number of available apps that provide custom URL
schemes and the size and quality of the URL scheme
database. We drew on the URL scheme database pro-
vided by handleopenurl.com.

Protected Resources
Data in this category can be accessed only once the user
has given an app permission to access a protected re-
source during its first attempt. iOS protected resources
include location data, photos, contacts, calendar data,
reminders, sensor data (microphone, camera etc.), and
social network accounts. As a rule, this protected infor-
mation is only partly suitable for use in fingerprinting,
as it cannot be queried freely by every app. If an app has
received permission to access protected resources, how-
ever (for example, if a messaging app has been allowed
to access a user’s contacts), this can have a pronounced
effect on the uniqueness of the fingerprint determined
from it. In order to study their actual influence, we have,
to a certain degree, included the calendar, reminders,
photo library, contacts and social network accounts in
our studies. In doing so, we set the following restric-
tions: as calendar and reminder entries often change,
we have taken into account only the superior calendar
names and the names of reminder lists. In the photo li-
brary, due to the volume of data expected, we limited
our evaluations to the metadata in the album titles. For
social networking accounts, we did not include Face-
book, as the stored usernames can be queried only with
a registered Facebook API key.

File System
In addition to all SDK-based information, we discovered
an additional feature source, the file system. Strictly
speaking, this is a special area of Public Resources. Un-
der iOS, the app sandbox is actually designed to pre-
vent apps from accessing files outside their containers.
When analyzing the Sandbox Profile, however, we iden-
tified numerous exceptions to this rule which enable any
app to access key iOS configuration files, unnoticed and
without permission. The information contained therein
could also be used for fingerprinting. Later analyses
showed that apps which could access these files were
not rejected during the App Store approval process and
that, consequently, App Store apps could also be used
to access them without restriction (see Section 4.1).

Via various files in the Preferences directory, the
Apple ID of a user (personal email address), the Game
Center Player ID, or the Code Signing Identity can be
obtained. As this data is strongly person-related (or, for
fingerprinting, clearly distinguishing), and can be read
unnoticed by any app via a simple file system access,
we informed Apple of this sandbox defect. It should be
noted that these unique features were not taken into
account in our fingerprinting approach, as users would

handleopenurl.com
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be up to 100% identifiable. With the release of iOS 8
in September 2014, these defects were remedied and ac-
cess to the iOS Configurations directory was restricted
(CVE-2014-4362). Thus, user privacy was significantly
improved by our study.

Any third-party app can, however, still access a cen-
tral icon cache folder under iOS. This folder acts as tem-
porary storage for the icons belonging to the installed
apps. As the icon filenames contain the respective bun-
dle identifiers of the apps, enumerating the directory’s
contents can relatively easily produce a full list of the
apps installed on the system. This finding has not been
addressed by Apple, although we pointed out the re-
sulting effects on user privacy. It should be noted that,
in comparison to the previously introduced approach to
determine installed apps by iterating over available cus-
tom URL schemes, this file-system-based method pro-
vides any app with not only a subset, but a full list of
all installed apps with a single directory access.

At the end, we determined 29 different features from
all data sources. These were found suitable for use in
fingerprinting. A complete listing of all the features col-
lected is contained in Appendix A.

4.1.2 iOS App Store App

In order to collect features from as many different de-
vices as possible, we created an iOS app and made it
available in the App Store. Essentially, the app was
responsible for collecting the fingerprint features and
sending them to our server. In doing so, we made it a pri-
ority to inform users clearly about the background and
aims of our study, about how the data collected would
be used, and about each step taken. In order to do this,
the app provides a wizard that takes users through the
individual steps and provides detailed explanations of
each. The app was offered in multiple languages, includ-
ing English. Essentially, the wizard guided users through
the following three phases:
1. Background Information: At the beginning, two

pages of background information explained our
study and our fingerprinting approach.

2. Data Collection: After that, the actual data collec-
tion was performed. For this to proceed, users had
to explicitly launch the collection process.
(a) In the first step, all the information freely avail-

able via the SDK and the file system was col-
lected. Once this process was completed, the
user was informed.

(b) The next step involved accessing protected re-
sources. This step was optional and could be
skipped. If users wanted to let our app access
protected resources, they were able to continue
the collection process and then agree to the iOS
authorization checks.

Once the collection process was completed, all per-
sonal information, including the user’s Apple ID,
the apps installed, contact entries, song titles, etc,
was anonymized using a cryptographic hash. This
preserved user privacy at all times, while still en-
abling us to evaluate the data for distinguishing fea-
tures.
Finally, the data collected was displayed in tabular
form in the app. This enabled the user to view all
the data and to check that all personally identifiable
information had been suitably anonymized.

3. Data Delivery and Results: In the final step, the
user was able to voluntarily send the data to our
server in order to participate in the study. The data
was sent to a web service in JSON format. There,
the transmitted data records were compared with
all the other data records received. The user was
then informed of the number of fingerprints avail-
able and told whether or not his or her fingerprint
was unique, or distinguishable from the others. The
user was also directly informed of the features which
made his or her fingerprint unique. These features
were highlighted in color in the data overview. This
interaction was intended both to provide partici-
pants with an incentive to take part in our study
and to inform them of the problem of fingerprinting.
This is similar to Eckersley’s study on web browsers
[9].

4.1.3 Identification of Recurring Devices

In order to observe the changes in individual features
over time—and thus to determine the feature stability—
we had to find a way to match the data records received
unambiguously to a single device. To do this, we gener-
ated a random, alphanumeric, unique identifier (cookie)
whenever a data record was received by the server. We
then stored the data record and the cookie together in
the backend database and reported the cookie’s value
back to the app. The cookie was then appended to all
subsequent fingerprints received from that device. This
enabled us to match them appropriately.

We stored the cookie inside the iOS keychain on
the device. The keychain is a storage location provided
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by iOS for encrypting and storing sensitive data. One
feature of the keychain is that entries placed there by
an app remain on the device, even if the app is removed.
This meant that our cookie was permanently stored on
the devices, enabling us to unambiguously match data
records sent to us from recurring devices, even if the app
had been uninstalled and then reinstalled. It should be
noted that such a cookie is specific to this particular
app only (or apps from a single vendor) and therefore
does not fulfill the requirements of a global identifier
that allows identification across apps.

In order to remind users regularly about our study,
we included a mechanism within the app for push no-
tifications. If users agreed to receive notifications from
our app, we reminded them once a week to relaunch the
app and send us an updated data record. This method
enabled us to reliably observe changes in individual fea-
tures over time.

4.2 Fingerprint Similarity

To evaluate whether a set of fingerprints can be effec-
tively linked to an individual device, we need to quan-
tify how fingerprints differ from each other. Although
it is clear that the distance between two identical fin-
gerprints should be zero, fingerprints are composed of a
set of heterogeneous data, making it far from trivial to
design a method to measure their similarity.

Fingerprints are formed by different types of fea-
tures: Boolean properties, strings and lists. A list may
be also a tree-like structure, such as that used for con-
tacts or songs, where each item contains several strings,
or lists of strings as sub-properties (e.g. work phone
number, personal email, social media accounts, etc.).
Although the comparison of Boolean values can be done
on a one-to-one basis, strings and lists allow for partial
matches. For example, two devices belonging to users
who know each other may share several items on their
contact lists. The similarity of such larger properties
that induce partial or inexact matches should also be
quantified to account for more granular differences.

To solve this problem, we propose a solution for
measuring the general similarity between any pair of fin-
gerprints, independent of their size and structure. First,
we begin by flattening the structure of the fingerprint. If
we represent the set of features as a shallow tree, flatten-
ing is equivalent to transforming every fingerprint into
a set of paths from a unique root to all the leaves.

Each fingerprint then has an arbitrary size and
is represented by a set of strings with the form
name_subname_. . ._value, as shown in the following
example:

voiceOver_False
model_iPhone6,2
top50Songs_album_27333bed7d8f5575c51c3a067c0c285b
contacts_firstname_181ff5eb6d184d261d6b28480110e599
[..]

To illustrate this, let us consider two users who
share the same contact in their address book. One of
them has included the contact’s middle name, while the
other has not. If we evaluate a contact as a unique fea-
ture, the two items will not match. By flattening each
value, an overall similarity score can be computed based
on common values. In this example, the contacts will
match to a certain degree although the entries are not
exactly identical. This approach allows us to account for
more subtle differences by adding some fuzziness to the
representation of the fingerprint.

Once fingerprints are flattened, we make use of the
Jaccard similarity coefficient to compute the similarity
between each one of the sets:

J(A, B) = |A ∩B|
|A ∪B| (1)

0 ≤ J(A, B) ≤ 1 (2)

This index measures the similarity between two sets,
A and B, and takes values between 0 and 1. It is com-
puted as the quotient of the intersection of both sets
and their joint set. In this way, we are able to compute
a similarity score between 0 and 1 for each pair of fin-
gerprints in our dataset.

Several remarks can be made here. Firstly, in our
implementation of the Jaccard index, the multiset re-
sulting from flattening each fingerprint is transformed
into a set. This means that the similarity measure will
be more influenced by shared properties and less by the
amount of such properties. For example, if two finger-
prints include contacts with Facebook accounts, the sim-
ilarity will be influenced by the user names that match
and not by the number of contacts with Facebook ac-
counts. Secondly, the flattening process discards some
information from each fingerprint. This strategy does,
however, allow us to represent fingerprints as sets of
manageable size whose similarity can be measured very
fast and memory-efficient. As we discuss in Section 5.5,
our method results in better performance than more ad-
vanced techniques, despite its low complexity.
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5 Evaluation
This section describes the results of our evaluation. All
the results are based on real-world data collected using
our App Store app.

5.1 Sample Data

Once our app was made available in the App Store,
we advertised our study in social networks and various
mailing lists, asking for volunteers to take part. Several
news portals also reported on our study, thus increas-
ing the app’s popularity more rapidly. At one point, it
achieved first position in the Utilities category of the
App Store’s Top App Charts.

As the app developed a certain life of its own via
the App Store charts and the detailed explanations pro-
vided in the app were also comprehensible to less tech-
nically experienced users, we assume that our data is
only slightly (if at all) biased towards privacy-conscious
users and is primarily representative.

In total, our app was downloaded over 16,800 times
during our study period of 140 days between May and
September 2014 (14,100 times via iPhone, 1,830 via
iPad, and 165 via the iPod Touch). During this period,
12,937 fingerprints were submitted from 7,815 different
devices (cookies). 2,261 devices delivered multiple fin-
gerprints (about 29% recurring devices). 7,383 of the
fingerprints submitted (about 57%) came from those
recurring devices. Almost two-thirds of all users also
granted our app access to protected resources.

5.2 Fingerprint Diversity & Stability

One of the basic prerequisites for fingerprinting is that
all data records must differ from each other. Therefore,
there should be no exact matches for fingerprints from
different devices. In the first step, we verified this pre-
condition and determined that, at the time of the evalu-
ation, all the data records we had hitherto received were
unique and therefore distinguishable. Among the 12,937
fingerprints, no two were identical.

To evaluate how much fingerprints changed over
time, we grouped all the available records by device
and studied each group containing more than one data
record in more detail. Figure 1 shows the percent-
age of the average fingerprint changes over time. Each
data point represents the average amount of fingerprint
changes per day. The small, weekly changes can be at-
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Fig. 1. Average Fingerprint Changes over Time

tributed to the fact that we sent users a weekly push no-
tification asking them to submit a new fingerprint. How-
ever, first and foremost, the graph shows that, on aver-
age, fingerprints change by less than 10% per month.

At first glance, this seems surprising, particularly
when considering that mobile devices are closely inte-
grated in our daily routines and are therefore heavily
used, often multiple times a day. This low level of fluc-
tuation confirmed our initial assumption that personal-
ized configurations might be well suited for fingerprint-
ing purposes.

In the next step, we determined how often individ-
ual features change. For this, we took the group of fin-
gerprints from recurring devices and determined how of-
ten each feature changed over time. This information is
later required to balance the diversity/stability trade-off
by choosing suitable feature combinations. A heatmap
visualizing the change ratio over time is shown in Figure
2. A full listing, including the exact stability values, is
provided in Appendix A.

Using this method, we determined that features like
the public IP address and the Internet Service Provider
changed, as expected, very frequently. A user’s installed
apps, the top 50 songs and the WiFi SSID also often
changed, but turned out to be slightly more stable. We
also noticed that, around 40 days after the publication of
our app, the iOS version reported by the users changed
significantly. This was due to the fact that Apple re-
leased an iOS update at precisely that time.

We then used these changes to calculate the sta-
bility for every feature. The most stable features were
configuration settings, like, for example, assistive fea-
tures in iOS for people with disabilities. The setting
which determines whether or not VoIP is permitted did
also change only on a few devices. This is hardly sur-
prising, as this setting is set by the carrier. Although
these configuration features turned out to be most sta-
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Fig. 2. Average Fingerprint Changes per Feature

ble, they were Boolean values and therefore carry less
information. Among the features with higher informa-
tion content, the top 50 songs, the list of installed apps,
the device name and the WiFi SSID were the most sta-
ble public resources. Among the protected resources, the
Twitter account name and reminder/calendar list names
and photo album titles were found to be most stable.

5.3 Experimental Setup

After we determined that, in theory, all fingerprints are
distinguishable from one another, we studied the extent
to which it could practically be determined that two or
more fingerprints came from the same device. As has
already been mentioned, matching is no easy task, as a
device’s fingerprint changes over time.

The decision as to whether two fingerprints origi-
nate from the same device is made on the basis of their
similarity (see Section 4.2). More specifically, we try to
answer two questions:
1. How is a fingerprint identified as the first one sub-

mitted from a previously unknown device?
2. How is a fingerprint matched to a device whose fin-

gerprints are already in the database?

As mentioned in Section 4.2, fingerprints submitted
from the same device at different points in time tend,
in general, to be more similar to each other than finger-
prints from different devices. In certain cases, however,
they might also be closer to fingerprints from other de-
vices. Therefore our goal is to find an optimal similar-
ity threshold between fingerprints from the same device
that maximizes the accuracy on both types of decisions.
We formalize the problem by introducing two perfor-
mance metrics:
1. Discrimination: the ability to correctly assign a

new label to the first fingerprint F submitted from
a device.

2. Re-identification: the ability to correctly assign
the label of a device’s first fingerprint to a new fin-
gerprint F submitted from the same device later in
time.

In the same way that the threshold of a binary classifier
determines a trade-off between true positive and false
negative decisions, it can be seen that a trade-off also
exists between these two metrics. If the threshold is set
to 1, a new label will be assigned to each fingerprint and
discrimination and re-identification accuracy will be 1
and 0 respectively. On the contrary, if the threshold is
set to 0, every fingerprint will be assigned to the same
class, making discrimination and re-identification accu-
racy 0 and 1 in this case. As a result, the higher the
accuracy is when fingerprinting a device, the lower the
accuracy is when fingerprinting the device again, and
vice versa.

Finding the threshold that maximizes the to-
tal accuracy (i.e. the percentage of correct decisions)
can be posed as a multi-class classification problem.
Nevertheless—and in order to design an experiment that
resembles the condition of a real attack—we must be
careful in selecting a suitable learning approach. Unsu-
pervised approaches, for instance, may suit our problem
but, unfortunately, standard clustering algorithms like
k-means are not designed to generate new clusters as
new classes of data are received in an ongoing process.

We therefore propose a supervised learning ap-
proach that does not disrupt the chronological order
and allows us to make correct decisions during testing,
even if data from unlabeled devices is received.

We proceed in the following manner. First, we split
the dataset into training and testing sets (66%/34%)
without modifying their chronological order. Then, we
evaluate the performance of our classification algorithm
on the split of training data across the parameter space.
The discrimination, re-identification and total accuracy
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Feature Set Threshold Training Acc. Testing Acc. Discr. Acc. Re-ident. Acc.

Installed Apps (URL) & Device Name 0.86 98.86% 97.86% 99.00% 96.67%
Installed Apps (Icon Cache) 0.78 98.89% 97.78% 98.28% 97.25%
Public Resources 0.77 98.85% 95.65% 98.91% 92.07%
Protected Resources 0.94 97.14% 95.15% 95.52% 94.74%
Top 50 Songs 0.74 98.09% 94.20% 97.29% 90.87%
All 0.73 95.63% 93.76% 96.83% 90.56%
Device Name & WiFi 0.99 90.17% 78.43% 96.97% 59.20%

Public w/o Apps, Name, Songs 0.83 88.01% 70.90% 96.24% 44.60%
Public w/o Apps, Name, Songs, WiFi 0.99 86.93% 58.78% 98.37% 17.70%

Table 1. Comparison of different feature set combinations (ordered by total testing accuracy).

are computed by finding the closest fingerprint F2 to
each fingerprint F1 from those in the training set be-
longing to different devices and those from the same
device that were submitted previously in time. The la-
bel of F2 is assigned to F1 if their similarity is above
the threshold. Otherwise, a new label is assigned to F1.
During training the similarity threshold takes a range
of 100 values between 0 and 1. The threshold producing
the highest total accuracy is evaluated on the split of
test data.

5.4 Fingerprinting Results

In an initial test run, we included all features (pub-
lic and protected resources) in our analysis. In doing
so, we achieved a top training accuracy of 95.63%, at
a threshold value of 0.73. It should be noted that the
training accuracy is an indicator for how well a learn-
ing method can perform in the best possible case, while
the testing accuracy provides the performance likely to
be observed in practice. Figure 3a shows the evolution
of the training accuracy in relation to the threshold for
the combinations of features with best performance as
presented in Table 1.

Using all features combined, the best threshold
found during training achieved a testing accuracy of
93.76%. This metric represents the total percentage of
fingerprints that have been correctly assigned to their
original device. As described in Section 5.3, we can also
measure the performance of the classifier in two special
cases: If a fingerprint received is the first one submitted
from a device, or if more fingerprints from this device
have previously been received.

More specifically, every time a hitherto unknown de-
vice submits a fingerprint we want to be able to identify
that this is indeed a new device. When we use all fea-
tures available, we are able to achieve this for almost all

devices. In particular, the discrimination accuracy was
96.83%.

If a fingerprint is not the first one submitted by
a device, we want to recognize this fact and be able to
assign the fingerprint to the same device class. In 90.56%
of the cases, fingerprints from recurring devices were
correctly assigned as indicated by the re- identification
accuracy.

As previously explained, the threshold parameter
was optimized during training with the total accuracy as
the target. However, a trade-off between discrimination
and re-identification exists. Figure 3b shows the relation
between the two metrics during training. The optimal
operating point of any classifier is located at (1, 1). The
best possible performance point for each combination of
features will, therefore, be achieved at the point in the
curve closest to this optimal point.

In the next step, we divided the feature space and
examined whether or not protected resources achieve
better performance than public resources. Our hypoth-
esis was that, as users must confirm access to protected
resources, the data should be more strongly personalized
and therefore provide better results. Surprisingly, we de-
termined that the differentiation played almost no role.
In both cases, we measured a similarly high total accu-
racy rate of around 95%. The discrimination was slightly
better for public resources (98.91% vs. 95.52%), whereas
the re-identification accuracy was higher for protected
resources (94.74% vs. 92.25%). This led us to the conclu-
sion that our fingerprinting approach achieves accurate
results, irrespective of whether or not an app receives
access to protected resources.

In further tests, we reduced the feature space even
more and examined which public resources or feature
combinations achieved the best performance. Based on
our previous tests on feature stability analysis, in the
first step, we used only the complete list of installed
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apps (icon cache). In doing so, we achieved our hitherto
best accuracy of 97.78%. However, when we then added
the device name to the list of all apps, the total accuracy
decreased, with re-identification accuracy being reduced
by around 2%. Following this, we used a subset of the
installed apps, namely those which can be determined
using URL schemes. In this case, the total accuracy rate
was only around 94%. Combining this feature vector
with the device name, however, resulted in the highest
total accuracy rating of all our tests (97.86%). This fea-
ture combination enabled a discrimination accuracy of
99.00% and a re-identification accuracy of 96.67%.

Finally, we investigated the extent to which the top
50 songs (or a user’s music taste) serves as a suitable
fingerprinting criterion. Using this criterion still enabled
us to achieve a total accuracy of 94.20%. The accuracy
decreased considerably if we combined only the device
name and the Wifi SSID (used alone, neither feature
yielded any useful results). Using this feature combi-
nation, however, enabled us to measure an accuracy of
78.43%. Whereas the discrimination accuracy was still
relatively high (more than 96%), this combination failed
for re-identification—just over half of all fingerprints
(59.20%) were correctly assigned.

5.5 Classifier Comparison

As no similar method for this problem exists in the lit-
erature, we compare our method in this section with
a baseline random classifier and a standard (but more
advanced) machine learning-based approach based on
support vector machines.

Due to its simplicity, a random classifier is usually
established as a baseline for performance. In our imple-
mentation, we assign each fingerprint in the dataset to a
random device while keeping the original label distribu-
tion. Table 2 shows the accuracy of this type of baseline
classifier when evaluated on our complete dataset. The
low performance values obtained reflect the non- trivial-
ity of the problem and highlight the good performance
of our method.

Accuracy Discrimination Acc. Re-idententification Acc.

7.83 × 10−5% 1.29 × 10−4% 0%

Table 2. Accuracy of a random classifier on the complete dataset.

Next, we implement a bag-of-features model and
proceed to evaluate a linear SVM-based classifier. In
this case, each fingerprint is embedded in a feature vec-
tor space where each dimension indicates the presence
of a unique feature value in the fingerprint. The origi-
nal data can therefore be represented as a sparse matrix
with very high dimensionality. We split the dataset into
3 chronologically sorted sets for training (60%), validat-
ing (20%) and testing (20%). The model which perfoms
best on the validation split is used to compute the per-
formance metrics presented in Table 3.

As can be seen, this classifier generally performs
quite well and can provide more balanced results in cer-
tain cases (highlighted in bold font in Table 3). Specifi-
cally, we observed that the SVM classifier gains advan-
tage over the threshold-based approach when the fin-
gerprint data becomes less significant, i.e. when sub-
tle differences in configuration settings and hardware
specifics need to be determined. In such cases, where
only restricted and less meaningful data is available,
more sophisticated learning approaches could improve
the overall fingerprinting accuracy.

However, the usually high dimensionality of the
problem incurs a massive use of resources and consid-
erably increases the time required to train a model. In
particular, when all features are considered, the vector
space represents more than 3.13 × 106 unique features
from our dataset. An Amazon EC2 instance with 244GB
of RAM has not been sufficient to complete such an ex-
periment. In a real-life scenario where new fingerprints
are collected in a continuous fashion, the problem would
soon become intractable with such a classifier. On the
contrary, our low complexity method based on an opti-
mized threshold is much faster, requires fewer resources
and still achieves a slightly better performance on most
feature sets.

6 Discussion
It can be seen that our fingerprinting approach achieves
highly accurate results throughout. Whereas hardware
identifiers were previously used to track users [3, 4],
user configuration profiles now provide sufficient infor-
mation. In most cases, the total accuracy of our eval-
uations was way over 90%. In the best-case scenarios,
it was almost 98%. This proves that the configuration
of today’s mobile devices is so highly personalized—the
data is so heterogeneous—that it can be used for finger-
printing with a high level of accuracy.



Fingerprinting Mobile Devices Using Personalized Configurations 15

(a) Accuracy vs. Threshold (b) Discrimination vs. Re-identification

Fig. 3. Evolution of Accuracy during Training and Performance Metrics Trade-Off

Feature Set Testing Acc. Discr. Acc. Re-ident. Acc.

Installed Apps (URL) & Device Name 91.83% 94.46% 85.75%
Installed Apps (Icon Cache) 92.28% 95.13% 85.81%
Public Resources 91.85% 94.53% 85.04%
Protected Resources 90.90% 94.34% 83.11%
Top 50 Songs 89.29% 92.97% 80.29%
All — — —
Device Name & WiFi 83.53% 85.90% 78.15%
Public w/o Apps, Name, Songs 73.60% 75.57% 69.14%
Public w/o Apps, Name, Songs, WiFi 65.27% 65.54% 64.63%

Table 3. Comparison of different feature set combinations for bag-of-features + SVM model.

It was apparent during our analyses that the overall
performance decreased as more features were taken into
account. We determined, for example, that the list of
apps installed had, in itself, very good predictive pow-
ers. If we expanded this low-dimensional space, the sim-
ilarity distribution was modified by the other features
and, therefore, the overall performance of our classifier
decreased (the curse of dimensionality). In this case,
strongly distinguishing features were overlaid by noise
from the high-dimensional space. Specifically, perfor-
mance decreased by features which take the same values
in fingerprints from different devices (configuration set-
tings), or which fluctuate strongly on the same device
(ISP, public IP etc.). Moreover (and in particular for
configuration-based fingerprinting), it is important to
use a few, well-performing features in order to optimize
the re-identification accuracy. From a fingerprinting per-
spective, good features are those which are balanced in
terms of stability and entropy—according to our results,

these would include the installed apps, the top 50 songs,
and the device name.

With regard to user privacy, the main issue with this
new approach is that, in most cases, users were unaware
of the data collection taking place and could not prevent
it. We also demonstrated that our approach works even
with modified configurations, i.e. when individual fea-
tures are removed by iOS updates or change over time.
An ongoing user privacy issue also involves the fact that
a fingerprint can also be linked to the user’s real-world
identity. This was the case, for example, with the iOS
sandbox vulnerabilities we reported to Apple. In prin-
ciple, these enabled any app to read the user’s unique
Apple ID—completely unnoticed. Even if the sandbox
issues have now been resolved with iOS 8, fingerprints
could have been correlated with Apple IDs in advance.
This would enable a user to be identified via his or her
profile, even in the future.
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Our method also functions if devices are restored.
Whereas Apple’s Advertising Identifiers change after a
restore or device replacement, most of the features we
use for fingerprinting are restored from backups dur-
ing the restore process. In this sense, our configuration-
based identifier is even stronger than any previous hard-
ware identifiers. As long as a user’s personal profile does
not change significantly, he or she can continue to be
identified for an indeterminate amount of time.

6.1 Countermeasures

Ultimately, this leads us to a discussion of potential
countermeasures. The strict iOS security model makes
it impossible to restrict or modify the data provided
by the iOS API. In order to do this, a jailbreak would
be required. This would, however, cause essential se-
curity mechanisms to be deactivated, and could even
cause privacy threats to increase. The only practical
way is, therefore, for the manufacturer (in this case, Ap-
ple), to further restrict access to strongly distinguishing
features. We therefore suggest the following measures:
Apple should remove the sandbox defect which enables
third-party apps to obtain a complete list of all the
apps. Furthermore, identifying the apps installed using
URL schemes should also be prevented. For example,
a rate limit could be introduced for calling the UIAp-
plication method canOpenURL. Furthermore, access to
the device name (name property in UIDevice) should
be deprecated. We assume that these measures will not
limit apps’ functions and usability. In addition, we rec-
ommend adding the media library (top 50 songs) to
the protected resources and permitting access to them
only with user consent. If these measures were imple-
mented, our re-identification accuracy would be reduced
to around 44%. If Apple were also to restrict access to
the WiFi SSID, re-identification accuracy would be re-
duced to less than 18% (see Table 1).

It should be noted that this decrease in re-
identification accuracy is observed only with the
threshold-based classifier. As mentioned above, the
SVM classifier was still able to fingerprint devices with
reasonable accuracy (∼65%) based on restricted feature
sets of less significant data. However, we assume that
this is, to a certain extent, caused by the small sample
size of our experiment. In real- world scenarios, we ex-
pect also a drop in performance for the SVM classifier:
If access to meaningful and strong distinguishing fea-
tures is restricted, fingerprinting will be limited to less
significant configuration settings and to certain device

specifics, such as the device model. The possible values
for these features and their permutations are strongly
bounded. While in a smaller dataset these subtle config-
uration differences can still be observed using advanced
learning approaches, we expect these differences to blur
and to become barely noticeable as the number of fin-
gerprints increases.

6.2 Limitations

One shortcoming of our experiment is the fact that,
for privacy reasons, our evaluations could only be con-
ducted on anonymous data. As previously mentioned,
any personally identifiable data was anonymized using
our data collection app before being transmitted using
hashing. This was done in order to preserve the pri-
vacy of our voluntary study participants. As informa-
tion is lost during this process, however, this approach
limited our evaluation in certain ways. This becomes
particularly apparent when we flatten the fingerprint
structure. In order to measure the similarity of hierar-
chical structures (such as contact lists) we convert the
tree of corresponding hashes into a set of tokenized val-
ues. This flattening allows for fine-grained comparison
on a value level. Although this approach worked very
well, it should be noted that flattening also causes a
certain degree of information loss. For instance, if two
devices reported contact lists containing “John Smith;
Adam Lennon” and “John Lennon; Adam Smith” the
tokenization and subsequent comparison would lead to
a Jaccard similarity coefficient of 1, even though differ-
ent contacts were compared. We would like to underline
that our reported results were affected only marginally
by these limitations, if at all. It can be assumed that,
in real-world scenarios where personal raw data is avail-
able, the overall fingerprinting accuracy would be even
higher—–not least because more comparison opportu-
nities arise for measuring the similarity on a string and
character level.

Another drawback of our study is the lack of com-
parison how, apart from support vector machines, other
machine-learning techniques would perform on this
problem. We agree that other supervised approaches
would also be applicable and that there is not just
one way of doing this. We argue, however, that our
threshold-based classification is still appropriate, for two
main reasons: Firstly, most machine-learning methods
require a sufficiently large set of classes to learn from.
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As several of our users submitted only one finger-
print, we resorted to a variant of k-nearest neighbors,
which is known to perform well in such cases. Secondly,
the simplicity of our approach once more underlines
the practical relevance, makes our results easily repro-
ducible, and confirms the associated privacy risks.

7 Conclusion
In this paper, we describe a new and effective approach
to fingerprinting mobile devices. We demonstrate that
mobile device configurations have now become so highly
personalized that they can be used to create a unique
fingerprint for every user. This can, in turn, be used for
user tracking. All the information used to generate the
fingerprints can be queried by third-party apps via the
iOS SDK.

By comparing the similarity of fingerprints, we are
able to match them unequivocally to individual de-
vices, even if individual feature values change over time.
Specifically, we use real-world data from almost 8,000
different devices to show that a device’s fingerprint
changes by an average of no more than 10% over a
month. We use a supervised learning approach to solve a
multiple class classification problem, which, in the end,
allows us to match fingerprints to devices with a total
accuracy of over 97%. We determine that a user’s apps
and a user’s music taste could serve as a highly person-
alized, almost unique fingerprinting feature.

From a privacy point of view, it is particularly
alarming that users cannot withdraw from this track-
ing method and that they are unaware that it is taking
place. As long as their personal profiles do not signifi-
cantly change, they will remain identifiable in the long
term via the information in the SDK, even if they re-
place their devices. During our study, we also discovered
several iOS vulnerabilities which, until the release of iOS
8, enabled every app to read the unique Apple ID (email
address) of a user. If a fingerprint profile is used to link
a user’s real-world identity via one of these vulnerabili-
ties, the user will, in future, continue to be identifiable
by his or her unique device configuration.

In conclusion, we realize that Apple’s iOS has made
user tracking by third-party apps considerably more dif-
ficult than it is on other mobile platforms. In this re-
spect, Apple’s elimination of various hardware identi-
fiers has been particularly positive. The highly hetero-
geneous configuration data of mobile devices, however,
is still sufficient to uniquely identify and track users.
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A iOS Fingerprinting Features

Feature Type Stability

P
ub

lic
R
es
so
ur
ce
s

Closed Captioning enabled? Boolean 1.0000

Guided Access enabled? Boolean 0.9996

In-app purchases allowed? Boolean 0.9960

Inverted Colors enabled? Boolean 0.9986

Language != Country? Boolean 0.9988

Mono Audio enabled? Boolean 0.9984

Twitter set up? Boolean 0.9982

VoiceOver enabled? Boolean 0.9996

VoIP allowed? Boolean 0.9993

Jailbreak? Boolean 0.9986

Carrier Name String (medium range) 0.9984

Internet Connection Type Boolean 0.9417

Current ISP String (medium range) 0.8390

Current Public IP String (medium range) 0.6984

Device Country String (medium range) 0.9989

Device Language String (medium range) 0.9984

Device Model String (medium range) 0.9995

Device Name String (high range) 0.9810

iOS Version String (low range) 0.9988

Installed Apps (Icon Cache) List (many elements) 0.7527

Installed Apps (URL Schemes) List (many elements) 0.9582

Installed Keyboards List (few elements) 0.9960

Top 50 Songs List (many elements) 0.9202

WiFi SSID String (high range) 0.8294

P
ro
te
ct
ed

Calendar Names List (few elements) 0.8873

Contacts List (many elements) 0.8191

Photo Album Titles String (high range) 0.8848

Reminder List Names String (high range) 0.8921

Twitter Account Name String (high range) 0.9598

Table 4. List of iOS fingerprinting features and their stabilities.
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