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ABSTRACT
Protecting the intellectual property of software that is dis-
tributed to third-party devices which are not under full con-
trol of the software author is difficult to achieve on com-
modity hardware today. Modern techniques of reverse engi-
neering such as static and dynamic program analysis with
system privileges are increasingly powerful, and despite pos-
sibilities of encryption, software eventually needs to be pro-
cessed in clear by the CPU. To anyhow be able to protect
software on these devices, a small part of the hardware must
be considered trusted. In the past, general purpose trusted
computing bases added to desktop computers resulted in
costly and rather heavyweight solutions. In contrast, we
present Soteria, a lightweight solution for low-cost embedded
systems. At its heart, Soteria is a program-counter based
memory access control extension for the TI MSP430 micro-
processor. Based on our open implementation of Soteria
as an openMSP430 extension, and our FPGA-based eval-
uation, we show that the proposed solution has a minimal
performance, size and cost overhead while effectively pro-
tecting the confidentiality and integrity of an application’s
code against all kinds of software attacks including attacks
from the system level.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection; E.3 [Data]: Data Encryption

Keywords
Software Protection, Trusted Computing, Embedded Sys-
tems
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1. INTRODUCTION
Although many software protection techniques such as

crypters and packers were pioneered by malware, there al-
ways have been legitimate interests in hiding the internals of
a program, such as the protection of intellectual property of
software creators, hardening software against vulnerability
detection, and protecting cryptographic keys of communica-
tion protocols. The possibilities to reverse engineer software,
however, are steadily increasing as witnessed, for example,
by the famous IDA Pro disassembler that fully supports full-
scale Intel and AMD assembly as well as the instruction sets
of embedded devices such as the TI MSP430.

In the past, most practical attempts to thwart reverse en-
gineering were based on obfuscation, i.e., transformations
making programs harder to analyze [8]. It is well known
today that there exists both a class of programs which prov-
ably cannot be obfuscated [1] as well as a class of programs
which can provably be obfuscated [31, 5]. Both classes of
programs are rather small and cannot be generalized. It
becomes possible to achieve perfect obfuscation (in a cryp-
tographic sense) for programs in general only if a scheme for
fully homomorphic encryption is available [14]. Since fully
homomorphic encryption [15], however, is far from being
practical these days it remains a theoretical construction.
In summary, there is no practical obfuscation technique be-
ing perfect in a cryptographic sense, at least not for general
programs. Consequently, for most practical programs it re-
mains unclear whether they can be effectively obfuscated or
not.

Hence, software protection remains a problem of large
significance today, particularly for embedded devices, be-
cause attacks against them have a clear economic motiva-
tion. Potential attacks against smart meters for electric-
ity and heat, for example, range from end-user customizers
who want to tamper with the amount of consumed energy
reported back to their supplier, to competing industrial enti-
ties who want to analyze a piece of software for the purpose
of re-engineering [6].

As a solution, we present a lightweight software protection
scheme that is designed for low-cost embedded devices such
as the TI MSP430 for the first time. Our solution is called
“Soteria” after the ancient Greek personification of safety,
preservation and deliverance from harm. Soteria builds upon
Sancus [22] which serves as the basis for our work regarding
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its zero-software Trusted Computing Base (TCB) for attes-
tation and integrity checking.

1.1 Contributions
Our contribution is the design and implementation of a

system that provides offline software protection for low-cost
embedded systems as an addition to the existing remote
attestation and integrity checking capabilities of Sancus [22].
In detail, our contributions are as follows:

• While Sancus currently provides the integrity and au-
thenticity of software modules, we add the capability
to also guarantee confidentiality.

• We designed a scheme consisting of software modules
and loader modules. The confidentiality of code and
data of the protected software modules is guaranteed
at any given point in time against all software attack-
ers, including those who could gain system privileges.
The loader modules themselves can be written in soft-
ware and are not part of the minimal trusted comput-
ing base implemented in hardware. For bootstrapping
reasons, however, the code of the loader modules is
unprotected against reverse engineering.

• Based on hardware supported integrity checks, loader
modules can decrypt a protected software module only
if the integrity of both is not violated. The key for de-
cryption is derived directly on the target system and
hence, is not loaded from a trusted party during run-
time. In particular, our solution does not have to attest
its trusted execution environment to a remote party
but bootstraps autonomously. In other words, Soteria
is a solution for offline software protection.

• We implemented our approach by patching the open-
MSP430 core from OpenCores and provide a modified
toolchain including the compiler and linker. For ex-
ample, to get RAM executable and to disallow read
access between different modules, we mainly modified
its memory access logic. According to our design, So-
teria software modules are fully backwards compatible
with the original Sancus environment.

• Based on our FPGA-based evaluation, we show that
Soteria has practically no runtime overhead but only a
small loadtime overhead. We also show that Soteria’s
costs in terms of size and power consumption are min-
imal. For example, the power consumption raised by
only 0.2% when compared to Sancus.

All parts of our implementation including the hardware de-
sign, a working FPGA implementation, the target device
software, and the full toolchain are available as open source
at https://www1.cs.fau.de/soteria.

1.2 Related Work
The drawbacks of software obfuscation have paved the way

for hardware-assisted software protection techniques based
on a Trusted Computing Base (TCB). Basic isolation con-
cepts, like horizontal isolation of the system layer against
applications, and vertical isolation of applications against
each other, are available in modern operating systems since
decades [27]. These basic isolation concepts are supported

by hardware extensions like an MMU/MPU or CPU pro-
tection rings. To guarantee confidential execution of an ap-
plication also in the presence of reverse engineers with sys-
tem level privileges, however, stronger degrees of isolation
are required. These degrees of isolation can only be pro-
vided by new hardware extensions that have an immutable
trust anchor for user applications, such as the Trusted Plat-
form Module (TPM) [30] which is deployed, for example, by
Flicker [20].

For both x86 CPUs from Intel and AMD as well as em-
bedded systems including the widespread TI MSP430 mi-
croprocessor, however, there is currently no dedicated hard-
ware support for software protection. Only recently, Intel
officially announced its future x86 extension called Software
Guard Extensions (SGX) that will provide a general hard-
ware base for software protection on x86 [17, 16, 21]. SGX
allows the execution of an application inside a hardware-
assisted virtual blackbox, a so-called enclave that cannot
be manipulated or analyzed from its outside environment
including code running in ring zero. SGX has many appli-
cations such as secure cloud computing, as shown by a recent
project called Haven [2]. On ARM, similar goals as those
of SGX are pursued by TrustZone. TrustZone allows only
one enclave at a time, called the secure world, and is hence
hardly useful for the purpose of protecting intellectual prop-
erty of concurrently running applications. Although Trust-
Zone is available in ARM since years, on mass market prod-
ucts like iOS- or Android-driven smartphones it is, if at all,
only used during booting. Currently, it seems to be explored
mostly in academic publications [24].

The situation is slightly different for trusted execution
on embedded systems without MMU support: Sancus [22,
25, 26] enforces the integrity of software modules with the
help of a dedicated program-counter based memory access
logic in hardware. Sancus, however, currently only sup-
ports integrity checking and remote attestation without soft-
ware protection which includes the confidentiality of code.
Other approaches for remote attestation on embedded de-
vices, such as SMART [11] and a recent proposal by Fran-
cillon et al. [13] without a trusted hardware anchor, do not
solve the problem of offline software protection either. Last
but not least, TrustLite [18] claims to be a powerful alterna-
tive to Sancus that is more flexible and efficient and can ad-
ditionally deal with exceptions. TrustLite, however, is also
bound to remote attestation rather than software protection
in terms of anti-reverse engineering.

To sum up, there is today still a lack of lightweight soft-
ware protection for low-cost embedded devices such as the
TI MSP430.

1.3 Outline
The remainder of the paper is structured as follows: In

Section 2, we give necessary background information about
the design of Sancus which serves as a basis for our imple-
mentation. In Section 3, we introduce the attacker model
and design overview of Soteria with a focus to its security
properties from an architectural point of view. In Section 4,
we give precise information about our implementation, in
particular about its hardware, software and toolchain exten-
sions. In Section 5, we evaluate Soteria regarding its perfor-
mance, size and power consumption. In Section 6, we give
an outlook over limitations and future enhancements. Last,
we conclude our work in Section 7.



2. BACKGROUND: SANCUS
Since we build upon Sancus, this section provides a brief

overview of Sancus including its design goals and security
properties. For more detailed information about Sancus,
please refer to its original publication [22].

2.1 General Overview
Sancus is a security architecture for networked embedded

devices that supports third-party software extensions. It en-
ables software from different mutually untrusted parties to
run on the same device while providing strong guarantees
that software remains untampered. This includes support
for isolating different software modules, remotely attesting
software modules to detect tampered software, and authen-
tication of messages to software providers.

Sancus has a small hardware-only trusted computing base,
and uses a minimal amount of hardware features. Its at-
tacker model assumes the attacker to be in complete control
of all software, as no software is part of the TCB. The results
received from a module can always be validated to see if they
are genuine. The system, however, makes no guarantees on
availability and confidentiality.

The Sancus project consists of a hardware description of
a Sancus-enabled openMSP430 core, as well as a C compiler
for Sancus-enabled devices. The compiler supports anno-
tations in the source code that allow developers to easily
develop code for this architecture. The full project is pro-
vided as open source.

The system model of Sancus is as follows. An Infras-
tructure Provider (IP) owns a set of networked nodes (Ni).
Each node consists of a low-end microcontroller, in our case
an MSP430, with a single address space for instructions and
data. Different Software Providers (SPj) make use of the
infrastructure provided by IP. These SPs can make soft-
ware available on the nodes of the infrastructure by compil-
ing their software into a software module (SMj,k). An SM
consists of a binary file which consists of a text and data
section, as well as header information that specifies which
regions of memory are protected/unprotected. An SM can
only be loaded onto a node that is part of the infrastructure
on behalf of a software provider.

Sancus provides the following security properties: First,
software modules are isolated from each other. This en-
sures that other SMs cannot read or modify each other’s
state. Second, the hardware TCB performs remote attesta-
tion, allowing the system to make strong guarantees on the
integrity and authenticity about the running software on the
system. Third, a software provider can verify any software
module loaded on IP. Fourth, tamperproof communication
is provided between modules with integrity and authenticity
guarantees. Fifth, software can securely link to each other,
meaning that software modules can call each other with the
assurance that the intended module is being called.

2.2 Sancus Module Layout
As was mentioned before, Sancus isolates software mod-

ules using program-counter based memory access control.
An overview of the resulting memory layout is shown in
Figure 1. Two types of memory can be distinguished: There
is protected memory assigned to a specific module, and ev-
erything else referred to as unprotected memory. The pro-
tected memory region is divided into two sections, one for
code and constants and one for protected data. The bound-
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Figure 1: The layout of a Sancus software module
in memory [22].

aries of these regions are stored in dedicated registers which
are added to the processor architecture. These registers are
used as inputs to the memory access logic which compares
them to the current program-counter to enforce the access
rights.

The code in the text section can only be executed when the
program-counter is either at the entry point or the module is
already executing. Note, however, that it is possible to read
the code from anywhere. Contrary to that, the module’s
data can only be read or written when the program-counter
is in the module’s text section.

Sancus adds two custom instructions which can be used by
application developers to isolate their application, namely
protect and unprotect. When protect is called, the impli-
cations are threefold: The memory boundaries are checked
for overlap with existing ones and are written to their re-
spective dedicated registers, enabling access control. The
last step is deriving the module’s key and storing it in its
dedicated register. Executing unprotect clears the bound-
ary registries, thereby deactivating the memory protection.

2.3 Sancus Key Derivation
Sancus introduces three types of keys to the system. First,

the node key KN is bound to the hardware and only known
by the IP. KN,SP is used by the SP to deploy modules to
a specific node. It is derived from KN together with the
provider’s unique public ID using a key derivation function
kdf as follows:

KN,SP = kdf (KN ,SP)

Third, KN,SP,SM is shared between the SP and SM. It is
obtained from KN,SP and the identity of SM as follows:

KN,SP,SM = kdf (KN,SP,SM)

Figure 1 shows that this key is stored in the protected stor-
age area alongside the memory boundaries.

3. SOTERIA ARCHITECTURE
In this section, the architecture of Soteria is explained in

detail. Our contribution is maintaining the confidentiality
of code and data in a low-cost embedded system without the
need to trust any software component. First, in Section 3.1,
we introduce our attacker model which serves as a basis for
Soteria. Second, in Section 3.2, we present the architecture
design of Soteria, including the decryption key derivation.



In Section 3.3, we describe how Soteria could be deployed
in practice. Section 3.4 explains how confidentiality can be
maintained after decryption. Finally, in Section 3.5, we give
a high level explanation of the security properties that So-
teria is able to guarantee.

3.1 Attacker Model
In our model, we assume that an attacker wishes to vio-

late confidentiality of the code and data of an arbitrary SM.
To achieve this, an attacker can mount all kinds of software
attacks but no hardware attacks. To be more precise, an
attacker is allowed to control all peripheral components, in-
cluding tampering with the communication to other devices.
Furthermore, each piece of software, also privileged software
like an operating system is allowed to be under the control
of attackers, because access to SMs is solely prevented by
hardware.

However, hardware attacks are excluded from our attacker
model, in particular attacks like RAM dumping, chip prob-
ing and fault injection are excluded. If hardware attacks
are considered at all, only ROM dumping is allowed as it
does not harm our solution. Also note that, as the attacker
is able to control privileged software, he or she can easily
restrict availability of the overall system. Denial of service
(DoS) attacks are excluded from our attacker model as they
have no impact on the confidentiality of code and data.

3.2 Architecture Design
For the Sancus-based design of Soteria we thought of two

possible concepts: (1) Putting a loader stub together with
the code that should be encrypted into one module and
decrypting it in-place, and (2) designing a separate loader
module. In the first case, the loader stub has to reside within
RAM in addition to or instead of ROM and at least parts
of the loader code would be duplicated for each encrypted
module wasting space. Therefore, we decided to use the sec-
ond concept, i.e., to design a separate loader module. With
this concept, a new loader software module SML provided
by SPL is responsible for decrypting and protecting another
module SME provided by SPE . The decryption key for SME

is derived from the loader key KN,SPL,SML and the unique

identifier S̃ME of SME which consists of the name and the
current version of SME . The decryption and protection of
SME within SML must run atomically to guarantee the con-
fidentiality of code and data of SME at any point in time.

Soteria maintains the confidentiality of code and data
based on a zero-software TCB with two different mecha-
nisms. First, before loading an encrypted module, the code
resides encrypted within ROM or RAM such that no other
module is able to read it. Second, after an encrypted mod-
ule has been loaded, a program-counter based memory ac-
cess logic ensures that no other module can access code or
data of the decrypted module. The remainder of this section
gives an overview of how loading encrypted modules works.

In Figure 2 and Figure 3, the loading process of a module
within Soteria is illustrated: At first, only the loader is pro-
tected and active. Then, SML derives ESME . Next, SME

is checked for integrity, gets decrypted and protected, and
finally SML is able to unprotect itself. The detailed loading
process is as follows:

1. SML is loaded like an ordinary Sancus module and
typically has a code section within ROM and a data
section within RAM.

Code

SML Text Section

Encrypted Code

SME Encrypted Code

R
O

M

Data
ESME

SML Data Section

R
A

M

KN,SPL,SML

KN

Figure 2: Loading Steps 1+2: SML is active, pro-
tected and has derived ESME .

2. If SML is instructed to load another encrypted module,
it first derives the decryption key ESME from its own

module key KN,SPL,SML and the unique identifier S̃ME

of the encrypted module SME it is about to decrypt:

ESME := KN,SPL,SML,SME = kdf
(
KN,SPL,SML , S̃ME

)
3. The module SME is decrypted and checked for in-

tegrity simultaneously by using authenticated decryp-
tion with the key ESME . If the integrity property is
violated, all intermediate data is wiped and the load-
ing process is aborted.

4. The module SME gets protected and implicitly derives
the key KN,SPE ,SME .

5. The loading process is finished and SML is now able to
load the next encrypted module or to unprotect itself.

Note that steps 3 and 4 need to be performed atomically
by SML. Hence, it has to be ensured that no other module
runs between these three steps, e.g., by disabling interrupts
globally. All other steps do not need to be performed atom-
ically as ESME is securely stored within the protected data
section of SML and therefore cannot be read out by any
other module even if it runs while ESME has already been
derived. For encryption and integrity checking, we use AES-
128 [9] in CCM mode of operation [12] which provides au-
thenticated encryption, i.e., encryption and integrity check-
ing is done at the same time with the same key. We chose
CCM over other authenticated encryption modes such as
GCM [10] or OCB [23] because of its simplicity and the fact
that CCM is not patent encumbered. Another advantage
of CCM is that only the encryption routine of AES-128 is
needed which is more efficient in terms of runtime compared
to the decryption routine. For the detailed CCM parameters
see Section 4.2.

Although the code for the loader and the encrypted code
for the module usually reside within ROM, it is possible to
place it in RAM as well. In any case, it is cryptographically
guaranteed that no tampered module is loaded, and that the
valid module is never decrypted by a tampered loader. For
more details, see Section 3.5.

3.3 System Deployment
Sancus specifies an Infrastructure Provider (IP), Software

Provider (SP) and Software Modules (SMs). In practice, a
software provider SPj receives KNi,SPj once from the IP for
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Figure 3: Situation after Step 4: SME is decrypted,
protected and has derived KN,SPE ,SME .

each node Ni that should run software of SPj . For each
SMj,k, the software provider can then derive KNi,SPj ,SMj,k

on its own, which can without the knowledge of KNi,SPj

only be derived from node Ni in hardware. Thus, for each
SMj,k a secret shared key KNi,SPj ,SMj,k between Ni and SPj

exists which is used to prove its integrity and authenticity.
To the above scenario, Soteria adds SPL, the software

provider of the loader, and SML, the loader module which is
responsible for loading encrypted modules SME,1, . . . ,SME,n,
as shown in Figure 2. For the deployment of our system
there are basically two possibilities: (1) SPL = SPE , i.e.,
the software provider of the encrypted modules is also the
software provider of the loader module, and (2) SPL 6= SPE ,
i.e., the software provider of the encrypted modules is dif-
ferent from the software provider of the loader.

Encrypting modules, i.e., preparing the ROM image for a
target device or preparing software updates can be done on
the host of SPE with knowledge of a previously exchanged
encryption key, but has to be done differently in both cases.
The key exchange is trivial for (1), because the software
provider has direct access to the key KN,SPL,SML and can
therefore derive ESME,1 , . . . , ESME,n (see Section 3.2) and
encrypt the modules SME,1, . . . ,SME,n. For case (2), how-
ever, SPL and SPE have to cooperate for the key manage-
ment, meaning that SPE has to get ESME,k for each module

SME,k by telling SPL the unique identifier S̃ME,k of SME,k.
Although SPE does not need to give code to SPL but only
the unique identifier of the module, SPE needs to trust SPL.
In particular, SPE needs to rely on the fact that SPL only
provides a loader for the module on a specific target device
but keeps the derived decryption key secret.

Similar to IP being the trusted party for remote attes-
tation, SPL is the trusted party regarding confidentiality.
If only confidentiality is needed but no attestation is re-
quired, it is sufficient for SPE to communicate with SPL if
SPL 6= SPE . Note that IP, which is the root of trust in the
overall system, is of course able to violate confidentiality at
any time. This is not a drawback to our proposed system,
as the hardware is considered trusted and all parties need
to trust IP as in Sancus.

3.4 Access Control
Assuming an encrypted module SME has been loaded cor-

rectly, its code now resides within RAM and needs to be pro-
tected by the program-counter based memory access logic.
In theory, reading the text section only has to be disabled
for modules that were encrypted, as the others are stored in

From/To Entry Text Protected Unprotected

Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Unprotected/

r-x --- --- rwx
Other SM

Table 1: Access rights from/to a module with pro-
hibited read access to code [22].

cleartext within ROM, but we decided to disable read access
from anywhere for all modules.

Table 1 shows the different access rights for the whole ad-
dress space. The only part of a module that remains read-
able and executable is the entry point. All other areas of
a module, i.e., the text section and the data or protected
section, are not read- or writeable from any other module
or unprotected code, which is ensured by adding new checks
to the memory access logic of Sancus. There is a new kind
of memory violation that is triggered if another module or
unprotected code tries to read the text section of a mod-
ule. All violation signals are combined into a single signal
that resets the processor immediately when triggered. Al-
though it would be possible to return NULL on read vi-
olations and to ignore write violations, there is no other
reasonable choice for handling execute violations than trig-
gering a reset because system level attacks are included in
our attacker model and thus no appropriate handler routine
can be called. Furthermore, we cannot fully guarantee avail-
ability due to attacks from the system level such that not
triggering a reset would not improve availability.

In addition to an extension of the memory access logic, we
take care that RAM is wiped completely in hardware after
a reset has been triggered. Consequently, no fragments of
code or data of a previously encrypted module can be found
after a reset. This is particularly useful if a violation is trig-
gered, because a malicious module could otherwise trigger
a reset intentionally, and, when the module is reloaded af-
ter the reset, read out portions of RAM which still contains
cleartext of encrypted modules.

3.5 Security Properties
After explaining the architecture of Soteria in the previ-

ous sections, we briefly describe its security properties now.
In detail, Soteria can guarantee the following security prop-
erties:

• Isolation: Every module is completely isolated from
other modules regardless of their privilege level. No
other module or unprotected code can read or write
from or to the code and data section of a given module.
This property is partly inherited from Sancus, but was
extended by the capability to reject read-access to the
code section of a module.

• Remote Attestation: A remote party can cryptograph-
ically verify that a specific module has been loaded on
a given device with a previously defined state. Based
on remote attestation, tamperproof communication is
possible as well, because messages can be combined
with authenticity and integrity information before they
are sent. This property is most widely inherited from
Sancus, but the host tools for HMAC generation had
to be modified slightly.



• Secure Linking : A software module on a given node
can call a function of another module on the same node
while guaranteeing that it is calling the intended func-
tion of the intended destination module. This property
is inherited from Sanucs.

• Confidentiality : Confidentiality of code and data for
encrypted modules can be guaranteed at any given
point in time, i.e., before modules are loaded as well
as afterwards. Furthermore, confidentiality can be en-
sured offline due to mutual integrity checks between
the loader and the module that is about to be de-
crypted, without the need for remote attestation. This
property is not present in Sancus but a novel contri-
bution of Soteria.

• Integrity : While for Sancus the software provider is
able to ensure the authenticity and integrity of a mod-
ule through remote attestation only after communicat-
ing with it, Soteria is able to guarantee the integrity
of encrypted modules offline, meaning that manipu-
lations are already detected at load time rather than
communication time. This property is a novel contri-
bution of Soteria.

The confidentiality property is guaranteed by two mecha-
nisms. Before load time, modules are encrypted and thus
considered confidential. After load time, modules are pro-
tected by the program-counter based memory access logic
and are therefore considered confidential as well. The only
possibility of attackers to violate the confidentiality is by
compromising the loading process, which is prevented by our
design as follows: If the loading position or protected sec-
tions of the loader are tampered with when the module SME

is about to be loaded, the key ESME is derived incorrectly
because KN,SPL,SML is derived wrongly. The authenticated
decryption then fails and the loading process immediately
aborts. If the encrypted module SME is tampered with be-
fore loading, the authenticated decryption fails as well and
loading aborts again. Tampering is not possible while the
loading takes place because authenticated decryption and
protecting SME is performed atomically.

In summary, confidentiality is always preserved and any
attempts to tamper with encrypted modules are detected
immediately. The only property an attacker is able to affect
is availability, but as explained in Section 3.1, we exclude
denial of service from our attacker model. Our solution pro-
vides no DoS protection and DoS is out of scope for this
paper. For example, an attacker could repeatedly trigger
resets or monopolize the CPU with an endless loop to im-
pact availability.

4. IMPLEMENTATION
In this section we describe the implementation details of

Soteria. First, in Section 4.1, we describe the changes we
made to the hardware in order to guarantee the security
properties mentioned in Section 3.5. Second, in Section 4.2,
we describe the software we developed for the target device,
i.e., for the modified openMSP430. Finally, in Section 4.3,
the toolchain that is necessary to deploy our system is ex-
plained. All software belonging to the toolchain runs on the
host, meaning that it does not increase the trusted comput-
ing base.

4.1 Hardware
Our implementation is based on the openMSP430, an

open-source implementation of the MSP430 from Texas In-
struments [29] in Verilog provided by OpenCores. Sancus is
built on the openMSP430 and was the starting point of our
implementation. The MSP430 is a 16-bit processor with a
von-Neumann architecture. It has support for 8-bit and 16-
bit peripheral components, such a timer, UART and GPIO.
During our development, we simulated the modified open-
MSP430 using Icarus Verilog directly on the host system.
For the evaluations, we ported our implementation to an
FPGA and used the TimerA component, UART and GPIO.
For more information on the evaluation, see Section 5.

First of all, we introduced a new violation that is triggered
if a module tries to read the code section of any other mod-
ule. The address of the memory access is checked against
the boundaries of the code section of every protected mod-
ule and is only allowed if the program-counter is within the
code section of the module currently being executed. Other-
wise a violation is triggered, which is OR’ed with the other
memory access violations.

While implementing our concept, we came across a fun-
damental limitation of the openMSP430. Although it has
a von-Neumann architecture, it distinguishes between ROM
and RAM by mapping them to specific locations within the
16-bit address space. As a result, it turned out that RAM
was not executable, which is also mentioned as a drawback
on OpenCores. To support our proposed design, we need to
decrypt a module to RAM, protect and execute it. We there-
fore needed to patch the openMSP430 to make RAM exe-
cutable. Our current implementation of the openMSP430
has executable RAM and the ability to switch execution
freely between code from any region, so that unprotected
code that resides, for example, within ROM, can directly
jump to previously encrypted modules which reside within
RAM after decryption.

To prevent the exploitation of deliberately triggered resets
(see Section 3.4), we developed a memory wiping component
directly in hardware. The component is inserted between the
openMSP430 itself and the RAM. When a reset is triggered,
it starts wiping the RAM word by word for all 16-bit words
in memory. While this takes place, the memory wiping com-
ponent holds the reset line, simulating to the openMSP430
that the reset is still not released. The openMSP430 there-
fore remains paused while the entire memory is being zeroed
out from start to end. After wiping is finished, the reset line
is released and the openMSP430 dispatches the first instruc-
tion which is referenced by the reset vector. This procedure
ensures that RAM is completely wiped before the very first
instruction is dispatched after a reset.

4.2 Software
In addition to hardware modifications, we have written

software that runs on the target device, namely the open-
MSP430 processor. As we want to protect third-party soft-
ware, we needed to provide two components: (1) a library
which supports encrypted modules while being fully com-
patible with non-encrypted legacy modules of Sancus, and
(2) the loader module itself, which is capable of integrity
checking, decrypting and protecting an encrypted module.

In Sancus, modules are represented by a structure con-
sisting of a unique ID, the software provider ID, the module
name and the boundaries for the code and data section. This



structure contains all values necessary for traditional mod-
ules to be loaded, and the boundaries are those that are
considered by the memory access logic at module runtime.
For Soteria, we extended the structure with new boundaries
for the code section of the encrypted module, i.e., the bound-
aries are valid only for the encrypted code but not for the
code section of a running module. In a typical scenario, the
boundaries for the encrypted code point to ROM, while all
others, i.e., those for the code and the data section, point
to RAM. The authentication tag for encrypted modules is
stored directly after the encrypted code section such that
the upper boundary for the encrypted code section points
directly to the integrity information. Our new library is fully
compatible with existing non-encrypted legacy modules. On
the one hand, new encrypted modules can of course be used
in conjunction with our loader, but on the other hand, they
can also be directly passed to existing functions of the old
Sancus library. Our library also includes a function to de-
stroy a module. When it is called, all the module’s pro-
tected data and code within RAM is first wiped and then
the unprotect function of the Sancus library is invoked. It
is basically a convenience routine to allow the programmer
to destroy a module with only a single call.

We also provide an open implementation of the loader for
the openMSP430 such that it can be used by every soft-
ware provider SPL. The loader accepts encrypted modules
and basically provides two functions to the user: The load
routine which takes an encrypted module, derives the de-
cryption key for the destination module, performs integrity
checking, decrypts the module to RAM and finally protects
the just decrypted module. As already explained, these steps
have to be performed atomically. The second routine, that
is provided by the loader is a routine which causes the loader
to wipe its protected data section and afterwards unprotect
itself. This routine is used to destroy the loader.

The key derivation is done in hardware, as explained in
Section 3.2, using the HMAC functionality provided by San-
cus which is based on Spongent-128 [4]. To this end, the

unique identifier S̃ME which is a concatenation of the mod-
ule name and the module version number is passed to the
HMAC function which implicitly uses KN,SPL,SML as key.

The decryption is implemented in software using AES-
128 [9] in CCM mode of operation [12]. We implemented
the CCM mode according to RFC 3610 [32] with an au-
thentication tag length of sixteen bytes, a two byte length
field and no associated data, i.e., data that just needs to
be authenticated. With this choice we are able to decrypt
software modules with a maximum length of 64 kilobytes
which is also the maximum addressable size on the open-
MSP430 processor. In addition to the decryption key and
the encrypted module, CCM with the given parameters also
requires a thirteen byte nonce which does not need to be
secret but must be different for each CCM en- or decryption

with the same key. We simply use the unique identifier S̃ME

(padded with zeros) as nonce because it is changed for every
new version of the module SME and thus satisfies the nonce
properties. If the module name concatenated with the mod-
ule version number exceeds thirteen bytes, a cryptographic

hash of S̃ME is calculated and truncated to thirteen bytes.
The calculation of the hash then only needs to be done by
the toolchain and not on the target device because the nonce
can securely be stored along with the authentication tag.

We built our implementation onto the tinyAES imple-
mentation combined with the CCM implementation of mbed
TLS. Consequently, our authenticated decryption routine is
implemented entirely in C and it has been optimized for size.
The overall size of the key schedule, the encryption routine
and the CCM implementation is about two kilobytes. Mem-
ory protection is enabled by calling the special instruction
protect as described in Section 2.2.

4.3 Toolchain
Aside from hardware and target device software, we had to

implement toolchain components in order to successfully de-
ploy our system. The whole toolchain is based on LLVM [19],
msp430-gcc [28] and pyelftools [3]. The toolchain consists of
three Python tools that need to be called after successfully
compiling different source files with LLVM:

1. ld: The linker which produces a single ELF file from
the different object files and generates separate sec-
tions for each software module. Two sections are gen-
erated for encrypted software modules. One is placed
in the RAM address range and contains all cleartext
code like it would be after the decryption during the
loading process. The other is placed in the ROM ad-
dress range and is 16 bytes larger than the section
within RAM to reserve space for the integrity infor-
mation that is produced by the CCM authenticated
encryption. This second section is just filled with ze-
ros by the linker and will later be overwritten by our
encryption script.

2. hmac: This script, which was inherited from Sancus
and only needed to be modified slightly, adds HMACs
to the ELF file for secure linking.

3. crypt: This script performs authenticated encryption
of the cleartext code and places the result within the
section in the ROM address range. It implicitly com-
putes integrity information in CCM mode and stores
it directly after the encrypted code. To this end, the
script has to derive the encryption key from the key of
the loader and the unique identifier of the encrypted
module. The derivation is fully automated and only
the vendor ID, node key and name of the loader mod-
ule need to be supplied as arguments. After the code
has been encrypted, the original section within RAM is
stripped from the ELF file so that the resulting image
can be flashed to the target device or distributed se-
curely, as it no longer contains any unencrypted data.

All described scripts work directly on ELF files to avoid us-
ing different intermediate formats. The toolchain is easy
to use because very few information needs to be provided.
Modules that need to be encrypted are identified by their
name: If a module starts with crypt_, the scripts trans-
parently add new sections for this module, encrypt it, add
integrity information and reserve space in RAM to store
the plaintext at runtime. Of course, all components of the
toolchain run on the host instead of the target device, are
therefore not part of the device trusted computing base, and
consequently do not consume space on the target device.

5. EVALUATION
In this section, we evaluate Soteria regarding its perfor-

mance, impact on chip size and power consumption. All data



in this section was produced using a Xilinx XC6VLX240T
Virtex-6 FPGA, with the core running at 20 MHz.

5.1 Performance
When evaluating the performance of Soteria, we have to

distinguish between the runtime overhead and the time a
module needs to be loaded. First of all, there is a con-
stant overhead for resetting the processor as all data mem-
ory is wiped in hardware before execution resumes. Since the
MSP430 has no caches and memory can be written directly,
wiping takes exactly 2+DMEM SIZE/2 cycles, because it is
wiped by writing successive 16-bit words which corresponds
to two bytes. Our reference configuration, for example, hase
a program memory of 48 kilobytes and a data memory of 10
kilobytes, so 5,122 cycles are needed for wiping.

Once an application is running, our solution imposes no
additional overhead compared to plain Sancus, meaning that
the additional program-counter based memory access checks
do not have a performance impact on the critical path. Dur-
ing our experiments, we also verified, using the TimerA com-
ponent of the MSP430, that routines of modules built with
our solution execute in the same amount of cycles as those
built with plain Sancus. This applies to unencrypted legacy
modules as well as to encrypted modules after they have
been loaded.

The main performance overhead of our solution is incurred
by loading of an encrypted module. Protecting the loader
imposes a constant overhead on all encrypted modules com-
bined. This process takes 72,976 cycles, while destroying
the loader (i.e., freeing all resources, wiping keys and calling
unprotect) needs only 800 cycles. The loading overhead for
an encrypted module depends on the size of the module and
is dominated by the time needed for the authenticated de-
cryption routine. In Table 2, the number of cycles needed
to load modules with different sizes are shown. First, the
key for authenticated decryption of the encrypted module
is derived. This is done in hardware and the number of
required cycles is therefore rather small. Furthermore, the
unique identifier had the same length for all modules tested
in Table 2 and thus the number of cycles needed for the
key derivation is independent from the size of the encrypted
module. The module then has to be decrypted and checked
for integrity, which takes up most of the cycles because au-
thenticated decryption is done in software using AES-128
in CCM mode of operation. Finally, the decrypted module
needs to be protected to deny other modules access to the
decrypted code. The protection process is dominated by the
key derivation for the new module and therefore the exe-
cution time again depends on the size of the module that
is about to be protected. Note that the total number of
cycles to load an encrypted module is more than just the
sum of key derivation, authenticated decryption and protec-
tion, because of additional boundary checks and a length
calculation of the unique identifier. These additional com-
putations, however, only depend on the unique identifier of
the encrypted module and as it was identical for all of our
tests, the additional overhead is constant.

The smallest module that was evaluated had a size of only
208 bytes. This is the smallest size possible for a module
with at least one entry point and no additional data. The
minimum size results from the stubs that are included by the
Sancus compiler to be able to call the entry point. Other
module sizes that have been tested range from 256 bytes

Sancus Soteria Overhead
REGs LUTs REGs LUTs REGs LUTs

1 SM 1,897 3,686 1,938 3,894 41 208
2 SMs 2,110 4,100 2,150 4,322 40 222
3 SMs 2,323 4,378 2,363 4,620 40 242
4 SMs 2,536 4,778 2,576 5,034 40 256

Table 3: Number of slice registers and slice LUTs
for Soteria compared to Sancus.

up to one kilobyte. Considering the clock rate of 20 MHz,
we need about 92 milliseconds to load an encrypted module
of one kilobyte and 25 milliseconds for an encrypted mod-
ule of 256 bytes size. While this might be some overhead,
the primary reason for which is running AES in software,
one has to consider that modules are only loaded when the
system is started. Since no runtime overhead is imposed
on the modules, short loading times below 100 milliseconds
seem acceptable. Furthermore, minimum code size instead
of maximum loading performance was the main focus. The
implementation of AES-128 in CCM mode of operation only
needs about 2 kilobytes of ROM and circa 200 bytes of RAM.
Last but not least, we are planning to extend Soteria with
hardware support for ciphers, as explained in Section 6.

To be able to produce these performance evaluations, a
special version of Soteria was synthesized which does not
trigger a reset if a memory violation occurs because inter-
rupts, for example, can trigger an execute violation. The
TimerA component of the MSP430 was used with the main
system clock of 20 MHz in divide-by-eight mode. As this
component only supports a 16-bit counter, it overflows for
large measurements and an additional counter for the higher
16 bits needed to be implemented in software. This counter
is incremented in the interrupt handler called for the over-
flow. Although only a single operation, i.e., the increment of
the counter for the higher 16 bits, is executed within the in-
terrupt handler, measurements which take more than 65536
cycles are not perfectly cycle accurate, but instead a higher
number of cycles is measured than what is actually needed
for the pure computation. This is due to the fact that enter-
ing and leaving the interrupt handler takes cycles, and those
cycles are included in our measurements. Consequently, we
give upper bounds for the actual performance results which
are expected to be even less than those shown in Table 2.

5.2 Area
We measured the area overhead of Soteria by consider-

ing the required slice registers and slice LUTs. The plain
openMSP430 core needs 1,146 slice registers and 2,520 LUTs
when synthesised for our FPGA. In Table 3, the number of
slice registers and slice LUTs for Soteria in comparison to
plain Sancus are shown in different configurations, i.e., for
a specific number of supported modules. The slice register
overhead Soteria incurs over Sancus is almost constant and
equal to about 40. The number of additional slice LUTs de-
pends on how many modules are supported, but it is small
compared to the overall number of slice LUTs. The main
overhead comes from the memory wiping logic and the addi-
tional read access prevention which is added for each mod-
ule. Since the decryption routines are implemented in soft-
ware rather than hardware, our solution imposes very little
area overhead.



Size Key Derivation Authenticated Decryption Protection Total

208 13,504 (0.675) 383,344 (19.167) 26,984 (1.349) 424,312 (21.216)
256 13,504 (0.675) 463,088 (23.154) 30,464 (1.523) 507,536 (25.377)
512 13,504 (0.675) 888,456 (44.423) 49,024 (2.451) 951,464 (47.573)
768 13,504 (0.675) 1,313,816 (65.691) 67,584 (3.379) 1,395,384 (69.769)

1024 13,504 (0.675) 1,739,176 (86.959) 86,144 (4.307) 1,839,304 (91.965)

Table 2: Number of cycles (ms) needed for loading modules with different sizes.

5.3 Power
We have analyzed the power consumption with the static

power analysis tool Xilinx XPower Analyzer. Soteria had
an overhead of about 0.2% compared to Sancus, regardless
of the number of supported modules. We also tried to mea-
sure the power consumption experimentally, but could not
find any difference between Soteria and Sancus running on
our FPGA. The overall power consumption of the FPGA
reported by Xilinx XPower Analyzer was about 3.537W for
Soteria and about 3.530W for Sancus.

6. LIMITATIONS AND FUTURE WORK
Our goal is to protect the intellectual property of code and

data against powerful software attackers, including those
who could gain system privileges. Our attacker model, how-
ever, excludes all kind of hardware attacks such that at-
tackers with physical access are potentially able to acquire
sensitive data while circumventing the protection of Soteria,
e.g., by chip probing or fault injection. Protection against
physical access of code and data is therefore part of future
work.

Although we designed and implemented Soteria as a fully
working software protection solution, there still remain open
questions and future work. The program-counter based mem-
ory access logic prevents all jumps into module code different
to the entry point from other modules or unprotected code.
Thus, we currently cannot handle interrupts because the ac-
cess logic would prevent the execution flow to return from
an interrupt routine. There exists an approach that does
leverage Sancus for handling interrupts [7], which could be
combined with Soteria in future.

The primary performance bottleneck of Soteria is the de-
cryption routine which is implemented in pure software. To
speed up the loading process of encrypted modules, the de-
cryption routine must be implemented in hardware and pro-
vided to the programmer as separate new instruction, anal-
ogously to the instructions for protecting and unprotecting
modules. AES, however, is pretty heavyweight for embed-
ded systems and would increase the area drastically such
that a more lightweight cipher optimized for hardware im-
plementations must be considered.

7. CONCLUSIONS
In this paper, we presented a lightweight software protec-

tion solution with a zero-software trusted computing base.
Only the hardware, i.e., a modified variant of the open-
MSP430, needs to be considered trusted to be able to guar-
antee confidentiality and integrity of code and data. To the
best of our knowledge, this is a novel design and the confi-
dentiality of code against reverse-engineering has not been
provided by means of a program-counter based memory ac-
cess logic before.

Based on software protection, all kind of intellectual prop-
erty for digital contents can be protected. Our solution is
therefore adaptable to new protection scenarios beyond soft-
ware protection. We are aware of the dark side of our pro-
posed technology ranging from divisive applications such as
DRM to the threat of unanalyzable malware and backdoors.
Nevertheless, software protection has many legitimate use
cases that must be solved such as the protection of intellec-
tual property, hardening software against vulnerability de-
tection, and protecting cryptographic keys, to name but a
few.
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