
ACSAC’15
Los Angeles, California, USA

Soteria: Offline Software Protection within Low-cost
Embedded Devices

Johannes Götzfried∗, Tilo Müller∗, Ruan de Clercq†, Pieter Maene†,
Felix Freiling∗, and Ingrid Verbauwhede†

∗Department of Computer Science
FAU Erlangen-Nuremberg, Germany

†COSIC, Department of Electrical Engineering (ESAT)
KU Leuven, Belgium

December 10, 2015

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 1 / 19



Motivation

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 2 / 19



Motivation

State-of-the-Art Software Protection

Mostly based on Obfuscation
Transformations making programs harder to analyze
Some programs provably can be obfuscated (e.g. Password Checks)
Some programs provably cannot be obfuscated (e.g. Quines)

→ In general: Obfuscation only increases the time needed for analysis

Software Protection for Embedded Devices:
Attackers with clear economic motivations

Customizers tampering with data
Example: Amount of consumed energy measured by smart meters
Competing industrial entities analysing software
Example: Re-engineering of a competitive product

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 2 / 19



Motivation

State-of-the-Art Software Protection

Mostly based on Obfuscation
Transformations making programs harder to analyze
Some programs provably can be obfuscated (e.g. Password Checks)
Some programs provably cannot be obfuscated (e.g. Quines)

→ In general: Obfuscation only increases the time needed for analysis

Software Protection for Embedded Devices:
Attackers with clear economic motivations

Customizers tampering with data
Example: Amount of consumed energy measured by smart meters
Competing industrial entities analysing software
Example: Re-engineering of a competitive product

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 2 / 19



Background: Sancus

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 3 / 19



Background: Sancus

Sancus: System Overview

Low-cost extensible security architecture
Strict isolation of software modules
Secure communication and attestation
Zero-software trusted computing base

N1

N2

IP

SP1

SP2

...

SM1,1 SM2,1 · · ·

SM2,2 SMj,k · · ·

...

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 3 / 19



Background: Sancus

Sancus: Software Modules

Unprotected

En
tr
y
po

in
t

Code & constants Unprotected

SM1 text section

Protected data

SM1 protected data section

Unprotected

M
em

or
y

KN,SP,SM1 SM1 metadata

Layout Keys

Protected
storage
areaKN

Node

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 4 / 19



Background: Sancus

Sancus: Design Details

Program-Counter based access control

From/To Entry Text Protected Unprotected

Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Unprotected/

r-x r–– ––– rwxOther SM

Isolation can be enabled/disabled with dedicated new instructions
protect layout,SP
unprotect

Hierarchical key derivation
KN,SP = kdf(KN , SP) [based on SP ID]
KN,SP,SM = kdf(KN,SP, SM) [based on SM identity]

Shared secret between SM on N and SP: KN,SP,SM
Can be used for remote attestation with an HMAC

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 5 / 19



Design

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 6 / 19



Design

Attacker Model

Not within our attacker model
No DoS protection
No hardware attacks

RAM dumping
Chip probing

Within our attacker model
Control of all peripheral components
Control of all software components

Including high-privilege software components, e.g., OS

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 6 / 19



Design

Basic Idea: Offline SW-Protection

→ We want: Offline SW-Protection

Problem: SMs are able to access each others text section (r–-)

From/To Entry Text Protected Unprotected

Entry r-x r-x rw- rwx
Text r-x r-x rw- rwx
Unprotected/

r-x ––– ––– rwxOther SM

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 7 / 19



Design

Design of Soteria

Problem: Code resides unencrypted within ROM
Encrypt Code within ROM
Decrypt Code to RAM just before SM loading

Loading Process
1 Loader SML derives KN,SPL,SML,SME = ESME = kdf(KN,SPL,SML , S̃ME )
2 Loader SML decrypts SME with ESME and calls protect

SML uses authenticated encryption
(AES-128 in CCM mode of operation)
Decryption and protect is done atomically

3 SML is able to load the next encrypted module or to unprotect itself

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 8 / 19



Design

Loading Steps of a Module

Initial situation: SML is active and SME is encrypted

Code

SML Text Section

Encrypted Code

SME Encrypted Code

RO
M

Data

SML Data Section

RA
M

KN,SPL,SML

KN

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 9 / 19



Design

Loading Steps of a Module

1. Loader SML derives ESME

Code

SML Text Section

Encrypted Code

SME Encrypted Code

RO
M

Data
ESME

SML Data Section

RA
M

KN,SPL,SML

KN

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 10 / 19



Design

Loading Steps of a Module

2. SME gets decrypted to RAM and protected

Code

SML Text Section

Encrypted Code

SME Encrypted Code

RO
M

Data
ESME

SML Data Section

Code Data

SME Code & Data

RA
M

KN,SPL,SML

KN,SPE ,SME

KN

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 11 / 19



Design

Loading Steps of a Module

3. SML wipes data section and calls unprotect

Code

SML Text Section

Encrypted Code

SME Encrypted Code

RO
M

Code Data

SME Code & Data

RA
M

KN,SPE ,SME

KN

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 12 / 19



Design

Security Argument

Before Loading: SME is encrypted within ROM (or RAM)
After Loading: SME is protected by MAL
If SML is tampered with:

ESME is not derived correctly
→ authenticated decryption fails

If SME is tampered with (before loading):
Integrity property is violated
→ authenticated decryption fails

If a reset is triggered:
RAM is wiped
→ no decrypted fragments of SME can be found

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 13 / 19



Implementation

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 14 / 19



Implementation

Implementation Details
Hardware Implementation

Based on the openMSP430 project from OpenCores
Patched the OMSP430 to get RAM executable
Patched the Sancus MAL to prevent read access to other modules
Included memory wipe after reset
Successfully tested on the XC6VLX240T Virtex-6 FPGA
(UART and GPIO)

Software Implementation
Library supporting encrypted modules
Fully compatible to existing modules
Implementation of SML

Toolchain Modifications
Automatically identify encrypted modules
Transparently encrypt them (authenticated encryption)
Host software is not part of the TCB
Based on LLVM and pyelftools

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 14 / 19



Implementation

Implementation Details
Hardware Implementation

Based on the openMSP430 project from OpenCores
Patched the OMSP430 to get RAM executable
Patched the Sancus MAL to prevent read access to other modules
Included memory wipe after reset
Successfully tested on the XC6VLX240T Virtex-6 FPGA
(UART and GPIO)

Software Implementation
Library supporting encrypted modules
Fully compatible to existing modules
Implementation of SML

Toolchain Modifications
Automatically identify encrypted modules
Transparently encrypt them (authenticated encryption)
Host software is not part of the TCB
Based on LLVM and pyelftools

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 14 / 19



Implementation

Implementation Details
Hardware Implementation

Based on the openMSP430 project from OpenCores
Patched the OMSP430 to get RAM executable
Patched the Sancus MAL to prevent read access to other modules
Included memory wipe after reset
Successfully tested on the XC6VLX240T Virtex-6 FPGA
(UART and GPIO)

Software Implementation
Library supporting encrypted modules
Fully compatible to existing modules
Implementation of SML

Toolchain Modifications
Automatically identify encrypted modules
Transparently encrypt them (authenticated encryption)
Host software is not part of the TCB
Based on LLVM and pyelftools

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 14 / 19



Implementation

Encryption Details

AES-128 in CCM mode of operation:
According to RFC 3610
Authentication tag length of sixteen bytes
Two bytes length field
→ Maximum SM size of 64 kilobytes
No associated data
Thirteen bytes nonce: S̃ME (zero padded)
→ Unique identifier S̃ME : Name + current version of SME

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 15 / 19



Evaluation

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 16 / 19



Evaluation

Area and Power

Evaluation on XC6VLX240T Virtex-6 FPGA with core running at 20Mhz:
Plain openMSP430 core: 1,146 slice regs and 2,520 LUTs
Overhead of Soteria compared to Sancus

Sancus Soteria Overhead
REGs LUTs REGs LUTs REGs LUTs

1 SM 1,897 3,686 1,938 3,894 41 208
2 SMs 2,110 4,100 2,150 4,322 40 222
3 SMs 2,323 4,378 2,363 4,620 40 242
4 SMs 2,536 4,778 2,576 5,034 40 256

Power overhead of Soteria compared to Sancus: 0.2%

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 16 / 19



Evaluation

Performance

No additional performance overhead once an application is running
Constant overhead for resetting: 2+ DRAM_SIZE/2 cycles
Constant overhead for protecting the loader: 72,976 cycles
Constant overhead for destroying the loader: 800 cycles
Overhead for loading software modules of different sizes:

Size (bytes) Total Time (cycles / ms)

208 424,312 (21.216)
256 507,536 (25.377)
512 951,464 (47.573)
768 1,395,384 (69.769)

1024 1,839,304 (91.965)

Implementation of AES-128 in CCM mode has been tweaked for size
≈ 2 kilobytes of ROM
≈ 200 bytes of RAM

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 17 / 19



Conclusion

Outline

1 Motivation

2 Background: Sancus

3 Design

4 Implementation

5 Evaluation

6 Conclusion

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 18 / 19



Conclusion

Conclusion

Soteria as a software protection solution
Zero-software trusted computing base
Soteria allows offline software protection
Confidentiality of code and data before and after loading

Soteria is lightweight
Loader module only needs 200 bytes of RAM (AES)
Only very little area and power overhead
No additional performance overhead during runtime

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 18 / 19



Thank you for your attention!

Further Information:
https://www1.cs.fau.de/soteria

Götzfried et al. (FAU, KU Leuven) Soteria December 10, 2015 19 / 19

https://www1.cs.fau.de/soteria

	Motivation
	Background: Sancus
	Design
	Implementation
	Evaluation
	Conclusion

