
Cache Attacks on Intel SGX

Johannes Götzfried
FAU Erlangen-Nuremberg
johannes.goetzfried

@cs.fau.de

Moritz Eckert
FAU Erlangen-Nuremberg
moritz.eckert@fau.de

Sebastian Schinzel
FH Münster

schinzel@fh-muenster.de

Tilo Müller
FAU Erlangen-Nuremberg
tilo.mueller@cs.fau.de

ABSTRACT
For the first time, we practically demonstrate that Intel
SGX enclaves are vulnerable against cache-timing attacks.
As a case study, we present an access-driven cache-timing
attack on AES when running inside an Intel SGX enclave.
Using Neve and Seifert’s elimination method, as well as a
cache probing mechanism relying on Intel PMC, we are able
to extract the AES secret key in less than 10 seconds by
investigating 480 encrypted blocks on average. The AES
implementation we attack is based on a Gladman AES imple-
mentation taken from an older version of OpenSSL, which is
known to be vulnerable to cache-timing attacks. In contrast
to previous works on cache-timing attacks, our attack is
executed with root privileges running on the same host as
the vulnerable enclave. Intel SGX, however, was designed to
precisely protect applications against such root-level attacks.
As a consequence, we show that SGX cannot withstand its
designated attacker model when it comes to side-channel
vulnerabilities. To the contrary, the attack surface for side-
channels increases dramatically in the scenario of SGX due to
the power of root-level attackers, for example, by exploiting
the accuracy of PMC, which is restricted to kernel code.

Keywords
Intel SGX, Cache-timing Attacks, Root-level Attacks

1. INTRODUCTION
We regularly see reports of kernel exploits leading to privilege
escalation attacks that enable attackers to get root access
to a system. At the same time, not all privileged users can
be trusted, e.g., cloud providers cannot be trusted when it
comes to the protection of intellectual property or privacy,
and end users cannot be trusted when it comes to DRM or the
protection against cracking. In consequence of the threat of
root-level attacks, there is high demand for a technology that
guarantees the confidentiality and integrity of applications
running inside untrusted execution environments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSec’17, April 23 2017, Belgrade, Serbia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4935-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3065913.3065915

Since 2015, Intel addresses this threat with hardware instruc-
tions and provides an architecture extension called Software
Guard Extensions (SGX) that creates secure containers, so-
called enclaves, to protect applications against access from
higher privileges, including the OS kernel [1, 7]. Unlike
previous solutions, such as the TPM, and similar to Intel
TXT, the OS kernel is considered untrusted within the threat
model of SGX and no hardware other than the CPU (such
as a TPM) is part of the trusted computing base.
Intel’s whitepapers about SGX discard cache-timing attacks
as unpractical physical attacks [1, 7], not mentioning the case
of software-based side-channel attacks. Software-based side-
channel attacks, however, are particularly powerful due to
Intel’s Performance Monitoring Counters (PMC), which are
restricted to the OS kernel, and according to Intel special care
needs to be taken when writing enclave code. In addition
to exploiting PMC, root-level attackers have fine-grained
control over enclave caches because they are able to enforce
a target enclave to run on the same hyperthreading core as
the spy process.
The abilities that root-level attacks afford, such as PMC,
CPU pinning, and full control over the hyperthreading affinity
of a thread, help to overcome difficulties, such as dealing
with noise, known from common cache-timing attacks in the
literature. Consequently, root-level cache-timing attacks are
a promising method of attack against software protected by
recent trusted computing architectures such as SGX.

1.1 Contributions
In this paper, we utilize a new method of attack, namely
root-level cache-timing attacks, to infer secret information
from an Intel SGX enclave. As a case study, we present
an access-driven cache-timing attack on AES when running
inside an enclave. We used OpenSSL version 0.9.7a as AES
implementation, which is already known to be vulnerable to
cache-timing attacks. As the method of attacking, we im-
plemented Neve and Seifert’s elimination method [8], which
is already known to break vulnerable AES implementations.
To the best of our knowledge, however, we are the first prac-
tically demonstrating that Intel SGX enclaves are vulnerable
to cache-timing attacks. In detail our contributions are:
• We describe a root-level cache-timing attack relying on

CPU pinning, influencing the hyperthreading affinity,
and accessing Intel PMC. CPU pinning as well as ac-
cessing PMC are only feasible with superuser privileges
and hence, have not yet appeared in the literature for
non-SGX scenarios.

• For our case study, we implement a cache-based Prime&
Probe algorithm that is able to identify memory loca-
tions accessed by enclave code on cache line granularity.
We support our measurements by Intel PMC within
the attacker thread and run both the enclave and the
attacker thread on the same hyperthreading core. Thus,
enclave and attacker thread also share their memory.
• Using an implementation of Neve and Seifert’s elimina-

tion method, we are able to extract the AES secret key
of an encryption application in less than 10 seconds.
We are able to deterministically derive the secret key
for every run of the vulnerable application when inves-
tigating 480 encrypted blocks on average to reduce the
number of key candidates to one.

Our implementation is free software published under the
GPL v2 available at https://www1.cs.fau.de/sgx-timing.

1.2 Related Work
At the beginning, Intel SGX was used in publications about
cloud computing scenarios. The execution system Haven [2]
was designed to securely run unmodified legacy applications
on an unmodified cloud operating system to provide ap-
plications with the protection of SGX without adaptation.
Protecting existing applications, however, means protecting
a huge code base which often involves crypto routines. As we
show, moving existing applications along with their crypto
routines into enclaves is not secure per se but requires review-
ing the crypto implementations according to the attacker
model of SGX. Another publication using SGX for cloud
computing is VC3 [10] which offers distributed Map-Reduce
computations while keeping the processed data hidden from
cloud providers. Even though VC3 is not directly affected
by cache-timing attacks on AES, similar attacks might be
able to harm the privacy of VC3’s processed data.
From an attackers point of view, Costan and Devadas [4]
recently presented an analysis that points out weak spots
of Intel SGX. The authors hypothesize that SGX does not
implement protection measures against side-channel attacks.
First of all, that are cache-timing attacks, and second, an
untrusted operating system might be able to track memory
accesses of enclaves on a per page basis. The second claim has
been proven by Xu et. al. [13] who demonstrated controlled-
channel attacks on protected applications. Furthermore,
an attack against SGX called AsyncShock [12] has been
published which targets synchronisation bugs such as use-
after-free and time-of-check-to-time-of-use within enclave
code by manipulating the scheduler.
During the preparation of the camera-ready version of this
paper we became aware of independently developed work
which is currently unpublished but closely related [3, 11].

2. BACKGROUND
We base our work on the access-driven approach by Neve and
Seifert [8] which is considered a solid attack against the last
round of AES. For our attack, we assume we can isolate the
last round. The attack then proceeds as follows: The general
setup is a known ciphertext attack based on the standard
Gladman implementation. Thus, the ciphertext byte ci,j
depends on the output of the T-table T4 and the last round

key byte k
(10)
i,j :

ci,j = k
(10)
i,j ⊕

(
T4[si,(i+j) mod 4]

)
i

Where (·)i denotes the i-th byte within (·). As XOR is

self-inverse, the key byte k
(10)
i,j can be obtained as follows:

k
(10)
i,j = ci,j ⊕

(
T4[si,(i+j) mod 4]

)
i

Because the AES key schedule is redundant, the bytes k
(10)
i,j

are sufficient to obtain the bytes ki,j and thus the encryption
key k. However, we need knowledge about the ciphertext
and the result of the table lookups for T4. For our attack we
assume to have access to the ciphertext (known ciphertext
attack) and retrieve the result for T4 with the cache-timing
attack.
The Prime&Probe method works on the last round as one
entity and consequently we have to find out which accessed
cache line correspond to which byte of the ciphertext as well
as which byte within this line was accessed. Of course it
is difficult to deduce what byte has been accessed exactly
and that is why Neve and Seifert proposed their elimina-
tion method where certain candidates for each key byte are
excluded:

k
(10)
i,j 6∈ ci,j ⊕ ¬[T4 outputs]

Here ¬[T4 outputs] refers to all T4 byte values contained
within non-accessed cache lines. The basic idea is to discard
all candidates for k

(10)
i,j which would map to not accessed cache

lines and thus cannot be candidates given the corresponding
ciphertext byte ci,j . To be more precise, let Φ be the set of
all possible key byte values. When the operation starts Φ
contains all possible byte values, i.e., Φ = {i : 0 ≤ i ≤ 255}.
The goal is to reduce those values such that only the original

key byte Φ = {k(10)
i,j } remains. To this end, we issue a couple

of encryptions with different inputs while monitoring the
cache activity. For each encryption we can eliminate some
values Φe = ci,j ⊕ ¬[T4 outputs] and thus, reduce the size
of the set Φ by assigning Φ← Φ\Φe. For more details and
examples on how the elimination method works, we refer to
the original paper [8].

3. DESIGN AND IMPLEMENTATION
In this section, we want to give an in-depth description on
how we designed and implemented our attack. We first
examine the memory cache architecture of our target system
(Sect. 3.1) and then give an explanation of the priming and
probing implementation (Sect. 3.2). Afterwards, we present
the implementation of the elimination method (Sect. 3.3)
and finally describe our attack setup in detail (Sect. 3.4).

3.1 Cache Architecture
Our Intel i7-6700HQ CPU has four physical cores, each one
has a separate L1 and L2 cache, as well as a shared L3
cache. The L1 cache is split into data and instruction cache,
both have a size of 32 KB and are 8-way associative with
64 byte cache lines. This means a 64 bit address is split
into b = log2(64) bit = 6 bit offset, s = log2(32KB/(64B ·
8)) bit = 6 bit set and t = 64 bit− (b + s) = 52 bit tag.
For this specific cache topology it does not matter whether
the cache is indexed physically or virtually, because 4096
byte pages require an offset of log2(4096) bit = 12 bit to
address bytes within one page. These 12 bit correspond to
the cache set s and the cache line offset b and thus, s and
b keep the same value regardless of whether the physical or
virtual address is used for indexing within the cache.

3.2 Cache Priming and Probing
In order to gain the knowledge about accessed memory ad-
dresses on cache line granularity we utilize the Prime&Probe
method [9]. While the theory behind the Prime&Probe algo-
rithm is fairly simple, associative caches introduce another
challenge to this problem, because Neve and Seifert describe
their attack on a direct mapped cache (cf. Sect. 2).
Unfortunately, direct mapped caches are not used by modern
Intel CPUs and we have to take a closer look at the placement
of the Gladman T-tables in memory. In the case of our 8-way
associative L1-cache we have 8 cache lines per cache-set. This
has two effects on our algorithm. First of all two addresses
having the same set bit, but belonging to different cache lines,
can be stored concurrently in the same cache set. Ultimately,
this makes an access to one of them indistinguishable from
the other, on the cache set level of our the probing step.
Secondly, in the priming phase we have to access each cache
set 8 times to be sure we filled the whole cache and force an
eviction of our own data by the victim application, as the
cache line position cannot be predicted. In fact, it could be,
if the eviction algorithm was known and deterministic, but
unfortunately this is not the case. If two cache lines of the
T4 table were stored in the same cache set, they would be
unusable for the elimination method, because if one of them
is accessed, the access would be indistinguishable from an
access to the other cache line.
A single Gladman T-table has a size of 1KB and our L1-
cache has a cache line size of 64B, so placing the T4 table in
the cache requires 16 cache sets assuming that there are no
collisions, i.e., the sets are different for each cache line. A
collision, however, is highly unlikely, because the T-tables
lie contiguously within memory. Furthermore, in our 8-way
associative 32KB L1-cache there are 32KB/(64B · 8) = 64
cache sets, hence the table fits completely into the cache.
Consequently, we can use the information about an access to
a cache set similarly compared to an access to a cache line
for direct mapped caches. Nevertheless, we cannot predict
which cache line in each set holds the T-table data. Thus,
our priming algorithm has to access every cache set 8 times
using particularly aligned addresses to fill every line and
eventually detect every single eviction.
This leads to the next challenge we need to solve: Identifying
an eviction in the probing phase. The original idea of Neve
and Seifert is to distinguish an evicted line from a present one
by the timing difference between an L1 and L2 access. The
Intel Performance Monitoring Counters (PMC) [6], however,
give us even more accurate information compared to relying
on any time-stamp counter. With the PMC, Intel introduced
a high-level interface for developers to gain access to several
CPU internal performance metrics. This data is obtained
from the so-called Performance Monitoring Units (PMU)
and contains information about L1-, L2-, as well as L3-cache
misses. The shortcoming of using the PMC to detect cache
misses is the fact that the counters need to be started from
privileged kernel space, i.e., ring zero, however they can be
read from user space afterwards.
Local attackers with superuser rights are covered by the
SGX attacker model and thus, an attacker is allowed to
run ring zero code by simply loading a kernel module. We
did not write the PMC driver ourselves, but instead we use
the Loadable Kernel Module (LKM) from Agnar Fog’s PMC
based performance test suite [5]. After starting the PMC
with the desired counters we can read the current count with

the readpmc assembler instruction from non-enclave user
space with the desired PMC identifier as argument. This
provides us with a perfect measurement for L1-cache hits
or misses. Using the PMC, our probing algorithm works as
follows:

1. Read the PMC count using the readpmc instruction.
2. Force the CPU to serialize all instructions by dispatch-

ing a dummy cpuid instruction.
3. Access the desired cache line using a particularly aligned

address.
4. Serialize all instructions again (dummy cpuid instruc-

tion).
5. Read the PMC count (readpmc instruction) and return

the difference to the last read PMC count.
If the difference is greater than zero, the particular cache line
was evicted from the L1-cache, otherwise it was present. This
procedure is repeated 8 times again to be able to catch all
evictions for a given cache set. If one difference is greater than
zero, it can be concluded that the corresponding cache line
for T4 has been accessed. The serializations with the cpuid

instruction are necessary to prevent out-of-order execution
in modern CPUs which would tamper with our results.

3.3 Elimination Method
One advantage of Neve and Seifert’s elimination method
is that it is resilient against false positives. The probing
phase provides us with information about the accessed cache
lines during the last round. Theoretically we could perform
a probing request successively to each cache set one after
the other. This way we would receive the access pattern
of a ciphertext with a single encryption. Unfortunately, we
encountered that accessing certain cache lines of the T-table
has influence on other subsequent cache lines of the T-table,
which get preloaded in their particular set. Consequently, we
decided to probe each cache set separately for each ciphertext,
which results in 16 encryptions per ciphertext until we receive
the whole access pattern.
While this would be sufficient for the elimination algorithm,
we additionally decided for fault-tolerance. In addition to
probing each cache line once, we provide a possibility to
repeat the overall process a certain number of times and to
count each line evicted more often than a certain threshold
as accessed line. The repetition rate and the threshold are
configurable and can be adapted by the attacker. If each
cache line is only probed once, i.e., no repetition, no threshold
is used as well. While smaller repetition rates result in less
encryptions needed to receive the secret key, higher ones
cause less fluctuation in encryptions needed per ciphertext.
We decided to set a repetition rate of 20 and a threshold of
five as default values if fault-tolerance is enabled.
Whenever a cache line has been evicted less often than the
threshold value and is consequently counted as not accessed,
all corresponding key byte candidates are removed from the
remaining possibilities for every key byte according to Neve
and Seifert’s algorithm. This is repeated until only one value
remains for each byte which immediately leaks the secret last
round key. Afterwards, the fact that Rijndael’s key schedule
is reversible is used to calculate the secret key based on the
last round key.

3.4 Attack Setup
Our attack design consists of one application with two threads
pinned to two logical CPUs sharing the same physical core

L1-Cache

Physical CPU-Core 0

Logical CPU-Core 0 Logical CPU-Core 4

Attacker
Thread

Victim
Thread

Process

Enclave

Figure 1: Our attack setup consisting of one appli-
cation with two threads pinned to two logical CPUs
sharing the same physical core and L1-cache.

as shown in Figure 1. The victim thread runs an OpenSSL
AES implementation which is known to be vulnerable to
cache-timing attacks within an SGX enclave. The encryption
key is generated within this enclave and never leaves it. The
attacker thread executes regular ring 3 code in non-enclave
mode. It takes care of priming, probing, and the elimination
by reading and comparing PMC values.
Furthermore, communication is exclusively performed using
shared memory, no process context switches occur, and the
enclave is never exited. This setup combines specific pos-
sibilities of root-level attackers within one single root-level
cache-timing attack. It demonstrates that long-term secrets
within enclaves that would usually never be exposed to the
non-enclave world can be obtained using cache-timing attacks.
Our implementation aims to serve as a case study and shows
that software developers writing enclave code need to take
particular care when it comes to crypto implementations.

Communication with Shared Memory.
To demonstrate cache-timing attacks, often a classic client-
server application is deployed in such a way that the two
involved processes are pinned to the same CPU core. When
porting this setup to SGX enclaves we would need to handle
the communication outside of the enclave, because certain
instructions such as system calls are not allowed within
enclaves. System calls, however, are needed to communicate
between the client and the server such that the enclave has
to be exited first. Unfortunately, this setup implies using
ECALLs and OCALLs which introduce too much noise, at
least when used with the official Intel SGX SDK. In fact,
they evict the whole T4 table when triggering the encryption
function after the priming step which makes the detection of
accessed cache lines in the probing phase impossible.
When designing our victim application, we came to the con-
clusion that it is not possible to perform a cache-timing
attack solely focusing on the L1-cache, whenever an ECALL
or OCALL is included between the measurements. This left
us with two options. First, we could focus on lower cache
levels. Second, we can build our victim application in a
way that it does not have to leave enclave mode during the
measured section. While the first option is an interesting
path to pursue in future work, we decided to continue with
our attack focused on the L1-cache. We solved the commu-

nication problem inside the enclave mode by allocating and
using shared memory and utilizing control flags. Our attacker
process copies the particular plaintext to the shared memory
and triggers the encryption process by setting a particular
flag. The enclave is actively waiting for this flag to be set
and immediately starts the encryption process. Afterwards,
it sets a flag itself to signal the end of the encryption. The
attacker already waits for the encryption to finish and reads
the ciphertext from the shared memory. Finally, it continues
with the next plaintext. This setup allows the attacker to
perform the priming right before and the probing right after
the encryption. Shared memory is a well-known and fast
communication technique which can be used between SGX
enclaves and unprotected code as well. The control flags are
used to reduce the synchronisation effort. Finding the right
timing for a regular encryption loop, would lead to the same
results, but complicate our setup.

Attacker and Victim Thread.
Using two separate processes for attacker and victim still does
not allow us to observe the cache activity. The reason for
that results in the fact that the L1-cache operates on virtual
addresses. Whenever a process switch occurs, the CPU has
to replace all the memory abstractions of the current process
with the ones of the next process. This includes the page
tables which are necessary for translating virtual addresses
to physical ones. In order to set the correct page tables,
the CPU has to update the CR3 register which contains the
base address of the current page directory. Unfortunately,
changing the page tables invalidates all information connected
to virtual addresses. Consequently, a write to CR3 will trigger
a Translation Lookaside Buffer (TLB) and L1-cache flush,
as well as flushing all other virtually tagged caches. In our
scenario, the L1 cache would be flushed every time we switch
from the attacker to the victim or vice versa occurring after
the priming step and thus, destroying our probing results.
Consequently, we changed our scenario to have the attacker
in the same process as the victim, but within two different
threads. To this end, we pinned two kernel-level threads
on the same core using the PThread threading library. In
our implementation the attacker enters the victim enclave
within a separate thread in the process and again uses shared
memory for communication. Additionally, we eliminated
every system-call in between the encryption and probing
phase, forcing both parties to perform active waiting. Note,
however, that in our SGX scenario the enclave contents are
the only parts being protected, and hence, manipulating the
surrounding application or the operating system is covered
by the strong attacker model of SGX.

HyperThreading.
Having two threads pinned on the same CPU did not provide
us with the measurements we expected either. The reason is
that whenever the kernel switches between the execution of
the two threads, the CPU has to enter or leave the victim
enclave which, although less expensive than an enclave exit
triggered by software through an ECALL, still causes enough
evictions in the L1-cache to evict the whole T4 table and
to ultimately destroy our probing measurements. In fact,
this leads to a contradiction: In order to work on the same
L1-cache we need to operate both threads on the same core
and simultaneously they need to operate on different cores
to omit the enclave exit. At a first glance, it seems impos-

sible to satisfy both requirements, but luckily modern Intel
CPUs include a feature which helps to indeed satisfy both
requirements, called HyperThreading. With HyperThreading
usually two logical CPUs per physical core are offered, for
example, by duplicating the Arithmetic Logic Unit (ALU)
but sharing everything else including the L1-cache. Hence,
we decided to pin the attacker thread and the victim thread
running in enclave mode to two different logical CPUs which
are mapped to the same physical core. This way enclave exits
are omitted while still sharing the same L1-cache between
both threads. With superuser privileges controlling the hy-
perthreading affinity, i.e., pinning the threads to appropriate
logical CPUs, is easily possible, for example, by using the
sched_setaffinity() system call.

Enclave Interaction.
To plausibly demonstrate that our implementation is able to
extract unknown secrets from enclaves, our victim enclave
generates an AES key with the help of sgx_read_rand()

provided by the SGX SDK within the enclave. Additionally,
the victim enclave contains functions to safely store and load
this key afterwards by utilizing SGX’s sealing mechanism.
Furthermore, it contains a function for encrypting single
blocks as well as an endless encryption loop. In the actual
attack, the attacker thread creates random plaintext and
triggers the encryption inside the enclave, which runs just
until the start of the last round and waits for the next flag.
In the next step it issues its priming algorithm which fills all
the T4 table’s cache lines. After priming, the attacker thread
sets the particular flag, in order to signal the execution of the
last round to the enclave. When the encryption has finished,
it continues the attack, by issuing the probing algorithm and
feeding the results to the elimination method. Those steps
are repeated until all key bytes have been reduced to one
remaining possibility. Finally, the attacker thread verifies the
result by creating a decryption key, which is used to decrypt
a string encrypted by the enclave beforehand. Note, that the
AES key is never leaving the secured enclave and without
the attack would not be accessible besides within the victim
enclave itself.

4. EVALUATION
All attacks have been executed on a notebook with a 2.60GHz
Intel Core i7-6700HQ CPU and 16GB of RAM, running
Ubuntu Linux 14.04 LTS (Trusty Tahr). We evaluate our
implementation regarding performance (Sect. 4.1) and prac-
ticability with respect to real-world scenarios (Sect. 4.2).

4.1 Performance
In order to measure the performance of our attack, we take
two different scenarios into account. For each scenario, we
perform 5000 attacks with different keys and let each attack
run until the respective key can be retrieved. To evaluate
the performance we measured for each attack the overall
time required to leak a secret key, as well as the amount of
required elimination rounds, i.e., how many encryptions and
thus ciphertext blocks are needed.
For the first scenario, we perform the eviction detection with
a threshold of 25% by repeating the probing step for every
cache line 20 times and handling every line which has been
evicted more than five times as an accessed one. On average,
this approach requires 30 elimination rounds to reduce the

0 20 40 60

0

50

100

rounds

lo
g 2

#
ca
n
d
id
a
te
s

Figure 2: Number of remaining key candidates after
each elimination round with 25% threshold.

0 20 40 60 80 100 120 140

0

50

100

rounds

lo
g 2

#
ca
n
d
id
a
te
s

Figure 3: Number of remaining key candidates after
each elimination round without threshold.

number of possible key candidates down to one. With each
round requiring 20 · 16 = 320 encryptions, the attack needs
an average number of 9600 encryptions to leak the secret key.
On our target system this takes an average time of 5 minutes
and 29 seconds. Figure 2 shows the average number of re-
maining key candidates after each elimination round. It can
be seen that the number of possible key candidates decreases
almost exponentially and after approximately 15 rounds only
half of all possible key candidates remain. Furthermore, the
minimum and maximum number of remaining candidates
shows that our average number of candidates stays close to
the minimum. Although the elimination method is not prone
to false positives, the threshold helps to prevent arbitrary
evictions to be included in the result. Consequently, the
deviations for the number of remaining candidates per elimi-
nation round are rather low compared to the next scenario.
For the second scenario, we measure the performance without
any threshold, i.e., we only probe once per elimination round.
Interestingly, on average this setup requires the same amount
of elimination rounds, but due to the reduced probing fre-
quency, only 16 · 30 = 480 encryptions are necessary for all
elimination rounds together. Consequently, the time to leak
the secret key is drastically reduced down to only 10 seconds
on average. When comparing the results from Figure 3 to the
previous scenario, however, we observe a significant increase
in the deviation of remaining candidates per elimination

round. This means that it is more likely that without a
threshold a larger amount of elimination rounds is needed
for certain secret keys. Nevertheless, the average number of
elimination rounds remains roughly constant which means
that faster results are usually achieved without threshold.

4.2 Practicability
The victim enclave is currently run in debug mode. While
the functionality SGX provides in debug mode is similar to
production mode, certain security features are disabled. In
production mode, Intel provides the possibility to suppress
performance monitoring activities by entering a so-called
opt-out enclave (see Sect. 43.6 of the Intel SDM [6]) which
sets the Anti Side-channel Interference (ASCI) bit within
the IA32_PERF_GLOBAL_STATUS MSR. If this bit is set, the
PMC are not accumulated normally, but instead activities
by the enclave are not counted. While we could not test
the effect of this bit on our attack, we are confident that it
does not affect the attack. The reason is that we first prime
the cache, then execute the last round of AES within the
enclave, and finally probe the cache from the attacker thread
outside of the enclave. The PMC are only used during the
probing phase, i.e., the last phase, and only from the attacker
thread (see Sect. 3.2). Consequently, even if the ASCI bit
is set and the cache activities by the victim enclave are not
counted, the activities by our attacker thread are counted.
This is based on the assumption that for two threads running
in parallel on a single core (hyperthreading case) the ASCI
bit does not affect counting activities of the core running
non-enclave code.
For our implementation, we use a Gladman AES implementa-
tion adopted from an old version of OpenSSL (version 0.9.7a)
known to be vulnerable against certain types of cache-timing
attacks. As our goal is to demonstrate that SGX enclaves in
general are indeed vulnerable to cache-timing attacks, this
choice is reasonable.
Interestingly, the AES implementation within the official
Intel SGX SDK for Linux is not making use of AES-NI and
implements AES in software instead, even though AES-NI
instructions would be usable within enclaves. The software
implementation used is almost a textbook version of AES
without the use of Gladman tables. Intel manually included
instructions, though, which perform an access to all S-Box
indices in each round causing cache evictions for all S-Box
entries. Consequently, Neve and Seifert’s elimination method
is not applicable to the AES implementation from the SGX
SDK either, because there are no cache lines which have
not been accessed and would allow to eliminate key byte
candidates. However, the question is raised, why Intel did
not just use AES-NI when they apparently were aware of the
threat through cache-timing attacks.

5. CONCLUSION
In this paper, we demonstrated an access-driven cache-timing
attack against an AES implementation running within an
SGX enclave. In particular, our implementation is able to
derive the secret key of an AES Gladman implementation
taken from OpenSSL. The attack deterministically retrieves
the key within an average time of less than 10 seconds.
Our work stresses the difficulties of protecting sensitive in-
formation such as encryption keys on untrusted platforms.
Although SGX is often expected to secure an application
against all kinds of software or hardware attacks with only

the CPU package considered trusted, this is not true for
cache-timing attacks and forces developers to protect their
applications themselves.

Acknowledgments
This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89).

6. REFERENCES
[1] Anati, I., Gueron, S., Johnson, S., and Scarlata,

V. Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy (2013), p. 10.

[2] Baumann, A., Peinado, M., and Hunt, G. Shielding
applications from an untrusted cloud with haven. In
11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Oct. 2014), pp. 267–283.

[3] Brasser, F., Müller, U., Dmitrienko, A.,
Kostiainen, K., Capkun, S., and Sadeghi, A.-R.
Software Grand Exposure: SGX Cache Attacks Are
Practical. arXiv:1702.07521, Feb. 2017.

[4] Costan, V., and Devadas, S. Intel sgx explained.
Tech. rep., Cryptology ePrint, Report 2016/086.

[5] Fog, A. Test programs for measuring clock cycles and
performance monitoring.
http://www.agner.org/optimize/#testp, Sept. 2016.

[6] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, 325462-061us ed., 2016.

[7] McKeen, F., Alexandrovich, I., Berenzon, A.,
Rozas, C. V., Shafi, H., Shanbhogue, V., and
Savagaonkar, U. R. Innovative instructions and
software model for isolated execution. In Proceedings of
the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (2013).

[8] Neve, M., and Seifert, J.-P. Advances on
access-driven cache attacks on aes. In International
Workshop on Selected Areas in Cryptography (2006),
Springer, pp. 147–162.

[9] Osvik, D. A., Shamir, A., and Tromer, E. Cache
attacks and countermeasures: The case of AES. In
Topics in Cryptology - CT-RSA, San Jose, CA, USA,
Proceedings (2006), pp. 1–20.

[10] Schuster, F., Costa, M., Fournet, C.,
Gkantsidis, C., Peinado, M., Mainar-Ruiz, G.,
and Russinovich, M. Vc3: Trustworthy data analytics
in the cloud using sgx. In 2015 IEEE Symposium on
Security and Privacy (May 2015), pp. 38–54.

[11] Schwarz, M., Weiser, S., Gruss, D., Maurice, C.,
and Mangard, S. Malware Guard Extension: Using
SGX to Conceal Cache Attacks. arXiv:1702.08719, Feb.
2017.

[12] Weichbrodt, N., Kurmus, A., Pietzuch, P., and
Kapitza, R. Asyncshock: Exploiting synchronisation
bugs in intel sgx enclaves. In European Symposium on
Research in Computer Security (2016), Springer.

[13] Xu, Y., Cui, W., and Peinado, M.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE Symposium
on Security and Privacy (2015), pp. 640–656.

