
Isolating Operating System Components with Intel SGX

Lars Richter, Johannes Götzfried, and Tilo Müller
Department of Computer Science

FAU Erlangen-Nuremberg
{lars.richter,johannes.goetzfried,tilo.mueller}@fau.de

ABSTRACT
In this paper, we present a novel approach on isolating
operating system components with Intel SGX. Although SGX
has not been designed to work in kernel mode, we found a way
of wrapping Linux kernel functionality within SGX enclaves
by moving parts of it to user space. Kernel components are
strictly isolated from each other such that a vulnerability in
one kernel module cannot escalate into compromising the
entire kernel. We provide a proof-of-concept implementation
which protects an exemplary kernel function, namely full disk
encryption, using an Intel SGX enclave. Besides integrity
of the disk encryption, our implementation ensures that the
confidentiality of the disk encryption key is protected against
all software level attacks as well as physical attacks. In
addition to the user password, we use a second authentication
factor for deriving the encryption key which is stored sealed
and bound to the platform. Thus, stealing the hard drive and
sniffing the user password is insufficient for an attacker to
break disk encryption. Instead, the two factor authentication
scheme requires an attacker to additionally obtain the actual
machine to be able to break encryption.

CCS Concepts
•Security and privacy → Trusted computing; Operat-
ing systems security;

Keywords
Intel SGX, Linux Kernel, Isolation

1. INTRODUCTION
The protection of computer systems against malicious ap-
plications and the isolation of software components is still
a difficult task for software developers, software architects
and researchers. Many attempts have been made to secure
modern systems but the rising complexity and dependen-
cies of big applications allow highly sophisticated attacks to
succeed. If one software component within a given system
is compromised, it is often easy to compromise the other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SysTEX ’16, December 12-16 2016, Trento, Italy
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4670-2/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/3007788.3007796

components with the help of privilege escalation. This is
especially true for compromised software components within
the operating system as one compromised operating system
component can easily compromise other components of the
kernel without the need for further vulnerabilities. To enforce
isolation of operating system components even in the event
of a partially compromised kernel, trust needs to be rooted,
for example, in hardware.
In 2013, Intel published the Intel Software Guard Extensions
(SGX) in a series of papers [17, 1]. With SGX, software
can be executed within containers, so called enclaves, which
are shielded from all other software running on the system
including privileged software such as the operating system
or the hypervisor. The Intel Skylake processor, released in
October 2015, allows the creation and execution of SGX
enclaves via its extended instruction set. Various researchers
already published their ideas and proof of concepts of how
applications can benefit from SGX [2, 20].
For most proposals it is assumed that the system is initially
uncompromised and that an attacker enters the system from
the outside, for example, from the network interface or other
peripheral devices of the computer. Furthermore, even if
one malicious application is executed on the system, it is
assumed that at least the operating system can be trusted.
Since operating systems have a huge code base these days
and vulnerabilities in operating systems are quite common,
this assumption does not necessarily hold true.
The security model of Intel SGX states that only the CPU
needs to be trusted and all software including applications
and the operating system is considered untrusted. Secured
containers (trusted enclaves) are protected by hardware mech-
anisms and no malicious application, operating system or
virtual machine monitor can access the information in the
secured container. Furthermore, the memory belonging to
these containers is transparently encrypted by the CPU to
defend against physical hardware attacks and enclaves can
attest their current state to a remote party to prove that
they have not been modified during loading.
Given the security model of SGX with its strong security
guarantees and protection mechanisms against potentially
malicious high-privileged system software, SGX looks like a
promising hardware extension to shield kernel components
against each other and enforce isolation of specific parts
within an operating system. However, SGX enclaves can
only be entered from ring three (user mode) and not ring
zero (kernel mode). Consequently, it is not directly possible
to put kernel functionality within SGX enclaves and to use
this functionality from non-protected parts of the kernel.

To still be able to provide isolation for operating system
components, we developed a solution for moving parts of an
operating system kernel to user space and protecting those
parts with the security features provided by Intel’s SGX.

1.1 Our Contribution
In this paper, we present a generic concept to provide SGX
security guarantees for operating system components. Our
concept provides tamper resistance for kernel functionality
and is able to strictly isolate operating system components
from each other. To the best of our knowledge, we are the
first showing that Intel SGX can be used to secure kernel
functionality. In detail our contributions are:
• Instead of shielding user mode applications from other

user mode applications, we leverage SGX to secure
Linux kernel modules. Similar to a microkernel, kernel
components are isolated from each other such that a
vulnerability in one kernel module cannot escalate into
compromising the kernel. Furthermore, our solution
prevents privileged malicious user space applications
from attacking secured kernel modules.
• Because SGX has not been designed to work in kernel

mode, we present a generic concept to move parts of
the kernel to the user space and then protect the given
functionality by wrapping it in SGX enclaves.
• We provide a proof-of-concept implementation of our

concept which protects one kernel function, namely full
disk encryption, using an Intel SGX enclave in user
space. Our implementation is seamlessly integrated
by using the Linux Crypto API; the integrity of the
disk encryption as well as the confidentiality of the
encryption key is protected against all software level
attackers. In addition, the disk encryption key is also
protected against physical attacks.
• Compared to usual disk encryption solutions, our pro-

totype derives the encryption key not only from a user
password but also from a second factor bound to the
machine. This factor is stored sealed by the platform
such that it can only be used indirectly by a software
attacker on that same platform. Retrieving the user
password and stealing the hard drive is insufficient for
breaking disk encryption.
• We evaluated our prototype regarding correctness, se-

curity, and performance. Although our solution is a
step forward in terms of security, it imposes a notable
performance overhead up to factor 100.

Our implementation is free software published under the
GPL v2. It is available at https://www1.cs.fau.de/sgx-

kernel.

1.2 Related Work
Basic isolation concepts, like horizontal isolation of the sys-
tem layer against applications, and vertical isolation of appli-
cations against each other, are available in modern operating
systems since decades [23]. These basic isolation concepts
are supported by hardware extensions like an MMU/MPU
and CPU protection rings. To guarantee tamper resistance
of software components also in the presence of attackers with
system level privileges, however, stronger degrees of isolation
are required. These degrees of isolation can only be provided
by new hardware extensions that have an immutable trust
anchor, such as the Trusted Platform Module (TPM) [24]
which is deployed, for example, by Flicker [16].

Today the TPM is widely deployed as dedicated chip, as it
does not rely on CPU modifications. The security guarantees
are weaker compared to SGX because not only the CPU
packages but also the TPM chip and buses are considered
trusted. As the Trusted Computing Base (TCB) consists
of the whole software stack including the operating system
kernel, using the TPM for protecting only parts of an appli-
cation or the operating system is impracticable. Hence, the
TPM today is almost only used at boot time, for example,
by Microsoft BitLocker.
To overcome the restriction of all software having to be part of
the TCB, Intel introduced the Trusted Execution Technology
(TXT), which also uses the TPM, but additionally allows to
dynamically establish a new root of trust for software running
in a virtualized environment besides the software stack. TXT
ensures that the virtualized software has exclusive control
over the device by suspending all other software, i.e., the OS
and all running applications. However, suspending all other
software of a device for the TXT software to run, negatively
impacts performance and might even lead to losing interrupts
depending on its size. Furthermore, TXT does not provide
RAM encryption and is thus prone to physical attacks on
main memory. Fides [22] and TrustVisor [15] are academic
prototype implementations which build on the functionality
of Intel TXT.
Besides the commercial trusted computing solutions SGX,
TPM, and TXT, there are numerous academic proposals for
small embedded devices [19, 10, 14] as well as for general
purpose computers [5, 7]. So far, Intel SGX has been used
in an untrusted cloud context [2, 20]. To the best of our
knowledge, however, there is currently no solution which
leverages SGX to isolation for operating system components.

2. BACKGROUND: INTEL SGX
Just recently, Intel provided an open source version of the
Intel SGX SDK for Linux which we used for our proof-of-
concept implementation. For a detailed description of SGX
itself, please refer to the official Intel SGX Instruction Set
Reference manual [12]. Furthermore, there is an exhaustive
summary paper by Costan and Devadas [6] which we highly
recommend for a deep understanding of SGX internals.
The SGX software and hardware stack consists of multiple
parts as shown in Figure 1. The basis builds an SGX-enabled
CPU with an extended instruction set and memory access
mechanisms. These instructions are used to create, launch,
enter and exit an enclave. Memory for an enclave is allocated
within the Enclave Page Cache (EPC) which is part of the
Processor Reserved Memory (PRM) and protected with the
help of a Memory Encryption Engine (MEE).

SGX Module

Architectural Enclaves

SGX libraries

SGX CPU Processor Reserved Memory (PRM)

Enclave

SGX AESM Serviceuser space

kernel space

Host Application

Figure 1: High-level overview of the SGX hardware
and software stack.

The host application is an untrusted component. The un-
trusted host application can call trusted functions inside the
enclave. Neither the input to the enclave, nor the output of
the enclave can be fully trusted because a malicious operat-
ing system could modify inputs and outputs of the enclave.
Thus, the enclave author has to be aware of this fact and, for
example, take care of properly sanitizing enclave input data.
To initiate the enclave, a launch token is needed which can
be retrieved with the help of Intel’s Launch Enclave (LE).
For convenience, the access to the Launch Enclave and other
architectural enclaves such as the Quoting Enclave (QE)
and the Provisioning Enclave (PE) is provided by the Intel
AESM service in user space. SGX libraries provide necessary
functionality to communicate with the AESM service.
As stated previously, enclaves can only be entered in user
space. However, creating and initiating an enclave is only
possible from kernel space. Therefore, a privileged SGX
kernel module must be installed on any system providing
SGX for user mode applications. The SGX kernel module
takes care of managing the EPC and dispatching specific
SGX instructions needed for enclave initialization.

3. DESIGN AND IMPLEMENTATION
In this section, we show how isolation between Linux kernel
components can be enforced with the help of SGX.

3.1 Architecture
As described in Section 1, it is not possible to enter an enclave
from kernel space. An enclave’s code has always to be exe-
cuted in ring three with a reduced set of allowed instructions
and a limited amount of available memory. Furthermore,
it is not possible to initiate an enclave on its own but in-
stead the Intel Launch enclave must be used to generate the
appropriate launch token.
To overcome these major limitations of SGX, we decided to
build an architecture which moves part of the kernel function-
ality to user space such that the core functionality can then
be wrapped by an enclave. This enclave is implemented by
a user space service or daemon which calls the Intel Launch
enclave for initialisation. Once the enclave is running, func-
tionality within the enclave can be used by the daemon.
Consequently, the kernel first has to communicate with the
daemon which then passes the request to the enclave.

Daemon

Enclave

Netlink

LKMKernel Space API

Kernel Space

User Space

User Space API

Sealed Data

Figure 2: An LKM using functionality wrapped by
an enclave. The LKM communicates with a user
mode daemon which forwards the requests to the
enclave residing in user space.

Figure 2 shows the architecture which enables Linux kernel
modules to use functionality wrapped by SGX enclaves. On
the one hand, the LKM uses the API of the Linux kernel

to provide a certain functionality within the kernel. On
the other hand, the LKM communicates with a user space
daemon via a Netlink interface to send certain requests or
receive responses. The daemon just forwards the requests and
responses to and from the enclave and thus, the enclave is able
to provide functionality to the LKM which the LKM itself
provides to the kernel. In addition, the daemon is allowed to
interact with other user space applications if necessary and
stores sealed data of the enclave. Consequently, the enclave
and thus the LKM is able to securely store persistent data
across reboots.
To start and initialize the daemon, the LKM uses the user
mode helper API of the Linux kernel. After the daemon has
been started, it informs the kernel about its state and then
data can be transferred.

3.2 Communication
During our work, we tested different communication protocols
for exchanging data between kernel and user space. Netlink
interfaces have the advantage that they can be easily used by
kernel modules and no patching of the kernel itself is required.
Furthermore, it is possible to implement callback functions
on incoming Netlink messages in kernel and user space, thus
avoiding polling. A drawback of the Netlink communication
is reduced throughput. Nevertheless, Netlink interfaces are
used in this work because a reliably bidirectional connection
is more important than maximal performance.

3.3 Prototype Implementation
We provide a prototype implementation of our architecture
and use it in the scope of full disk encryption. Figure 3 shows
a specialized version of Figure 2. Our LKM registers a new
cipher within the crypto API of the Linux kernel which can
then be used by dm-crypt. The encryption algorithm used
for full disk encryption is implemented within an enclave,
and thus it is guaranteed that the implementation cannot be
tampered with. The key used for disk encryption is securely
derived within the enclave from a password chosen by the
user and a device specific salt. The user password can be
entered with the help of a tool which communicates with the
daemon directly in user mode and the salt is stored sealed
to the enclave identity. Consequently, it cannot be unsealed
on a different device.

Daemon

Encryption Enclave

Netlink

Encryption LKMCrypto APIdm-crypt

Kernel Space

User Space

Password Tool

Sealed Salt

Figure 3: Our generic architecture used in the scope
of full disk encryption. The encryption algorithm is
securely executed within an enclave.

Full disk encryption is a well-known procedure to guarantee
the confidentiality of sensitive data even in the event of at-
tackers having physical access to a computer system. When
the device is turned off, the data is at rest and no crypto-
graphic keys are stored on the device. When it is turned

on, however, the user must insert a passphrase to initialize
the cryptographic cipher. For almost all full disk encryption
solutions, the password and the resulting key are stored in
clear within main memory. Our implementation, however,
stores the key securely within an enclave and protects it by
logical and physical means provided by SGX.

3.4 Protection against Physical Attacks
Besides isolation, we also provide protection against physical
attacks which is especially useful in the context of full disk
encryption. Currently, there are only very few disk encryp-
tion solutions which protect the disk encryption key from
physical attacks on main memory. TRESOR [18, 9] and
ARMORED [8] use the debug registers of Intel and ARM
processors instead of RAM to store the encryption key and
all intermediate states of the encryption algorithm. Conse-
quently, sensitive key-related data is not stored in RAM and
cannot be retrieved with physical hardware attacks.
Multiple attacks on sensitive data in main memory exist
and some can be used against TRESOR and ARMORED.
Cold boot attacks on RAM allow the retrieval of encryption
keys after the system is turned off [11]. Sensitive data from
main memory can also be obtained using DMA attacks, for
example, via Firewire [4] or USB OTG [13]. TRESOR and
ARMORED generally prevent against cold boot attacks, but
not DMA attacks, because the control flow of the kernel can
be changed to extract keys [3].
In contrast to TRESOR and ARMORED, our solution not
only protects against cold-boot attacks, but also against DMA
attacks, because SGX ensures that no peripheral device is
able to read enclave memory. Furthermore, the use of a sealed
salt adds another factor to the encryption key generation.
Even if the user password could be retrieved from main
memory, it is still not sufficient to derive the actual encryption
key because the salt as well as the derived key is never stored
outside the enclave in clear.

3.5 Detailed Workflow
The overall functionality of our implementation is spread be-
tween the LKM and the user space daemon. In the following,
the initialisation sequence, the key setting process, and the
encryption and decryption functionality will be described.

Initialising LKM and daemon.
When the kernel module is initialized, it registers a Netlink
family to communicate with the daemon. Once the Netlink
socket is created, it starts the daemon via the user mode
helper API. The daemon then creates and starts the enclave.

Setting password using the daemon.
Because using the key setting functionality of the crypto
API would leak the key or password to main memory, we
provide a possibility to directly set the password using only
the daemon. To this end, the daemon opens a named pipe
and waits until the password is written to that pipe.

Deriving disk encryption key.
After the password has been read from the user, the daemon
loads a predefined file from disk which contains the sealed
salt. The enclave checks if the sealed salt is valid and unseals
it. If the sealed data is not valid, it will generate a new
salt and seal it. PBKDF2 is used to finally derive the disk
encryption key from the user password and the salt.

Establish Netlink communication.
The daemon creates the same Netlink interface as the kernel
module and sends an initialization succeeded message to the
kernel. The kernel receives the message and registers the
new cipher at the crypto API.

Data encryption and decryption.
After initialization, the encryption and decryption process are
straight forward. The encrypt and decrypt callback functions
of our LKM are called by the user of the crypto API. The
LKM then sends a Netlink message to the daemon, which
calls the encrypt and decrypt functions of the enclave. The
enclave performs the requested cryptographic operation and
returns the encrypted or decrypted block which is passed
back to the kernel via Netlink. Finally, the kernel module
copies the block to the destination given by the caller of the
crypto API and returns.

3.6 Enclave Cryptography
To register a new cipher within the crypto API, at least
routines for encryption and decryption need to be provided.
Usually also a key setting routine is required, but because
we set the key using our daemon directly, we do not need to
implement this routine for the crypto API.
The easiest way to provide a new cipher within the crypto
API is to register a bare block cipher such as AES, because it
allows the crypto API to combine the bare block cipher with
all modes of operation that are already implemented in the
kernel. Intel provides a cryptography library together with
th SGX SDK, but it is only possible to use AES together
with preselected modes of operation. We therefore decided to
use a small Intel AESNI library which provides a standalone
bare block cipher implementation of AES with multiple key
sizes and uses AESNI, Intel’s hardware AES instructions.

4. EVALUATION
In this section, our prototype implementation is evaluated re-
garding correctness (Section 4.1), performance (Section 4.2),
and security (Section 4.3).

4.1 Correctness
The correctness of our implementation regarding the encryp-
tion and decryption functionality has been tested in different
ways. The crypto API of the kernel provides a test manager
which initializes a given cipher, sets a predefined key, and
then checks encrypted and decrypted blocks with different
sizes against predefined test vectors. Only if the resulting
blocks are equal to the ones stored within the test vectors,
the implementation is correct.
When using PBKDF2 with the user password and the salt
as input, the data will be encrypted with a different key
compared to the user password being directly passed to the
crypto API. To still be able to test the functionality of our
implementation, the enclave was temporarily modified to
print the PBKDF2 derived key to the host application. Once
this key was fed into the crypto API directly, we could verify
that encrypted and decrypted blocks are equal and thus our
implementation is correct.
Furthermore, we were able to encrypt and decrypt partitions
over multiple reboots and thus verified that the key can
always be derived on the computer using the same user
password and sealed salt.

4.2 Performance
We compared our implementation to the standard AES im-
plementation of the Linux kernel in a full disk encryption
scenario. In addition we compared both variants to a non-
encrypted disk access. All tests have been performed on
a Dell Inspiron 7559 notebook with an Intel i7-6700HQ
CPU, sixteen gigabytes of main memory, and a Seagate
ST1000LM024 hard drive. We used a vanilla version of the
Ubuntu 15.10 distribution running Linux kernel version 4.4.7.
During the design, it became clear that the multi-layered
approach will result in many context switches which decrease
performance. Our performance tests show that this assump-
tion is true. In Table 1, three different performance tests
with our implementation, the default Linux AES implemen-
tation and unencrypted disk access is shown. Three different
partitions were mounted on the same hard disk for this evalu-
ation and 24 tests have been executed before calculating the
median of the results. The Linux command line tool dd was
used to analyse the write speeds and hdparm for measuring
the read speeds.

Test Plain AES SGX

dd 100mb block write 107.0 104.5 1.1
hdparm uncached read 110.1 113.7 1.1
hdparm cached read 13,289.5 12,004.3 1,576.7

Table 1: Reading and writing speeds in MB/s of dif-
ferent operations with plain disk access, the default
AES implementation, and our implementation.

In detail, dd was executed with the parameters fdatasync

and notrunc using a block size of 100 megabytes. This results
in a physical non-truncated write of one file with the size of
exactly 100 megabytes. After dd has completed its operation,
the average write speed for that operation is printed.
The tool hdparm was executed with both, the -t and -T

option. The first option performs uncached disk reads and
the buffer cache is cleared before performing the read. The
second option performs cached reads and displays the reading
speed from the Linux buffer cache without forced disk access.
Our implementation reaches about 1% of the read and write
performance with forced disk access and about 10% of the
read performance using the buffer cache. To write one en-
crypted block to disk, the kernel must send the data block
over the Netlink bus to the daemon. The daemon must enter
the enclave, which is another context switch, and then the
enclave is able to encrypt the block using AESNI instructions.
In return, the enclave sends the encrypted block back over
the Netlink bus via the daemon to the LKM. Our implemen-
tation is meant to be a proof-of-concept for demonstrating
that isolating kernel components using SGX is possible and
improving the performance is part of future work.

4.3 Security
In this section, we first show why our design prevents wrapped
kernel components from being tampered with. Second, we
evaluate the security of our prototype implementation re-
garding physical hardware attacks.
Functionality moved to user space and wrapped by an en-
clave as shown in Section 3 is protected against all software
attackers due to the strong security guarantees of Intel SGX.
Even if the kernel is compromised, the kernel component

within the enclave cannot be tampered with because accesses
are prevented by protection mechanisms in hardware. Even
though SGX does not support entering enclaves in ring zero,
we found a way to protect ring zero functionality with SGX.
Our prototype implementation derives the disk encryption
key within an enclave. At no point during the whole enclave
lifecycle, the key is passed to the outside world. Furthermore,
the salt is generated randomly and unknown outside the
enclave as well. Consequently, any attempt to retrieve the
key or the salt by physically acquiring main memory will fail.
Of course, it is still possible to physically attack a system
running our prototype and, to use a copy of it as a black box
to encrypt and decrypt data. For the attack to succeed, how-
ever, an attacker must obtain all of the following components
of the cryptographic system:
• user password
• sealed salt
• unmodified enclave which sealed the salt
• CPU on which the salt was sealed

The user password and the salt are needed as input for
PBKDF2 to derive the encryption key. The salt can only
be unsealed with the very same enclave on the same CPU,
because it is bound to the enclave and the CPU. Consequently,
it is not sufficient to steal the user password which makes our
solution practically stronger than TRESOR and ARMORED,
where it is sufficient to steal the password. We also verified
that the user password which at some point has to be entered
by the user and sent to daemon does not reside in RAM by
using the Linux Memory Extractor (LiME)1.
Contrary to the user password, the sealed salt can be retrieved
through a physical hardware attack at any time. Even though,
the sealed salt cannot be unsealed without possessing the
actual device, it is recommended storing the sealed salt on
a removable storage device such as a thumb drive and only
connect it to the computer if the encrypted partition needs
to be mounted. This way, the computer needs to be stolen,
the password needs to be retrieved, and also the removable
storage device needs to be acquired to finally be able to
decrypt sensitive data.

5. CONCLUSION AND FUTURE WORK
In this section, we give an outlook over future research direc-
tions and conclude our work.

5.1 Future Work
Although our solution works quite well as a prototype, perfor-
mance must be improved in future versions of the implemen-
tation. There is a lot of research comparing the throughput of
the Linux Netlink interface to other communication channels
like, for example, SYS V Message Queues and SYS V Shared
Memory [21]. It has been shown that compared to the SYS V
Message Queues, the Netlink user-to-kernel communication is
around 30%, the kernel-to-user communication around 55%,
and the startup time around 66% slower in terms of processor
cycles. SYS V shared memory has a higher throughput, but
needs longer startup times than message queues.
Single block cryptography leads to small chunks of data
being sent over the Netlink interface and increasing the
blocksize would result in a better throughput of the system.
This, however, requires implementing the modes of operation
within the enclave or at least the daemon.

1https://github.com/504ensicsLabs/LiME

With the current implementation it is not possible to encrypt
all partitions including the root partition of a system, because
the daemon must be executed in user space and loaded from
some partition first. Future implementations can address
this problem by providing a solution where the daemon is
loaded from a different location like an initialization ramdisk.

5.2 Conclusion
In this paper, we showed a concept to enforce isolation for
kernel components by moving parts of their functionality to
the user mode and wrapping it within Intel SGX enclaves.
To this end, we require a daemon running in user mode
communicating with an LKM in kernel mode. In addition
to the LKM interacting with the kernel API, the daemon is
also allowed to directly provide functionality to user space.
As a proof-of-concept implementation, we wrapped disk en-
cryption functionality within an enclave and provide the
resulting cipher via the crypto API of the Linux kernel.
The prototype not only isolates the disk encryption imple-
mentation from other parts of the kernel, but also the disk
encryption itself is hardened by a second factor in form of
the machine which has to be present for deriving the same
disk encryption key. During runtime, the disk encryption
key as well as the salt is never released to unprotected main
memory, thus protected against physical hardware attacks.

Acknowledgments
This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89).

6. REFERENCES
[1] Anati, I., Gueron, S., Johnson, S., and Scarlata,

V. Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy (2013), p. 10.

[2] Baumann, A., Peinado, M., and Hunt, G. Shielding
Applications from an Untrusted Cloud with Haven. In
Proceedings of the 11th USENIX Symposium on
Operating Systems Design and Implementation (2014).

[3] Blass, E.-O., and Robertson, W. Tresor-hunt:
attacking cpu-bound encryption. In Proceedings of the
28th Annual Computer Security Applications
Conference (2012), ACM, pp. 71–78.

[4] Böck, B., and Austria, S. B. Firewire-based
physical security attacks on windows 7, efs and
bitlocker. Secure Business Austria Research Lab (2009).

[5] Champagne, D., and Lee, R. B. Scalable
Architectural Support for Trusted Software. In
Proceedings of the 16th International Conference on
High-Performance Computer Architecture (2010).

[6] Costan, V., and Devadas, S. Intel sgx explained.
Tech. rep., Cryptology ePrint Archive, Report
2016/086, 20 16. http://eprint. iacr. org.

[7] Costan, V., Lebedev, I., and Devadas, S. Sanctum:
Minimal Hardware Extensions for Strong Software
Isolation. IACR Cryptology ePrint Archive, 564 (2015).

[8] Götzfried, J., and Müller, T. ARMORED:
cpu-bound encryption for android-driven ARM devices.
In 2013 International Conference on Availability,
Reliability and Security (ARES’13), pp. 161–168.

[9] Götzfried, J., and Müller, T. Mutual
Authentication and Trust Bootstrapping towards Secure
Disk Encryption, 2 ed., vol. 17. New York, USA, 2014.

[10] Götzfried, J., Müller, T., de Clercq, R., Maene,
P., Freiling, F., and Verbauwhede, I. Soteria:
Offline Software Protection Within Low-cost Embedded
Devices. In Proceedings of the 31st Annual Conference
on Computer Security Applications (2015).

[11] Halderman, J. A., Schoen, S. D., Heninger, N.,
Clarkson, W., Paul, W., Calandrino, J. A.,
Feldman, A. J., Appelbaum, J., and Felten, E. W.
Lest we remember: cold-boot attacks on encryption
keys. Communications of the ACM 52, 5 (2009), 91–98.

[12] Intel. Intel Software Guard Extensions Programming
Reference, 329298-002us ed., October 2015.

[13] Jodeit, M., and Johns, M. Usb device drivers: A
stepping stone into your kernel. In European
Conference on Computer Network Defense (EC2ND)
(2010), IEEE, pp. 46–52.

[14] Koeberl, P., Schulz, S., Sadeghi, A.-R., and
Varadharajan, V. TrustLite: A Security Architecture
for Tiny Embedded Devices. In Proceedings of the Ninth
European Conference on Computer Systems (2014).

[15] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta,
A., Gligor, V., and Perrig, A. TrustVisor: Efficient
TCB Reduction and Attestation. In Proceedings of the
31st Symposium on Security and Privacy (2010).

[16] McCune, J. M., Parno, B. J., Perrig, A., Reiter,
M. K., and Isozaki, H. Flicker: An Execution
Infrastructure for Tcb Minimization. In 3rd European
Conference on Computer Systems (2008).

[17] McKeen, F., Alexandrovich, I., Berenzon, A.,
Rozas, C. V., Shafi, H., Shanbhogue, V., and
Savagaonkar, U. R. Innovative instructions and
software model for isolated execution. In Proceedings of
the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (2013).

[18] Müller, T., Freiling, F. C., and Dewald, A.
Tresor runs encryption securely outside ram. In
USENIX Security Symposium (2011).

[19] Noorman, J., Agten, P., Daniels, W., Strackx,
R., Van Herrewege, A., Huygens, C., Preneel,
B., Verbauwhede, I., and Piessens, F. Sancus:
Low-cost Trustworthy Extensible Networked Devices
with a Zero-software Trusted Computing Base. In 22nd
USENIX Conference on Security (2013).

[20] Schuster, F., Costa, M., Fournet, C., Gkantsidis,
C., Peinado, M., Mainar-Ruiz, G., and
Russinovich, M. VC3: Trustworthy Data Analytics in
the Cloud Using SGX. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (2015).

[21] Slominski, R. Fast User/Kernel Data Transfer. PhD
thesis, College of William & Mary, 2007.

[22] Strackx, R., and Piessens, F. Fides: Selectively
Hardening Software Application Components Against
Kernel-level or Process-level Malware. In Proceedings of
the 19th Conference on Computer and Communications
Security (2012).

[23] Tanenbaum, A. S. Modern Operating Systems, 3rd ed.
Prentice Hall Press, NJ, USA, 2008.

[24] Trusted Computing Group. TPM Main: Part 1
Design Principles, Version 1.2, Revision 116 ed., 2011.

