
RamCrypt: Kernel-based Address Space Encryption
for User-mode Processes

Johannes Götzfried
FAU Erlangen-Nuremberg
johannes.goetzfried

@cs.fau.de

Tilo Müller
FAU Erlangen-Nuremberg
tilo.mueller@cs.fau.de

Gabor Drescher
FAU Erlangen-Nuremberg

gabor.drescher@cs.fau.de

Stefan Nürnberger
CISPA, Saarland University
nuernberger@cs.uni-

saarland.de

Michael Backes
MPI-SWS

backes@mpi-sws.org

ABSTRACT
We present RamCrypt, a solution that allows unmodified
Linux processes to transparently work on encrypted data.
RamCrypt can be deployed and enabled on a per-process
basis without recompiling user-mode applications. In every
enabled process, data is only stored in cleartext for the
moment it is processed, and otherwise stays encrypted in
RAM. In particular, the required encryption keys do not
reside in RAM, but are stored in CPU registers only. Hence,
RamCrypt effectively thwarts memory disclosure attacks,
which grant unauthorized access to process memory, as well
as physical attacks such as cold boot and DMA attacks. In
its default configuration, RamCrypt exposes only up to 4
memory pages in cleartext at the same time. For the nginx
web server serving encrypted HTTPS pages under heavy
load, the necessary TLS secret key is hidden for 97% of its
time.

Keywords
RAM Encryption, Memory Disclosure Attacks, Data Protec-
tion, Data Lifetime, Physical Attacks

1. INTRODUCTION
Process isolation and access control have proven to be concep-
tually elegant and widely deployed principles for preventing
one process from accessing another process’ memory [19].
In practice, however, the improper deployment of access
control and side effects of memory optimizations and fre-
quently debugging undermine the principle of isolation, lead-
ing to unexpected disclosure of otherwise isolated memory [6].
Prominent examples of such inadvertent memory disclosures
rely on established operating system design principles such
as swap files and crash reports (so-called core dumps) that
intentionally write process contents to disk, and thereby

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897924

disclose process memory in plain. Once a swap file or core
dump file exists on disk, it is only protected by logical means
against illegal access; hence, it is susceptible to improper
configuration of access control or to starting a secondary
OS that is not constrained to adhere to the original access
control restrictions. Similarly, kernel drivers, including those
provided by third parties, are prone to error and can give
attackers full access to the physical memory space. For exam-
ple, Samsung’s official firmware for the Exynos chipset used
in Android phones of the Galaxy series disclosed memory to
attackers by accidentally offering an unprotected /dev/mem

device [1].
In addition to software-based attacks, an attacker can read
the memory contents of the physical RAM, knowing that
sensitive data of a process resides there at any given time.
Such attacks range from exploitable Firewire devices that
have direct memory access [3, 5, 28] to cold boot attacks which
physically transplant RAM modules into another machine [14,
27, 13]. In either case, an attacker can completely recover
arbitrary kernel and process memory.
Moreover, since RAM constitutes a shared resource and,
hence, portions of RAM are frequently re-used, improper
de-classification or insufficient deletion may cause the inad-
vertent disclosure of sensitive information [26]. To reduce the
data lifetime of sensitive information used only briefly inside
a process, traditional approaches that wipe this data are
conceptually hard to implement in a transparent manner [18].
With transparent data encryption, however, all information
a process contains is always encrypted, and automatically
decrypted when accessed. With this approach, sensitive in-
formation that is used seldom can be safely hidden without
requiring lifetime knowledge about it.

1.1 Our Contribution
In this paper, we propose RamCrypt, a kernel-assisted en-
cryption of the entire address space for user-mode processes.
In detail, our contributions are:

• Sensitive data within the address space of a process
is encrypted on a per-page basis inside the OS page
fault handler. Sensitive data within core dumps and
memory that get accessed by debuggers, for example,
are therefore protected.

• Only a small working set of pages, also called the sliding
window, remains unencrypted at any given time. By

default, the size of this sliding window is four pages.
• The prototype implementation of RamCrypt leads to a

performance drawback of 25% for single-threaded tests
of the sysbench benchmark suite. For multi-threaded
tests, the performance drawback is generally higher
and heavily depends on the chosen sliding window size.
For non-protected programs, RamCrypt imposes no
performance overhead.

• By using CPU-bound encryption, cryptographic keys
are never stored in RAM, but solely inside CPU regis-
ters over the entire uptime of a system. All user-mode
processes are protected with the same key, which is
only visible in kernel mode.

• RamCrypt can be enabled on a per-application basis by
setting a flag inside the ELF program header, without
the need for binary rewriting or recompilation.

RamCrypt is free software that is published under the GPL
v2 and is available at https://www1.cs.fau.de/ramcrypt.

1.2 Related Work
CPU-bound encryption is somewhat related to our work but
only protects a small fraction of sensitive data and not, for
example, a whole process address space. Symmetric CPU-
bound encryption schemes rage from register-based schemes
as operating system patch [21, 11] to hypervisor-based solu-
tions [22, 10] and cache-based schemes [17]. There are even
CPU-bound encryption schemes for asymmetric encryption
algorithms such as CPU-bound RSA implementations that
either are register based [9] or based on hardware transac-
tional memory [12]. All these solutions, however, just keep
the encryption key and intermediate data out of memory
but no other sensitive information because the secure storage
area these solutions make use of is limited.
Full memory encryption solutions are most related to our
work. There are theoretical approaches [7] but also practical
implementations to encrypt, for example, swap space [25].
Furthermore, a solution for embedded hardware [16] exists.
The only solution, however, that also targets the Linux ker-
nel [24] is not publicly available and does not store the
encryption key outside RAM. Thus, it does not protect effec-
tively against memory disclosure attacks.
We are fully aware of Intel’s recently announced Software
Guard Extensions (SGX) [20] which amongst others also
encrypt the memory of software running within so-called
enclaves. Currently, however, enclaves are restricted to a
static size and cannot dynamically grow after they have been
initialized. Furthermore, existing programs cannot simply
be run within enclaves without modifications to either the
program itself or at least the libraries, because the enclave
environment is restricted and syscalls are forbidden. Con-
sequently, Intel’s SGX cannot provide binary compatibility
which is one of the design principles behind RamCrypt.

2. BACKGROUND
This sections describes the necessary building blocks on which
RamCrypt is based on. Readers familiar with CPU-bound
encryption (Sect. 2.1) and virtual memory management in
Linux (Sect. 2.2) may safely skip this section.

2.1 CPU-bound Encryption
We use CPU-bound encryption/decryption to prevent the
cryptographic key and any intermediate state from ever being
stored in RAM [21, 4, 23, 11]. In particular, RamCrypt is

built upon the Linux kernel patch TRESOR [21], which is an
implementation of the AES algorithm for the Linux crypto
API. It only uses CPU registers to store the encryption key
as well as any intermediate information like the AES key
schedule. In fact, no cache or RAM is used to store any part
of the key or any intermediate state of the AES computation.
To prevent intermediate states of AES entering RAM due
to context switching, TRESOR is executed inside an atomic
section in kernel mode. Inside those atomic section, inter-
rupts are disabled. According to the authors of TRESOR,
however, the interbench test suite has shown that interrupts
are disabled only briefly such that system interactivity and
reaction times are not affected.
To bootstrap TRESOR, the user has to type a password
during system start-up and after wake-up from suspend
mode, which is then used to derive the key stored in the
debug registers. We patched TRESOR in a way that also a
random key can be generated during start-up. This key is
protected against physical attacks like cold boot [14] because
debug registers are cleared after a CPU reset. An attacker
would require logical access to a machine and must be able
to execute kernel code in order to read out the key.

2.2 Linux Virtual Memory Management
On a modern CPU, process isolation is realized by simulating
pristine address spaces to each process, which cannot inter-
fere with each other. Every process starts with an empty
address space that is divided into so-called pages. While
executing code and accessing data, the necessary pages are
loaded into the address space on demand by catching the first
attempt to access them. Contiguous virtual pages do not
necessarily have to be backed by contiguous physical pages.
Each access to a page is first handled in hardware by the
Memory Management Unit (MMU), which translates access
to a virtual page into an actual physical page. Whenever
such a translation fails, the OS page fault handler is invoked
and determines whether missing pages need to be loaded or
if an access to invalid memory occurred. Since every access
to code and data has to go through the page fault handler at
least once, this is a suitable part to incorporate RamCrypt.
RamCrypt modifies the page fault handler such that not
only first accesses are caught, but it additionally ensures to
catch the next access to that page again by manipulating
flags within the corresponding page table entry.
An important concept of Linux’ memory management is
Copy-on-Write (COW): A new process under Linux is created
with the help of the fork() system call, which might be
followed by a call to execve() to execute a new binary.
To make fork() an efficient system call, the entire address
space is not copied but only its virtual mappings point to the
same physical pages. In order to avoid interference with the
parent process, the cloned mappings are marked read-only,
regardless of their original access rights. This ensures that
read access can occur normally, while write attempts will
be caught resulting in a transparent writable copy of the
affected page.

3. DESIGN AND IMPLEMENTATION
In this Section, we describe the design and implementation
of our RamCrypt Linux kernel patch. RamCrypt encrypts
physical pages of a given process during its runtime and
automatically only decrypts exactly those pages, which are
currently accessed by the process. To this end, we leverage

clear
present

0x1000

encrypted

0x2000

clear
present

0x3000

encrypted

0x4000

encrypted

0x5000

encrypted

0x6000

0x1000

0x3000

Sliding Window
Size 2

movl 0x3000, %eax

movl 0x4000, %ebx

X

E PF

Figure 1: Sliding window. Next access will cause a
page fault (PF) for page 0x4000.

the existing Linux page fault mechanism, which already
provides logic to transparently map not-yet-existing pages
gradually into the address space. We augmented the binary
present/non-present understanding of the kernel by another
dimension: encrypted/cleartext data. This allows us to build
upon the existing techniques that trap code, which tries to
access non-present data – but with the additional distinction
that this data might already exist, just in encrypted form.
If so, it is automatically decrypted by the kernel such that
access to that data seems to be in clear to the program.
RamCrypt can be activated for each process separately and,
if activated, encrypts all pages associated with anonymous
private memory. Anonymous private memory is the opposite
of shared process memory in Linux. In other words, pri-
vate memory is anything created by a process and includes
the BSS segment, heap and other allocated memory, the
stack, and private data of all loaded shared libraries. Shared
memory mappings between processes and mappings that are
backed by a file (e.g. code) are intentionally not encrypted
by RamCrypt as these can intuitively be considered ’pub-
lic’ anyway. In most practical scenarios, binary code is not
worthwhile to be protected against memory disclosure at-
tacks because virtually all programs in use today are widely
available. Consequently, all sections of a program that can
contain sensitive information are protected by RamCrypt and
only code sections mapped as executable are left unmodified.

3.1 Sliding Window
The memory pages that have been encrypted by RamCrypt
need to be decrypted when data stored inside them is about
to be accessed. Due to limitations of the x86 architecture, one
can only detect memory access on a page (4 kB) granularity.
Therefore, RamCrypt decrypts an entire page whenever a
process tries to access data stored within a still encrypted
page. As long as data residing within that page is accessed,
no measures need to be taken by RamCrypt since data is
temporarily available in clear inside that page. As soon as
data residing in another page is accessed, RamCrypt can
decrypt that other page after encrypting the last accessed
page again. This way, only one page at a time is available in
clear. However, this strict encryption/decryption pattern is
not practical for workloads that heavily access data residing
in two or more different pages. To overcome this performance
bottleneck, we introduce a sliding window per process (i.e.,
per virtual address space), which represents the last n pages
that were accessed and are hence kept in clear. Every other
page is always only kept in encrypted form. RamCrypt
always ensures that accessing an encrypted page triggers a
page fault and the sliding window is calculated anew. The

MemOp Present? Type? Continue

RamCrypt Demand Paging Swapping Access Error

Crypted? OK? Kill Return

Decrypt Page SW Insert >MAX

Copy Page MAP>1 Encrypt Page

Access n

y

y

n n

y

n

y

ny

MMU

RamCrypt Handler

R
C

C
o
re

L
o
g
ic

Figure 2: Flow diagram of how the MMU and the
Linux kernel with RamCrypt interact.

size of the sliding window, which is illustrated in Figure 1, can
be configured as a kernel boot parameter and is a trade-off
between performance and security.

3.2 RamCrypt Workflow
From a high level perspective, RamCrypt consists of two
parts: (1) a modified page fault handler that handles ac-
cesses to encrypted pages, and (2) the RamCrypt core logic.
Basically, the RamCrypt page fault handler decrypts the
page for which a page fault occurred while the RamCrypt
core logic determines which page needs to be encrypted again
in order not to exceed the maximum number of n cleartext
pages at a time. In detail, the new page fault handler de-
crypts a page and then makes it accessible by changing its
corresponding page table entry. The RamCrypt core logic
in turn checks whether the executed page fault handler has
succeeded, then appends the new page to the sliding window
and checks if and which page to remove from the window. Re-
moval includes encrypting the page and clearing the present
flag to ensure a page fault will be triggered the next time
the page is accessed.
Note, that due to Linux’ demand paging, it is sufficient to
hook RamCrypt into the page fault handler as access to all
new mappings always triggers a page fault. This also registers
them in the sliding window mechanism. The overall process
of how RamCrypt interacts with the remaining parts of the
Linux kernel down to the hardware is shown in Figure 2.

3.3 Topping off RamCrypt
In order to address all eventualities of a program, the whole
lifecycle of its data must be considered. This foremost in-
cludes the controlled deletion of data. To this end, RamCrypt
scrubs de-allocated pages with zeros. This happens either if
a memory region is deliberately freed by the programmer, or
when a process is terminated. This security measure ensures
no clear pages are leaked once memory pages became inac-
cessible to the program. Additionally, it makes decryption
impossible should the key ever be retrieved.
While the overall concept of RamCrypt may sound simple,
a lot of challenges had to be addressed in order to handle
the inner peculiarities of memory management in a modern
operating system. In particular, copy-on-write (COW), mul-
tithreading and multiprocessing make the abstracted sliding

window approach that we presented so far more complex in
reality. To meet the goal of backward compatibility with un-
modified binaries, a lot of corner cases had to be added to the
RamCrypt logic to support multiple threads within a single
address space and all flavors of forking, which involves the cre-
ation of a new address space with temporarily shared COW
pages. A naive implementation would destroy common COW
semantics for newly fork’ed processes, as child and parent
process share the same physical memory pages. Encryption
in one process would lead to encryption in another process,
of which the other process must be aware. To address this
unwanted behavior, the COW semantics had to be made
aware of the additional encryption dimension to copy data
on encryption. Another challenge that arises is that fork’ed
and execve’d processes might request RamCrypt encryption,
while their parent was unencrypted. Here, COW cannot be
used at all. Our implementation fully supports transitions
from encrypted processes to non-encrypted processes and
vice versa.
We use a variant of the TRESOR cipher (see Sect. 2.1) which
is configured to operate like AES-128 in the XEX mode of
operation. The initialization vector (IV), which is fed into
the encryption routine to get the tweak for XEX, is the
virtual address of the page that is about to be encrypted,
concatenated with the PID of the currently running process.
The reason we use virtual addresses instead of physical ad-
dresses for the IVs is that physical addresses may change
over time when the kernel relocates pages. As a consequence
of using virtual addresses, a single page cannot be mapped
to two different virtual addresses within the same address
space (because otherwise the decryption of both mappings
would lead to different plaintext data). As shared memory
regions are out of scope for our implementation, and since
temporarily shared pages due to COW semantics are always
mapped to the same virtual location, using virtual addresses
as initialization vectors does not limit RamCrypt.
Using PIDs as part of the IVs prevents attackers, who have
access to a physical memory disclosure vulnerability, to guess
the content of an encrypted page by creating a malicious
process that maps pages to the same virtual addresses. After
reading out an encrypted page, both ciphertexts could be
compared to conclude whether the plaintext data has been
guessed correctly.
If a process forks, the child process uses the PID of the parent
process instead of its own PID as part of the IV such that
temporarily shared pages between the parent and the child
process can be decrypted. When the child process executes
another RamCrypt-enabled binary by calling execve, the
child’s own PID is used as part of the IV as no temporarily
shared mappings between the parent and the child process
are used anymore. The combination of a virtual address and
the PID as IV ensures that no patterns of encrypted data
can be extracted when using RamCrypt.

4. EVALUATION
In this Section, we evaluate RamCrypt regarding runtime
performance and security (Sect. 4.2). All evaluations have
been performed on a standard desktop computer with an
Intel Quadcore CPU (Intel Core i5-2400) running at 3.1GHz
and eight gigabytes of RAM. From the software side, we used
an unmodified installation of Debian Wheezy with a base
system installed and a RamCrypt patched kernel.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

S
lo

w
d
o
w

n
 F

a
ct

o
r

Threads

Plain
XOR

TRESOR

Figure 3: RamCrypt performance with sliding win-
dow size 4 and different encryption methods.

4.1 Runtime Performance
To evaluate the runtime performance of RamCrypt, we used
the sysbench benchmarking utility that is shipped with most
Linux distributions. The performance overhead is calculated
as the relative run-time difference of the RamCrypt-enabled
version of the benchmark compared to the unmodified version
that ships with Debian. The unmodified version serves as
ground truth to which the flagged executable is compared.
To this end, a flag inside the ELF program header is set by
means of a provided script.

Cipher Performance Impact.
In Figure 3, different encryption methods for RamCrypt are
evaluated with the default sliding window size of four to show
how big the overhead of the TRESOR cipher alone is and the
slowdown factor compared to the ground truth is depicted.
To this end, we ran RamCrypt with the TRESOR cipher
enabled, with the identity function that outputs its input and
with XOR encryption. The ”encryption“ using the identity
function basically measures the overhead of the paging and
RamCrypt logic but has almost no overhead due to the lack
of CPU-bound encryption. Hence the name in the graph
is ’plain’ encryption. All measurements with RamCrypt en-
abled have in common that the sliding window size of four
becomes a bottleneck for more than four threads as their
concurrent execution competes for the next available win-
dow. The RamCrypt implementation that uses CPU-bound
TRESOR encryption shows a slowdown of approximately
25% for the singlethreaded test. As expected, when the num-
ber of concurrent threads increases, the slowdown is larger
due to the fixed-size sliding window. Note that RamCrypt is
always enabled for the whole process, meaning for the main
executable and all loaded libraries, and thus includes data of
libraries, as well. The overhead would be significantly lower
if only the main executable were protected. So this number
constitutes a worst case scenario.

Sliding Window Performance Impact.
In figure 4, RamCrypt is evaluated with different sliding
window sizes. For a sliding window size of 16, i.e., sixteen
clear pages are available for up to eight threads, our im-
plementation scales almost with the distribution version of
sysbench. With eight threads, a slowdown of approximately
12% is reached. However, in a multithreaded process, the

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

S
lo

w
d
o
w

n
 F

a
ct

o
r

Threads

SW 16
SW 8
SW 4
SW 2

Figure 4: RamCrypt performance with TRESOR
cipher and different SW sizes.

threads compete for the same amount of decrypted and read-
ily accessible pages at the same time. For a sliding window
size of two, sysbench is not able to launch more than one
thread because it requires an additional control thread as
well. In the singlethreaded run with a sliding window size of
two, the slowdown factor is as high as 170%, while size four
of the sliding window pushes the slowdown to acceptable
25%. With sizes of eight and sixteen, there was no slowdown
measurable.

4.2 Practical Security Analysis
Due to the nature of RamCrypt, pages that are currently
listed within the sliding window have to reside unencrypted
in the RAM and thus might leak sensitive data over a lim-
ited time span. We therefore measured the relative time
of unencrypted pages residing in memory for a real world
application and specifically evaluated how long secrets are
exposed in clear. We flagged the nginx web server to use
RamCrypt and measured how long each page is accessible in
clear, i.e., how long it was listed within the sliding window.
To make nginx contain actual secrets, we set it up such that
it delivers SSL-encrypted HTML pages under maximum load.
The HTML document we transferred was a standard wel-
come site of nginx with a size of 151 bytes. Furthermore, we
identified the memory pages in which the private exponent
of the RSA key resides. We then observed how long these
pages have been exposed to RAM in clear.
Table 1 shows the minimum, average and maximum relative
time as part of the overall runtime of a page being exposed in
clear for different sliding window sizes. Since nginx was used
under maximum load, these numbers represent worst case
exposure times for the key material, which under less load is
consequently exposed shorter. From the minimum, maximum
and standard deviation, we can conclude that some pages
are used over the entire lifetime of a process while others
are used only rarely, for example, during startup. The first
row of table 1 shows how long the pages containing secret
key material are exposed in clear over a process’ lifetime.
With increasing sliding window size, the average time of
pages accessible in clear increases because more pages are
stored in clear in parallel. For our default sliding window
size of four, however, we consider a relative time frame of
only 3% (where the secret is being exposed in clear) a good
result. Although RamCrypt is not able to entirely prevent
accessing the secret with the help of memory disclosure

Temporal Exposure per Page (%)
n=4 n=8 n=16

Secret Key Pages 3.07 14.37 21.68

All Pages

Min 0.0000 0.0005 0.0017
Avg 7.63 12.66 17.95
Max 99.83 99.76 99.99

StdDev 19.77 21.82 25.43

Table 1: Temporal exposure of unencrypted pages
(in %) for different sliding window sizes n. Measured
nginx process served 1500 SSL requests.

attacks, the bar for attackers is raised since precise timing
becomes necessary. Furthermore, attacks like cold boot might
entirely be prevented if the remaining 3% of cleartext data
only resides in CPU caches but never enters RAM.

5. DISCUSSION
Although RamCrypt is able to encrypt the data of whole
process address spaces based on the user’s choice, process-
related data outside the virtual address space of a given
process might still be accessible in clear. In particular, kernel
or driver buffers and the buffers of peripheral components
might contain sensitive data which cannot be protected by
RamCrypt. Recently, it has been shown that the frame
buffers of the VRAM can be recovered even after a reboot [2].
One approach to at least partially mitigate the issue of
sensitive data stored in buffers outside the process’ virtual
memory is the use of ephemeral channels [8]. The downside,
however, is that this approach requires modified peripheral
devices and explicit use in source code.
Attacks such as the popular OpenSSL Heartbleed vulnerabil-
ity (CVE-2014-0160) or other memory disclosure attacks [15]
that are able to read out RAM with privileges of the attacked
process cannot be prevented as RamCrypt transparently de-
crypts RAM when accessed by the owning process. There
is no direct fix to this limitation as RamCrypt needs to act
transparently to any process that is RamCrypt-enabled. To
address this issue, source code needs to be changed, e.g., to
protect itself against inadvertent access when the data is not
needed by using CPU-bound encryption schemes [12, 9] that
do not store keys in the address space of a process.
Although RamCrypt with a sliding window size of four im-
poses a performance overhead of only 25%, performance must
still be improved for multithreaded applications. As shown
in Sect. 4.1, the performance is strongly influenced by the
cipher that is used. Consequently, speeding up the TRESOR
cipher would also give a performance boost to RamCrypt. To
speed up TRESOR, hardware transactional memory could
be exploited as it has been done for a CPU-bound RSA im-
plementation [12]. Another possibility is to compute the key
schedule for a certain number of blocks at once (similar to
ARMORED [11]) to avoid re-computations for every block.

6. CONCLUSION
We presented the design, implementation and evaluation
of RamCrypt, a Linux kernel patch that transparently en-
crypts the address spaces of user mode process under Linux.
RamCrypt effectively protects against memory disclosure
attacks that give an attacker access to the physical memory
and a variety of physical attacks on RAM such as cold boot
and DMA attacks. RamCrypt can be easily enabled on a

per-process basis without the need for binary rewriting or
recompilation, and it is fully compatible to existing systems.
If enabled for a single-threaded process with a sliding window
size of four, which is a reasonable choice regarding the trade-
off between security and performance, it slows processes of
the sysbench benchmarking suite down by 25%.
To the best of our knowledge, RamCrypt is the first solution
that transparently encrypts the address space of user pro-
cesses within the Linux kernel while being fully compatible
to existing applications and storing the key outside RAM.

Acknowledgments
This work was supported by the German Research Foun-
dation (DFG) as part of the Transregional Collaborative
Research Centre “Invasive Computing” (SFB/TR 89) and by
the German Ministry for Education and Research (BMBF)
through funding for the Center for IT-Security, Privacy and
Accountability (CISPA).

7. REFERENCES
[1] Root exploit on Exynos. http://forum.xda-

developers.com/showthread.php?t=2048511.

[2] Bastian Reitemeier. Palinopsia: Reconstruction of
FrameBuffers from VRAM.
https://hsmr.cc/palinopsia/, Mar. 2015.

[3] Becher, M., Dornseif, M., and Klein, C. N.
FireWire - All Your Memory Are Belong To Us. In
Proceedings of the Annual CanSecWest Applied
Security Conference (2005).

[4] Blass, E., and Robertson, W. TRESOR-HUNT:
attacking cpu-bound encryption. In 28th Annual
Computer Security Applications Conference, ACSAC,
Orlando, FL, USA (2012), pp. 71–78.

[5] Boileau, A. Hit by a Bus: Physical Access Attacks
with Firewire. In Proceedings of Ruxcon ’06 (Sydney,
Australia, Sept. 2006).

[6] Chow, J., Pfaff, B., Garfinkel, T., Christopher,
K., and Rosenblum, M. Understanding data lifetime
via whole system simulation. In Proceedings of the 13th
USENIX Security Symposium (2004), pp. 321–336.

[7] Duc, G., and Keryell, R. Cryptopage: An efficient
secure architecture with memory encryption, integrity
and information leakage protection. In 22nd Annual
Computer Security Applications Conference ACSAC
2006), Miami, Florida, USA (2006), pp. 483–492.

[8] Dunn, A. M., Lee, M. Z., Jana, S., Kim, S.,
Silberstein, M., Xu, Y., Shmatikov, V., and
Witchel, E. Eternal sunshine of the spotless machine:
Protecting privacy with ephemeral channels. In 10th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI (2012), pp. 61–75.

[9] Garmany, B., and Müller, T. PRIME: private RSA
infrastructure for memory-less encryption. In Annual
Computer Security Applications Conference, ACSAC
’13, New Orleans, LA, USA (2013), pp. 149–158.

[10] Götzfried, J., and Müller, T. Mutual
Authentication and Trust Bootstrapping towards
Secure Disk Encryption. In Transactions on
Information and System Security (TISSEC), vol. 17.

[11] Götzfried, J., and Müller, T. ARMORED:
cpu-bound encryption for android-driven ARM devices.

In International Conference on Availability, Reliability
and Security ARES (2013), pp. 161–168.

[12] Guan, L., Lin, J., Luo, B., Jing, J., and Wang, J.
Protecting private keys against memory disclosure
attacks using hardware transactional memory. In 36th
IEEE Symposium on Security and Privacy (2015).

[13] Gutmann, P. Data remanence in semiconductor
devices. In 10th USENIX Security Symposium, August
13-17, 2001, Washington, D.C., USA (2001).

[14] Halderman, J. A., Schoen, S. D., Heninger, N.,
Clarkson, W., Paul, W., Calandrino, J. A.,
Feldman, A. J., Appelbaum, J., and Felten, E. W.
Lest We Remember: Cold Boot Attacks on Encryptions
Keys. In 17th USENIX Security Symposium (2008).

[15] Harrison, K., and Xu, S. Protecting cryptographic
keys from memory disclosure attacks. In The 37th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2007 (2007).

[16] Henson, M., and Taylor, S. Beyond full disk
encryption: Protection on security-enhanced
commodity processors. In Applied Cryptography and
Network Security ACNS (2013), pp. 307–321.

[17] Jürgen Pabel. Frozen Cache.
http://frozenchache.blogspot.com/, Jan. 2009.

[18] Kannan, J., and Chun, B. Making programs forget:
Enforcing lifetime for sensitive data. In 13th Workshop
on Hot Topics in Operating Systems, HotOS XIII,
Napa, California, USA, May 9-11, 2011 (2011).

[19] Latham, D. C. Department of Defense trusted
computer system evaluation criteria. 1985.

[20] McKeen, F., Alexandrovich, I., Berenzon, A.,
Rozas, C. V., Shafi, H., Shanbhogue, V., and
Savagaonkar, U. R. Innovative instructions and
software model for isolated execution. In Workshop on
Hardware and Architectural Support for Security and
Privacy HASP (2013).

[21] Müller, T., Freiling, F., and Dewald, A.
TRESOR Runs Encryption Securely Outside RAM. In
20th USENIX Security Symposium (Aug. 2011).

[22] Müller, T., Taubmann, B., and Freiling, F. C.
Trevisor - os-independent software-based full disk
encryption secure against main memory attacks. In
Applied Cryptography and Network Security ACNS,
Singapore (2012), pp. 66–83.

[23] Patrick Simmons. Security Through Amnesia: A
Software-Based Solution to the Cold Boot Attack on
Disk Encryption. CoRR abs/1104.4843 (2011).

[24] Peterson, P. Cryptkeeper: Improving security with
encrypted RAM. In Technologies for Homeland
Security (HST) (Nov 2010), pp. 120–126.

[25] Provos, N. Encrypting virtual memory. In 9th
USENIX Security Symposium (2000).

[26] Reardon, J., Basin, D. A., and Capkun, S. On
secure data deletion. IEEE Security & Privacy
(Oakland) 12, 3 (2014), 37–44.

[27] Skorobogatov, S. P. Data remanence in flash
memory devices. In Cryptographic Hardware and
Embedded Systems CHES (2005), pp. 339–353.

[28] Stewin, P., and Bystrov, I. Understanding DMA
malware. In Detection of Intrusions and Malware, and
Vulnerability Assessment DIMVA (2012), pp. 21–41.

