
Honey, I Shrunk Your App Security:
The State of Android App Hardening?

Vincent Haupert1(�), Dominik Maier2, Nicolas Schneider1,
Julian Kirsch3, and Tilo Müller1

1 Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
vincent.haupert@cs.fau.de

2 TU Berlin, Germany
dmaier@sect.tu-berlin.de

3 TU Munich, Germany
kirschju@sec.in.tum.de

Abstract. The continued popularity of smartphones has led companies
from all business sectors to use them for security-sensitive tasks like
two-factor authentication. Android, however, suffers from a fragmented
landscape of devices and versions, which leaves many devices unpatched
by their manufacturers. This security gap has created a vital market of
commercial solutions for Runtime Application Self-Protection (RASP)
to harden apps and ensure their integrity even on compromised devices.
In this paper, we assess the RASP market for Android by providing an
overview of the available products and their features. Furthermore, we
describe an in-depth case study for a leading RASP product—namely
Promon Shield—which is being used by approximately 100 companies to
protect over 100 million end users worldwide. We demonstrate two attacks
against Promon Shield: The first removes the entire protection scheme
statically from an app, while the second disables all security measures
dynamically at runtime.

1 Introduction

Mobile platforms based on the Google Android and Apple iOS operating systems
(OSs) have matured in recent years. They are now omnipresent and form a part
of our daily lives. In contrast to desktop platforms, however, some vendors still
consider their mobile devices as embedded platforms without rolling security
updates. Particularly on Android, device owners may face a problem when
the manufacturer leaves a device unpatched, or at least vulnerable, for a long
time [33,29,17]. Even in the case where an OS is fully updated, recent history has
taught us that new attack vectors can still be uncovered: Rowhammer [27,14]
and Spectre [15] are prominent examples of this. Vulnerable end-user devices lead
to a challenging situation for companies that promote security apps—such as
? Authors’ version of the paper published in the Proceedings of the 15th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA 2018). DOI: 10.1007/978-3-319-93411-2_4

two-factor authentication apps—which rely on the integrity of the underlying OS.
Instead of changing the business logic, for example, by shipping secure hardware
tokens or leveraging a phone’s trusted execution environment (TEE), we noticed
a trend toward applying app-hardening solutions that are purely software-based.
These solutions are frequently referred to as Runtime Application Self-Protection
(RASP), and they have already given rise to a vital market.

To the best of our knowledge, our work is the first to challenge the claims of
the RASP market by assessing the features commonly offered by RASP products.
Furthermore, we provide a detailed security analysis of an internationally leading
product called Promon SHIELD, which is currently used in more than 30 apps
worldwide. In general, we find that RASP solutions cannot protect against their
own threat model. In particular, we developed a tool called Nomorp, which is
able to automatically disable all security measures employed by Promon Shield.

2 App Hardening

In this section, we discuss the features commonly offered by app-hardening
solutions. App hardening, and RASP in general, aim to ensure the security of an
app even on a hostile or breached OS. Even though most products are available
for Android and iOS, we focus on Android in this work, as many implementations
are highly specific to the OS and the ecosystem. We chose Android because of its
larger market share and the significant fragmentation of Android versions, both
of which lead to a greater demand for app hardening.

App-hardening products are typically provided as software development kits
(SDKs) with binary libraries, or sometimes as build environment patches that offer
the automated integration of security features into an app without the assistance
of developers. A central part of an app-hardening solution is obfuscation as it
stalls reversing and cracking for a certain period. This is adequate in the gaming
industry, for example. In the case of security apps like two-factor authentication
apps and financial apps, however, merely increasing the period of protection is
not enough. So, app-hardening solutions enrich obfuscation with a variety of
defenses against dynamic analysis and best practices.

2.1 The RASP Market

In the course of this research, we analyzed the feature set of 10 commercial
app-hardening solutions [9]. The initial goal—to give definite answers about
the strength of the provided features—was quickly dismissed, for app-hardening
solutions differ vastly per license and app. Some apps protected by the same
RASP solution have features enabled that others do not have. Similarly, we
noticed apps bearing hardening features in addition to the RASP provider. For
all these reasons, the following overview builds on available marketing documents
of the RASP products rather than manual analyses of their features.

Table 1 lists market-leading hardening solutions and compares their official
feature sets. Additionally, Promon Shield was taken as a case study for in-depth

Product A
nt
i-T

am
pe

ri
ng

A
nt
i-H

oo
ki
ng

A
nt
i-D

eb
ug

gi
ng

A
nt
i-E

m
ul
at
or

C
od

e
O
bf
us
ca
ti
on

W
hi
te
-B

ox
C
ry
pt
og
ra
ph

y

D
ev
ic
e
B
in
di
ng

R
oo

t
D
et
ec
ti
on

A
nt
i-K

ey
lo
gg
er

A
nt
i-S

cr
ee
n
R
ea
de

r

D
at
a
E
nc
ry
pt
io
n

Se
cu
re

C
om

m
un

ic
at
io
n

Arxan for Android X X X . X X . X . . X .
DNP HyperTech CrackProof X . X X . . . X

Entersekt Transakt X X X X . . X
Gemalto Mobile Protector . X X . X . X X X . X X
GuardSquare DexGuard X X X X X X . X . . . X

Inside Secure Core for Android X . X . X X . X
Intertrust WhiteCryption X . X . X X X X

PreEmptive DashO X . X X X . X X
Promon SHIELD X X X X X X X X X X X X
SecNeo AppShield X . X . X X .

Table 1: Overview of RASP products and their advertised features.

manual reverse engineering, as discussed in later sections. While investigating
Promon Shield, we noticed features that were not mentioned in the official
documentation. In other words, a feature not being listed in Table 1 does not
necessarily imply that a feature is not present.

Anti-Tampering. If attackers manage to alter the code at runtime, they acquire
the same privileges as the underlying app. They can then manipulate data that
gets exchanged in the backend, or disable license and security checks. Anti-
tampering solutions use a variety of methods to ensure that a third party did not
alter an app’s code. If tampering the code is possible, other dynamic defenses
can be patched out. Therefore, anti-tampering technology is the cornerstone of
current app security solutions, and every library in the set offers it.

An obvious anti-tampering approach is to check the signature of the An-
droid application package (APK) at startup. If the signature does not match
the expected developer certificate, then a third party likely altered the app.
More sophisticated measures scatter signature checks throughout the app or use
watermarks, thus making the check itself harder to strip [22].

Promon Shield assesses the integrity of the installed base.apk by loading
the developer’s certificate from an encrypted entry in a configuration file at
startup. In addition to verifying the APK, it checks the hash sums of certain
Android-specific files—such as AndroidManifest.xml and classes.dex—and
its own native library, libshield.so.

Anti-Hooking. Even if the code inside the app has not been altered, an attacker
can still run code within the app by hooking certain calls and inserting function-
ality at runtime. The hooking of functions, Application programming interfaces
(APIs), or system calls allows attackers to modify many elements. For example,
they can alter the method parameters and the return values of calls or completely
swap out methods. On Android, a variety of open source hooking frameworks
exists. Since hooks are usually inserted from the outside, potentially at a higher
privilege level, detection is not easy. Anti-hooking solutions for Android typically
attempt to find traces of well-known hooking frameworks in the file system or
memory. Promon Shield, for example, checks for artifacts of Xposed and Cydia
Substrate but does not scan the app’s memory. Therefore, our analysis based on
Frida remained undetected.

Anti-Debugging. Like in hooking, debuggers can alter the control flow and
change the return values of functions that have not been tampered with other-
wise. Furthermore, debugging gives attackers insights into the operation of the
hardening framework and app. For this very reason, app-hardening solutions try
to detect the presence of a debugger and abort the execution if needed. Android
has two worlds where a debugger can attach: the native code debugger based on
ptrace for C and C++, and the Java debugger based on the JDWP protocol.

For the Java part, a trivial implementation merely checks if the isDebug-
gerConnected API returns true; if it does not, then the execution is aborted.
Promon Shield modifies native code data structures to prevent JDWP debugging.
In the JdwpState struct, it replaces the function pointers that are responsible
for handling debugger packets with a pointer to a function that always returns
the value false, leading to the immediate termination of unaltered debugger
sessions. To hinder the debugging of native code, libraries usually trace their
own code path using ptrace. The ptrace API allows only a single debugger at
a given time. Therefore, if the hardening library already debugs the binary, no
other debugger can attach to it. In Promon, the main Promon Shield process
Shield−1 forks a child process Shield−2, which then attaches to all threads of
its parent via ptrace.

Anti-Emulator. Running an app inside an emulator, a virtual machine, or
sandbox allows an attacker to hook or trace program execution. For apps running
inside an Android emulator, it is easy to inspect the state of the system, reset
it to a saved image, or monitor how the app operates. Several mechanisms for
detecting sandboxes are known to be used by malware [18,19,28], and RASP
solutions usually implement a subset of the same mechanisms. Promon Shield,
for example, immediately crashes the app if it runs inside an Android emulator.

Code Obfuscation. The Android toolchain comes with ProGuard, an obfusca-
tion tool that renames all class and method names at compile time. As renaming
is a well-known obfuscation method, the techniques used to deobfuscate it have
been well researched [3]. Obfuscation, in general, tries to obscure code as much as
possible, as do app-hardening solutions. Besides renaming, some other obfuscation

methods are, for example, control-flow flattening, opaque and random predicates,
and function merging and splitting [5].

While perfectly obfuscating code running on the same machine as the attacker
is impossible according to Barak et al. [1], it can notably increase the effort an
attacker has to invest. Krügel et al. state that “[o]bfuscation and de-obfuscation
is an arms race [...] usually in favor of the de-obfuscator” [16]. This statement
still holds true, as Schrittwieser et al. discussed fairly recently [24].

Another category of obfuscation is DEX packing that aims at mitigating
static and dynamic analysis and is particularly popular among malware authors
to hide their malicious code from both automatic and manual analysis, e.g.,
an automated sandbox or a reverse engineer, respectively. The popularity of
Android packers is unbroken; hence, research has proposed various approaches
for automatic unpacking [31,32,30,6].

The native part of Promon Shield is encrypted and the unpacked code is
obfuscated further. The Java part of the no.promon.shield package is slightly
obfuscated, depending on the target app. If it is, then all packages, classes,
methods, and fields are renamed to random eight-character strings. However,
Promon Shield does not obfuscate the customer’s app using any of the obfuscation
techniques mentioned above; at most, ProGuard is used independently.

White-Box Cryptography. Like code obfuscation, white-box cryptography
aims to obscure secrets [23]. It does not obfuscate the business logic, but tries to
prevent cryptographic secrets from leaking [4]. Implementations try to provide a
one-way function, making it easy to apply cryptographic operations but hard
to reverse the input keys. Like in the case of code obfuscation, attackers can
reverse most implementations [10]. While white-box cryptography makes reverse
engineering of the key significantly harder, an attacker can still copy the whole
implementation blob and apply the cryptographic operations without having to
learn the keys used.

Device Binding. Device binding does not prevent copying but stops execution
on other devices. For apps like banking, it is desired that they work only on a
device that is explicitly paired with the account. So, to comply with the demand
of physical second factors, app-hardening solutions try to achieve device binding.
They usually fingerprint the device and then store unique identifiers at the first
start of the app. If any identifier does not match on app start, the app refuses
to run. A common approach is to use the ANDROID_ID and IMEI as they are
unique and very robust [11]. The disadvantage of device fingerprinting compared
to approaches that leverage, for example, the hardware-backed key store, is that
they rely on information that is accessible to any application running on the
same device [2]. In Promon Shield, device binding is rudimentary. It only consists
of the Build.SERIAL of the device and, if permissions allow it, the IMEI.

Root Detection. On Android, every app runs in its own user context as part
of the sandboxing concept. Users who still want to alter certain aspects of their
OS often have to root their phone, creating a user with elevated privileges. Since
rooting breaks the sandboxing concept and allows the user to alter arbitrary

app data, hardening solutions often try to prevent the app from running on
rooted phones. Mostly, artifacts of root management applications are checked (e.g.,
SuperSU.apk), or binaries only present on rooted phones (e.g., /system/bin/su).

Promon Shield additionally iterates all processes using the proc file system
and checks for processes like daemonsu, belonging to SuperSU, a root management
app. It also scans /proc/self/exe, which resolves to the app_loader binary, and
scans for SuperSU and Magisk Manager artifacts. Not only are these checks easy
to bypass by renaming the files but they also prevent the execution of protected
apps on phones deliberately rooted by their users; however, they cannot prevent
privilege escalation exploits on non-rooted phones [7,26].

Anti-Keylogger. The possibility to install third-party keyboard apps on An-
droid opens the system up to malicious keyboards that grab sensitive information
entered in the apps. To counteract this, RASP solutions often ship their own
keyboards that apps can use in a more trusted fashion. In Promon Shield, if an
app uses the provided SecureEditText and SecureKeyboard classes, Promon’s
built-in keyboard shows up. As a different line of defense, Promon Shield offers
to check the installed keyboard apps against a whitelist. If one of the installed
keyboards is not whitelisted in the configuration, the app quits.

Anti-Screen Reader. Malware can use accessibility services, as demonstrated
by Cloak and Dagger [8], to read the contents on a screen. Anti-screen reader
methods try to mitigate these attacks. Promon Shield, for example, iterates
through all installed apps that provide accessibility services and checks them
against a whitelist provided by the configuration, including their name and signa-
ture. Another way to prevent screen content grabbing is by disabling screenshots.
When this feature is enabled, Promon Shield sets the FLAG_SECURE property
on the application’s window object at runtime, instructing Android to disallow
screenshots and to show a black rectangle in place of media created through the
recording API instead of the actual window content.

Data Encryption. App-hardening products sell the idea that data stored
encrypted within the app is more secure than data that is encrypted by the
system. The idea is to try to prevent attackers with higher privileges from reading
stored data. For example, attackers might do this to gain knowledge about possibly
sensitive data like transaction histories or encryption keys. The main problem
is where the key should be stored so as to remain inaccessible to an attacker.
Hence, if not derived at runtime from a user-provided secret, data encryption
uses a sort of obfuscation to hide the keys and inner workings as a best-effort
solution. Promon Shield provides its customer with the SecureStorage class
that allows data encryption that also leverages Promon’s white-box cryptography.
We provide more details on its implementation in Sect. 3.5.

Secure Communication. Secured communication lowers the possibility of
man-in-the-middle attacks not only on the network but also against attackers on
the phone. Promon Shield has two distinct features for this. First, it offers its
own HTTPS networking API for Java. If the app developers switch from using
HttpURLConnection to PromonHttpUrlConnection, all requests get automati-

cally routed through the native lib where certificate pinning is enforced. The
native library only connects to servers for which certificates are present in the
encrypted configuration file. Additionally, the app developers can choose to add
a client certificate to the configuration file in such a way that the server knows
whether it is communicating with a genuine app or a third-party client. Second,
Promon Shield offers its own protocol based on the DeviceManagement class
that relies on native methods into libshield.so. This Java class allows APIs to
register an app at the server and performs signed transactions afterward.

2.2 Threat Model

Based on the diverse mitigations that different hardening solutions claim, we try
to synthesize their threat model in this chapter. Hence, we infer our threat model
from the one commonly employed by RASP products.

Attacks against Intellectual Property. The first adversary aims at the in-
tellectual property or other secrets, such as the hardcoded credentials, of an app.
She has privileged access to her own device and tries to gather insights into the
app by means of reverse engineering, including static and dynamic analysis. Her
goals are, for example, circumventing licensing checks to pirate an app, cloning
the integral functionality of the business logic, or publishing information like
hardcoded API keys. She may even be able to offer third-party apps that are fully
compatible with the original app by analyzing API calls, leading to potential
monetary gain and critical insights into a company’s infrastructure.

Attacks against the User Account. The second adversary is a remote at-
tacker who tries to gather user information or execute transactions in the name
of the legitimate user. Such attackers usually apply social engineering, drive-by
downloads, app piggybacking or any other method to achieve code execution on
the victim’s device. This attacker is omnipotent as she has access to privilege
escalation exploits and can take complete control of the operating system the app
is running on. She may trie to run code in the context of the app, communicate
to the backend server with the user’s credentials, or clone the complete state of
the app to her own device for further analysis and use. Additionally, she might
use man-in-the-middle attacks to gather sensitive information.

3 Unpacking Promon Shield with Nomorp

Large international finance and public law institutions place their trust in Promon
Shield. To demonstrate how this popular RASP product can be thwarted, we
propose Nomorp, a tool that automatically disables all protection features from
a hardened app. To that end, we developed a static and a dynamic attack to
address both threats described in Sect. 2.2. The static version aims at attacking
intellectual property, while the dynamic version is after the user’s data.

3.1 Promon Shield

Promon, a company from Norway specializing in the security of mobile and
desktop applications, is a global player in the RASP market with approximately
100 individual business customers protecting the apps of around 100 million
end users [25]. The large number of users, as well as the company’s focus on
the critical banking sector, makes their product a perfect fit for our in-depth
case study analysis. Since Promon does not disclose the names of its customers,
we crawled the official Google Play Store for apps using Promon Shield. These
are identifiable simply by the inclusion of Promon’s characteristic native library,
libshield.so. After downloading over 150, 000 free apps from all Play Store
categories, we found 31 apps that include Promon Shield at the time of writing.

Interestingly, even though Promon advertises its solution to other fields—for
example, to car manufacturers—all 31 apps in the Google Play Store belong to
the finance category. Twenty apps are from Germany, two apps from Norway
and Finland, and one app each is from the Netherlands, Sweden, Great Britain,
United States, Mexico, Brazil, and Hong Kong. The app’s high popularity in
Germany is striking; Promon Shield protects most of the banking apps on the
German market. As of April 23, 2018, four out of the top ten financial apps in
Germany make use of Promon’s solution.

The integration process is claimed to be very easy for app developers [20].
After a customer has received Promon’s integration tool, developers simply have
to specify a configuration file to enable or disable security features. Later, the
Promon integration tool takes the app’s APK and the configuration file and
outputs a hardened APK with the specified protection mechanisms applied. The
customer can now publish the resulting APK to the Google Play Store, and no
further steps are needed.

The life cycle of an app protected by Promon Shield is illustrated in Fig. 1.
The app first loads the native library libshield.so. For this, the integration
tool adds initializing Java code to the onCreate method of the main activity,
as specified in AndroidManifest.xml. The native library relies on three files
which are a product of the integration tool and are added encrypted to the
assets of the APK: mapping.bin, config-encrypt.txt, and pbi.bin. After the
initialization routine has decrypted and parsed the configuration file, Promon
Shield starts a series of threads that realize the enabled features—for example,
the anti-debugging or root detection. The configuration defines how Promon
Shield should treat anomalies, by allowing the execution of callbacks or directly
crashing the app with the possibility to open a web browser with a given URL.

3.2 Static Nomorp

In this section, we propose the use of Nomorp, a fully automated tool intended
to strip Promon Shield’s app hardening from all apps. We had access to neither
the Promon Shield integration tool nor any insider information or internal source
code. An adversary could leverage the same tooling and knowledge which makes
the tool and analysis particularly relevant. To create Nomorp, we analyzed

load libshield.so
unpack
library

runs in
emulator?

parse mapping.bin

abort

parse
config-encrypt.txtreturn to Java

start
configured
features

parse
pbi.bin

environment
safe?abort

no

yes

start threads

yesno

Fig. 1: Life cycle of Promon Shield’s native library.

multiple apps that were hardened by Promon Shield. We combined static reverse
engineering with dynamic analysis based on a custom Android runtime (ART)
and the Frida dynamic instrumentation tool. Our analysis quickly revealed that
Promon Shield adds a native library to the app that gets loaded first. As stated,
this library is easily detected, for the naming of the file always follows the pattern
libshield_{ID}.so. We leveraged this knowledge to detect additional apps in
the Google Play Store that use Promon Shield. As described in Sect. 3.5, we used
this library and all calls from Java to it as a starting point in the analysis. After
discovering that Promon left the Java part largely untouched, we focussed on
either removing libshield.so statically or disabling it dynamically at runtime.
We ended up implementing both methods in Nomorp. This section presents
sNomorp, a tool that is capable of producing a version that is easier to analyze.
In Sect. 3.3, we describe dNomorp, a tool to disable Promon Shield at runtime.

The native library libshield.so implements most app-hardening features in-
ternally. Stripping it automatically disables almost all security measures. Promon
is aware of the attack scenario and seeks to prevent it by introducing a bind-
ing between the customer’s Java code and their own native code implemented
in libshield.so. This mainly consists of two mechanisms: externalization of
strings, and externalization of constants. Hereinafter, we explain how Promon
Shield implements each feature and how we circumvented them.

String Externalization. Promon Shield’s string externalization is visualized
in Fig. 2 and works as follows: When the integration tool applies Promon Shield’s
protection, it looks for strings inside the client’s Java code. For each string, it
creates an entry in an index-string dictionary with a linear increasing index.

Client Code
public class SomeClass {

static void foo() {
System.out.println (" Security ");
System.out.println(Binding.getStr (0));

}
}

public class AnotherClass {
static void bar() {
System.out.println ("A String ");
System.out.println(Binding.getStr (42));

}
}

libshield.so

String getStr(int i) {
return string[i];

}

String Data

0: Security

1: FAU

2: Android

.

.

.

42: A String

i: 0

i: 42

i: 0

i: 42

Fig. 2: Visualization of Promon Shield’s string externalization.

This also applies to strings of the same value. The string declaration is then
removed from the byte code and replaced by a method invocation that points to
libshield.so. This method takes an integer as an argument and returns the
corresponding string value whenever it gets called with a key of the previously
created index-string dictionary. Due to its semantics, we dubbed this function
getStr. For example, a previous declaration of the Java string "Hello World"
gets replaced by a call to getStr(123), which returns "Hello World" as a result.

Constant Externalization. Apart from the substitution of strings with method
calls to Promon’s getStr method, it also externalizes Java constants in a clever
way. This works as follows and the process is further illustrated in Fig. 3: 1) The
Promon integration tool replaces any class member field declared as static and
final with a random value of the correct type. Similar to the string externaliza-
tion, the replaced values of a class are stored in a nested dictionary: While the
first level takes the fully qualified class name as a key, its value is a dictionary
that maps the constant names of the class to their original value, including the
type. To restore these values prior to the first use of the class, Promon Shield
adds a call with the Class object as an argument to its Java glue code in the
static constructor of the class. The ART executes the static constructor as soon
as the class gets loaded, enabling execution of the code even before a static field
is accessed. 2) The Java wrapper code of Promon Shield replaces the dots in
the fully qualified class name as returned by Class.getName() with slashes and
invokes the corresponding native method. The string alternation likely remains
compatible with the previously created dictionary. 3) Inside libshield.so, the
method looks up the class name and reads out all the key-value pairs for this
class. 4) In the last step, the native code replaces the random constant value
with the original values by means of reflection. Given the way the method works,
it is dubbed pushToClass. Notably, it is not possible to dynamically alter the
value of fields declared as final using Java. The Java Native Interface (JNI),
however, does not have this restriction.

Rewriting the App. To rewrite the app using dexlib2, we have to apply the
mappings of the Promon integration tool in reverse. The trivial and straightfor-

Client Code
public class AClass {

public static final VAR_A = 1337;
public static final VAR_A = 182319823;
public static final VAR_B = 42;
public static final VAR_B = 921398213;

static {
Binding.pushToClass(AClass.class);

}
}

Client Code After pushToClass
public class AClass {

public static final VAR_A = 1337;
public static final VAR_A = 182319823;
public static final VAR_B = 42;
public static final VAR_B = 921398213;

static {
Binding.pushToClass(AClass.class);

}
}

Promon Shield Java

public class Binding {
private static native void pushToClass(String);

public static void pushToClass(Class <?> cls) {
pushToClass(cls.getName (). replace(’.’, ’/’));

}
}

libshield.so

void pushToClass(String cls) {
// use reflection to iterate
// over all static final
// fields in ‘class ‘ and set
// them to the correct
// values.

}

Constant Data

"SomeClass ": {
VAR_A: 1337,
VAR_B: 42

}

...

1)

2)

3)4)

Fig. 3: Visualization of Promon Shield’s constant externalization.

ward method for string externalization is to statically determine the highest index
N for the argument of the getStr method. Next, we use Frida to dynamically
invoke getStr with each value in the range [0;N], thus creating an index-string
mapping. The required mapping for the constant obfuscation can be created
similarly: After determining all the classes with a static constructor that calls
pushToClass, we dynamically access these classes. Alternatively, we could just
iterate all the classes. The resultant mapping is sufficient to assign the original
values to the constants.

A subtle detail that hindered the straightforward usage of dexlib2 to rewrite
the DEX bytecode of the app was the renaming obfuscation of Promon Shield’s
own Java code. As the renaming always differed between apps and even between
versions, we would have needed heuristics to identify the class and method names
we wished to rewrite. In the course of our analysis, however, we realized that the
hash sum of the bundled libshield.so did not always differ between two different
apps, whereas the class and member names of Promon’s code did. This indicates
not only that Promon ships their native library libshield.so precompiled to
their customers but also that Promon Shield requires a renaming mapping to
make its native methods accessible from Java code by calling RegisterNatives.
Furthermore, it implies that libshield.so has mappings for the string and
constant externalization.

Through dynamic analysis based on Frida, we acquired all the mappings
in plain text, including the configuration file. We have been successful with a
combination of hooks to malloc, free, and memset. On each execution of malloc,
we add the returned pointer to an internal list that our algorithm traverses on
each execution of free. We were surprised that this approach succeeded, as we
expected the native library to contain its own dynamic memory management

implementation. This becomes even more significant because Promon seems
to be aware of the attack surface, as it uses memset to clear (at least some)
buffers before freeing them. To ensure that we do not miss any buffer, our code
also walks the list of buffers before each execution of memset. For performance
reasons, we implemented our Frida hooks in C instead of JavaScript. This
happens through our own native library libnomorp.so, which gets loaded first
and particularly before libshield.so. With this approach, we were able to
quickly retrieve the plain text configuration file and the two mappings. The
file config-encrypt.txt contains the customer-defined configuration file in the
CSV format, while mapping.bin and pbi.bin are both JSON dictionaries: The
first stores information about the client code’s string and constant obfuscation,
as explained earlier, and the second contains a renaming mapping of Promon
Shield’s Java code obfuscation—for example, its original class and method names.

Evaluation. Using sNomorp, an adversary can produce an app version that is
easier to analyze statically. The entire process is fully automated and takes no
longer than five minutes from the start of the download of the APK until the
output of the rewritten app. Apart from that—even though not a declared goal
of the applied threat model—the majority of apps processed using sNomorp is
even fully runnable after our tool stripped Promon Shield from the app.

During the large scale analysis, however, 9 Apps used a different version of
Promon Shield that registers the device at the backend from inside the library.
Stripping the library completely breaks the HTTP communication channel. This
means that sNomorp is less useful in this case, because the HTTP requests are
performed from within libshield.so. Dynamic analysis of the communication
is, however, possible using dNomorp that we present in Sect. 3.3.

3.3 Dynamic Nomorp

While the previous approach, sNomorp, explained how to remove Promon Shield
from an app, this section is dedicated to a dynamic procedure; hence, we call it
dNomorp. In contrast to sNomorp, we keep using libshield.so but disable
all its features at runtime.

To alter the execution dynamically, we still need to insert our custom native
library in order to hook functionality. Similar to sNomorp, this library extracts
the configuration file and the mapping. Instead of dumping them for further
analysis, however, dNomorp then rewrites the configuration file on the fly as
soon as it gets decrypted. This clear text configuration file consists of key-value
pairs separated by a semicolon.

In the configuration of Promon Shield, most security features have three
entries: a binary value indicating if the features are enabled, another binary value
indicating if the app should crash, and a third value that may contain a percent-
encoded URL that would be opened if the app crashes. For app repackaging,
these entries may look like checkRepackaging=1, exitOnRepackaging=0, and
exitOnRepackagingURL=https%3A%2F%2Ffau.de.

The objective of our attack is to disable all features of Promon Shield by
replacing values of 1 with 0 at loading time using a hook that rewrites the plain

libshield.so

void readConfiguration () {
conf = readEncryptedFile ();
conf = decryptConfig ();
// dNomorp rewrites config
parseConfiguration ();

}

Settings

checkRepackaging: 0

checkRooting: 0

. . .

xyzxyzxyzxyzxyzxyzxyzxyzxyzxyzxyz
xyzxyzxyzxyzxyzxyzxyzxyzxyzxyz...

checkRepackaging=1;checkRooting=1
;checkNativeCodeHooks=1;blockS...

checkRepackaging=0;checkRooting=0
;checkNativeCodeHooks=0;blockS...

dNomorp

while (true) {
for (b in buffers) {

checkBuffer(b);
}

}

void checkBuffer(buf) {
if (isPromonConfig(buf)) {

rewriteConfig(buf);
}

}

1) write

2) write

3) read

2.1) write4) parse

Fig. 4: Visualization of rewriting Promon Shield’s configuration at runtime.

text configuration file after decryption but before evaluation. The parsing of the
configuration file consists of four steps, which are shown in Fig. 4:

1) Read the encrypted content of the file config-encrypt.txt from the APK
and write it to a malloc-allocated buffer.

2) Decrypt the configuration file using Promon Shield’s white-box cryptography.
The result is once again written to a dynamically allocated buffer at the heap.

3) The native library reads the cleartext configuration file.
4) The data gets parsed into the library’s internal data structures.

Right after the configuration file has been decrypted in 2), it is copied to another
buffer using memcpy before libshield.so starts to read the decrypted content
in 3). To that end, we installed a hook to memcpy just before the content of the
old buffer gets copied into the new one. By modifying the source buffer in our
memcpy hook before delegating to the real memcpy function, we can effectively
modify the content of the target buffer and, therefore, the configuration file (Step
2.1) in Fig. 4). Obviously, memcpy is a frequently used function, and its use is not
just limited to the configuration parsing. For that reason, we search the buffers
for well-known configuration entries like checkDebugger and checkRooting.

Evaluation. In contrast to the static attack described earlier, the dynamic
configuration rewrite attack is straight-forward. We used the fact that Pro-
mon Shield is commercial software with a licensing model and the intent to be
configurable without having to recompile the binary blob every time. Instead of
manually disabling each function individually—like we had to do for sNomorp—
we ask the library to disable the features using their intended configuration.

dNomorp works very well and reliably on all the 31 apps we identified to
use Promon Shield. In contrast to the static approach, dNomorp does not help
static analysis, for it does not internalize the constants and strings as they are
defined in pbi.bin. In return, however, the dynamic approach produces an APK
that is fully compatible with the original version where Promon Shield is still part
of the app, including all of its own functionality. Values secured by the white-box
cryptography inside libshield.so, for example, can still be used. An attacker

can now modify the app at will (e.g., add malicious code) or dynamically analyze
it (e.g., run a man-in-the-middle attack against the network communication).

3.4 Coordinated Disclosure

We informed Promon about our results in close cooperation with Hakan Tanriverdi,
a journalist at Süddeutsche Zeitung who frequently writes articles in the area
of information security. He first made contact with Promon and later asked the
affected German financial institutions for their opinion on the case. Finally, Mr.
Tanriverdi published an article [25] about our findings in the business section of
Süddeutsche Zeitung on November 24, 2017, describing our attack in an abstract
way without disclosing technical details. We decided to not disclose any of our
source codes to third parties, in order to avoid supporting cybercriminals.

When we let Promon know that our proposal to present the attacks at the
34th Chaos Communication Congress (34c3) had been accepted, we agreed to not
disclose any further information before the 34c3 talk. Additionally, we provided
Promon with a detailed description of the weaknesses of their RASP product.
On December 27, 2017, we presented our attack to the audience at 34c3.

3.5 Inside Past and Present Libshield.so

This section is dedicated to the internals of libshield.so, the core part of
Promon’s hardening solution. In reaction to our findings, Promon introduced
some modifications to its native library and we describe these changes at the end
of this section. At the time of writing, however, large parts of our past analysis
still apply to recent versions of Promon Shield.

During normal mode of operation, Promon Shield uses a variety of crypto-
graphic primitives to secure the contents of libshield.so: several files in the
assets directory, and the contents of the secure storage feature Promon offers.
Figure 5 shows an overview of libshield.so and depicts the decryption of the
mapping file pbi.bin. Promon, however, processes the other files similarly.

Executable. Encryption protects various sections of the shared library lib-
shield.so. After loading the image into memory and resolving all its dependen-
cies, the dynamic loader dispatches the constructors specified in .init_array.
One constructor invokes an obfuscated version of the RC4 cipher to decrypt the
.rodata, .text, and .ncd sections of the binary employing three distinct keys
that are specific to the version of Promon Shield used.

Assets. As part of the integration process of Promon Shield into the target app,
Promon creates three files and stores them encrypted in the assets folder of the
app: config-encrypt.txt, mappings.bin, and pbi.bin. Section 3.2 explains
the purpose of each file. The initialization procedure of libshield.so applies
the following steps to these files to decrypt them: First, a SHA512 hash h′ over
all but the last 64 bytes is calculated. Second, a fixed DER-encoded public RSA
key pk is generated using the same combination of arithmetic operations and
loops that conceal all other constant strings needed. This public RSA key is used

-libshield.so

-libshield.so

-libshield.so

-libshield.so

-assets

-lib

-...

-config-encrypt.txt
-mappings.bin
-pbi.bin

App Root /
.plt

libshield.1db232c4.so

.text
h’ = sha512(dat)
pk = calcStaticRSAPubKey()

checkRSASign(pk, h’, h)
wBoxAESDecrypt(iv, dat)
encryptDataNative(url,
secret, dat, dataid)

.ncc

.rodata

.fini_array

.init_array
Ki = calcStaticKey(i)
sectionRC4decrypt(sec, Ki)

.data

.ncd

.ncu

.bss

RC4 encrypted section

plain text section

7d 17 51 ab cd c0 50 6b 7e c4 10 63 fc 69 1b d4
42 f3 dc 02 59 45 55 52 b3 5f 8f 02 44 33 7e 46
9d 9b 44 db 21 04 2a 3c da 3b 02 40 06 4c 86 e5
b1 35 cf 73 c2 00 2b bf c6 a2 74 8d 26 3a 3d 1a
24 7b 37 f6 98 9d 49 63 62 90 d2 cd 48 6d a1 86

...

f3 84 e0 df c5 60 36 9c c4 87 ab f2 15 7e b4 03
37 2c e7 8a 46 a4 df 5c 7e 84 95 95 af 79 4b 9d
f3 bb 05 09 cb 35 3d a4 ed db 04 6c ee 70 9a 46
38 c4 db 0a 6e cb 93 b4 79 0e d4 14 d7 8b b2 3e

{ "Pull": [
„a90ce104d2f7c4374f8c0685b0323f5590068b53bf18a1d0
a610a6143c0965cfb1d78d558b4a093035541a1ee081d410
3ea3bb67177a3a4d19703f21911951a98c912dc846969741
cbf3b1f2d9b023c9",
"ce8b443cf20b74902613b3992fe04a8957129d1186af1ff2
12558a8271a5296f",
"0384ec53dc03b4deff486cb0a66301acb6cf17790d01e969
c458d6ffce2ee183",

...

{ "Pull": [
"Failed to verify columns on table that was just
created",
",",
"Table ",
" is missing required column: ",

...

-armeabi

-armeabi-v7a

-mips

-x86

all versions

added in version 2.5.9

1. 2., 3., ...

Fig. 5: Cryptographic functions protecting libshield.so and selected assets.

afterwards to decrypt the last 64 bytes h of the file, to allow the comparison of
the result and h′. This third step effectively constitutes a signature validation,
and is only decrypted using a white-box implementation of AES128 if h and
RSAD(h′, pk) match the contents. The white-box relies on OpenSSL and a
custom implementation of the block cipher that uses the secret symmetric key
in an expanded version only. AES128 is applied in CBC mode with the first 16
bytes of the data serving as initialization vector (IV). The result is expanded
using the inflate algorithm of zlib.

Secure Storage. Applications can request Promon Shield to encrypt data
through the Java class SecureStorage which internally uses libshield.so’s
native function encryptDataNative. Apart from the data requested for encryp-
tion (dat), the function requires a URL parameter of a Promon Shield server
endpoint (url), and two byte strings: one chosen randomly at runtime (secret),
and another one to identify the data to store (dataid). Promon Shield first
applies an HMAC to dataid using secret as the HMAC key and stores the
result in dataid. This step is repeated 4096 times in total before calculating
a 16 byte hard-coded device identifier (again using the obfuscation technique
described earlier). Together with a protocol and a msg variable, as well as
the version of Promon Shield, the device and data id serve as HTTP form
data (application/x-www-form-urlencoded) that libshield.so submits via
HTTPS (with an optional TLS client certificate). After successfully transferring

this information to the server specified by the url parameter, the backend re-
sponds with a key specific for the combination of all parameters used in the
corresponding request. This key is then used for AES256 in CBC mode to encrypt
the data specified by dat.

Changes Introduced in Later Versions of Promon Shield. In response
to our attacks, Promon introduced a few countermeasures. To the best of our
knowledge, the changes were introduced in version 2.5.9 and all apply to Promon
Shield’s handling of the encrypted configuration config-encrypt.txt and the
push and pull bindings contained in pbi.bin. Promon’s renaming mapping for
its Java obfuscation, mapping.bin, remains untouched.

First, Promon Shield now uses two layers of its AES white-box for both files
to prevent revealing the configuration’s location via easy to recognize strings in
memory. For this purpose, all configuration keys have additionally been replaced
by a combination of 16 + 4 byte identifiers. Second, the configuration parameters
indicating whether Promon Shield should perform certain runtime checks—for
example checkRooting—were removed and are now directly compiled into the
code of libshield.so.

Altogether, these modifications to Promon Shield aim at making Nomorp
stop working. Even though neither sNomorp nor dNomorp function for recent
versions of Promon Shield, we are confident that the required adjustments are
minor. To substantially increase the effort an adversary has to take, Promon
should implement further improvements as suggested in the following section.

4 Discussion and Improvements

In this section, we discuss the findings and show what RASP providers can
do to improve their offerings. Attackers will always have an advantage over
the defending RASP solution as they only need to find single failures and can
look at the implementation statically. App developers therefore should consider
two-factor authentication and server-based solutions where possible.

In the following, we use the term RASP provider for developers of RASP
solutions, customer for app developers using RASP to secure their apps and end
user for the user of an app developed by customers. Our treat model outlined in
Sect. 2.2 implies the following goals for a RASP provider: First, make analysis
harder and more expensive so that an adversary cannot easily steal the customer’s
nor the RASP provider’s intellectual property (IP). Second, mitigate automated
large scale attacks against the customers’ products.

With increased value of the protected contents, the motivation to break the
protection increases; hence, defense mechanisms which are sufficient for one app
might not be enough for another. The possibility to steal money, for example,
increases the literal payout of successful attacks. The more valuable a successful
attack is, the stronger RASP protection needs to be.

Of course, with more customers using a certain RASP implementation in
their apps, the value of a generalized attack against a RASP solution increases.
This does not only demand that RASP providers continuously improve their

libraries, but also calls for diversification of their product on a per customer
per app basis. On top, randomness should be introduced in the build steps to
make sure all updates of an app look different. Another main way to hinder
automated unpacking is to interweave the code of the RASP provider and the
customer tightly. Both measures, individualization and interweaving the RASP
providers and the customer’s code, would frustrate reverse engineering and
mitigate automatic attacks. In the following, we give more detailed suggestions
on how to strengthen the security of RASP solutions.

Avoid Easy to Track Resource Files. The Nomorp unpacker was very
effective once we found out at which point the configuration was processed. At
that point, our tool could disable features by simply altering the configuration.
RASP solutions should never offer options to deactivate features at runtime
as an attacker can always leverage them for their benefit. Instead of loading a
configuration as asset that can be traced, RASP providers should not include
features in the binary that the customer disabled. On the other hand, activated
features should not have single points where an adversary can disable them.

In addition to the configuration file, we could recover the mappings of ob-
fuscated strings and constants by tracing accesses to the asset files. Compiling
the mappings into the main binary blob at random positions would already have
increased the attack complexity.

Since an attacker can still iterate over all elements and recreate the mappings
dynamically, a RASP solution could call the next JNI functions directly instead
of returning the value [21]. For this purpose, a function for each constant could
be created in native code, taking additional parameters forwarded to the next
function call and then filling in the needed parameter with the constant value.

Anti-Tampering. Measures to assert the integrity of the customer and RASP
code are already widely applied. A good defense checks the integrity of certain
code blocks often and in different ways to make it harder to disable or alter it.

Anti-Hooking & Anti-Debugging. Anti-debugging and anti-hooking are
close relatives. An attacker can replace debugging tasks like reading from mem-
ory using hooks. Likewise, if an app allows debugging, adding hooks is trivial.
As for anti-hooking, RASPs already implement detections for hooks through
LD_PRELOAD, Xposed or Cydia Substrate and Frida, however are not yet resilient
against simple changes in those frameworks. Generally speaking, RASP providers
should employ more general detection mechanisms. Adding more runtime integrity
checks, raising alarms from obfuscated code, checking they have actually fired
after the anticipated time and more can add enough complexity to make hooking
and debugging a burden. Code obfuscation can help obscuring the location of
anti-hooking and anti-debugging checks. Most importantly, the RASP provider
should interweave their code and the included checks with the client’s code so
that no obvious interfaces are exposed that an adversary can disable, e.g., on
startup. Similarly, once the integrity is breached, the app should fail fast. Since
callbacks could be hooked to keep the app running, crashing the app without an
explicit exit call or any status report is the safest option.

Anti-Emulator. If the app runs inside an emulator, debugging and hooking
remains trivial. A perfect emulator can hardly exist, so emulator fingerprinting
can add manual work to the analysis. For this, many environment checks can be
added at random positions in the code [18]. Research in automatic unpacking of
malware samples based on whole-system emulation suggests that anti-emulation
techniques are effective [6].

Device Binding. To mitigate running a cloned app on a different device that
was used for registration, an app can make use of device binding. For this,
aggressive fingerprinting can be employed, aggregating multiple environment
values. On modern hardware apps should create asymmetric keys in the trusted
environment, if available. From there, keys can hardly be extracted. Adding a
signature to the network configuration using this key lets the server know it is
still talking to the same device.

Code Obfuscation. RASP should not only obfuscate and strip its own but
also the customer’s code. The larger and more interwoven the obfuscated code
is, the harder it is to reverse. This means that the integration tool of the RASP
provider should even include third party libraries to create one entangled unit
where possible. Interweaving can be done within native libraries, DEX bytecode
and between the native library and Java using JNI. Modern Android specific
obfuscation methods like DEX packing and VM-based obfuscation should be
considered [32,31]. Another aspect is the randomization of compilation passes. If
every version of an app looks different, it will be hard to automate unpackers and
to adapt to the latest changes of apps. Some of the steps discussed may require
RASP providers to ship source code or intermediate language together with a
toolchain to their customers. In turn, it requires that RASP providers value the
IP of the customer higher than their own.

Root Detection. Root detection can help to slow down reverse engineering.
Many analysis frameworks require root. It does, however, not defend the user
against attacks that use privilege escalation exploits. App developers have to
decide if they really need to block rooted users or if it is enough to warn the user
of possible consequences. As for root detection, relying on the presence of certain
files, like su, is too easy to circumvent. Instead, two alternatives appear useful:

1) Google SafetyNet is an API that allows apps to check the integrity of the
device they are running on. To prevent an attacker from hooking the decision,
the implementation must check the attestation result on the server rather
than on the client side. This means RASP Providers and app manufacturers
need to support this in their backend.

2) Privilege escalation exploits cannot be prevented or detected. The only way
to reduce the likelihood is to require a sound minimum version of Android
and its security patch level. Instead of comparing a string, the app should
rely on a new API to talk to its backend. That way, the app crashes if its
communication does not employ the new API.

Anti-Keylogger & Anti-Screen Reader. An internal keyboard or keyboard
whitelists are reasonable. An attacker, however, may still overlay it with their
own app [8].

Secure Communication. RASP solutions can automatically upgrade TLS
communications with certificate pinning. If client and server certificate are
obfuscated and hidden at random positions, the effort the attacker needs to
invest to build a man-in-the-middle server for analysis and therefore reversing
the API is increased. Requiring newer client certificates on the server side often
additionally increases the complexity.

Encryption. Storing data encrypted makes it considerably harder for attackers.
Newer phones can create and store encryption material securely inside the
hardware-backed key store. If attackers is on the system before keys are created,
however, they can hook the API calls for key creation and provide their own.
A RASP may, for this reason or to support older hardware, choose to employ
white-box cryptography. White-box cryptography obfuscates a static key making
it more difficult to recover it. An attacker, however, may use the whole crypto
mechanism as a black box and decrypt secrets with it. The white-box code should
therefore be tightly interwoven with the rest of the code and entry points to
the crypto functionality as well as their use should not be obvious. Just like
for constants, the RASP solution can call Java functions directly using JNI
instead of returning the decrypted secrets from a function. The white-box and
the mechanisms to harden it should be changed often and a previous version
should only be accepted by the server for a limited period of time.

5 Conclusion

Taking into account the threat model from Sect. 2, we showed, based on a
case study of Promon Shield, that RASP solutions do not uphold their security
promises. Relying on obfuscation and other software-based hardening techniques
cannot replace established security practices like two-factor authentication if the
stakes are high, e.g., in financial apps.

During our evaluation, we systematically broke all security guarantees of our
case study. Our tool Nomorp is capable of dynamically disabling all security
measures of Promon Shield by altering protected apps at runtime. Other frame-
works discussed in Sect. 2 were not vetted as thoroughly. While they might make
use of stronger obfuscation and hardening we still believe their defenses can be
broken one way or another. Similar, fully automated tools can therefore be built
for all app-hardening solutions. Application layer security mechanisms will always
lose against elaborated attackers [12], since they operate at the same privilege
level as the attackers or at an even lower one. Worse, research has shown that
RASP providers can even introduce severe security vulnerabilities [13].

As a short-term line of defense, RASP providers can use stronger obfuscation,
improve their detection measures for hooking, debugging and rooting and add
additional hardening steps to the client app as we discussed in section 4. These

measures make attacks harder but RASP solutions should still not claim security-
sensitive apps can be used on compromised devices under all circumstances.
Instead, they need to communicate to their clients clearly that they will only
raise the bar for attackers for a certain time. Of course, this can be a valid
defense, according to the company’s threat model. RASP providers need to
develop methods that are less scalable through automated attacks by providing
individualized solutions for their customers.

For the future of two-factor authentication, the only way forward is to shift
the security vectors toward secure tokens in hardware, like TEEs, as well as
backend-based fraud detection, instead of relying on solutions that appear good
enough but are conceptually flawed.

For the time being, users should make sure to run the latest updates and
security patches and to upgrade their mobile devices if they are no longer patched.
RASP providers need to develop methods that are less scalable through automated
attacks by providing individualized solutions for their customers. While we showed
all RASP systems can theoretically be broken, in practice not all is lost: RASP
providers will have reached their goals to secure the mobile app market once
adversaries do not consider reversing hardened apps worth it as it is simply too
complex with very little gain.

Acknowledgments

We wish to thank our shepherd Yanick Fratantonio and the anonymous reviewers
for their helpful comments. Furthermore, we appreciate Felix Freiling’s support
during the disclosure process.

The work presented in this paper was conducted within the research project
"Software-based Hardening for Mobile Applications" and was partially funded by
the German Federal Ministry of Education and Research (BMBF).

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (im)possibility of obfuscating programs. In: Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings. pp. 1–18 (2001)

2. Bianchi, A., Gustafson, E., Fratantonio, Y., Kruegel, C., Vigna, G.: Exploitation
and mitigation of authentication schemes based on device-public information. In:
Proceedings of the 33rd Annual Computer Security Applications Conference. pp.
16–27. ACSAC 2017, ACM, New York, NY, USA (2017)

3. Bichsel, B., Raychev, V., Tsankov, P., Vechev, M.T.: Statistical deobfuscation of
android applications. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 343–355 (2016)

4. Chow, S., Eisen, P.A., Johnson, H., van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H.M. (eds.) Selected Areas in

Cryptography, 9th Annual International Workshop, SAC 2002, St. John’s, New-
foundland, Canada, August 15-16, 2002. Revised Papers. Lecture Notes in Computer
Science, vol. 2595, pp. 250–270. Springer (2002)

5. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edn.
(2009)

6. Duan, Y., Zhang, M., Bhaskar, A.V., Yin, H., Pan, X., Li, T., Wang, X., Wang, X.:
Things you may not know about android (un)packers: A systematic study based on
whole-system emulation. In: 25th Annual Network and Distributed System Security
Symposium, NDSS, 2018, San Diego, California, USA, February 18 - 21, 2018 (2018)

7. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.A.: A survey of mobile
malware in the wild. In: Jiang, X., Bhattacharya, A., Dasgupta, P., Enck, W.
(eds.) SPSM’11, Proceedings of the 1st ACM Workshop Security and Privacy in
Smartphones and Mobile Devices, Co-located with CCS 2011, October 17, 2011,
Chicago, IL, USA. pp. 3–14. ACM (2011)

8. Fratantonio, Y., Qian, C., Chung, S.P., Lee, W.: Cloak and dagger: From two
permissions to complete control of the UI feedback loop. In: 2017 IEEE Symposium
on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. pp.
1041–1057 (2017)

9. Gartner, Inc.: Market guide for application shielding (06 2017), https://www.
gartner.com/doc/3747622/market-guide-application-shielding

10. Goubin, L., Masereel, J., Quisquater, M.: Cryptanalysis of white box DES im-
plementations. In: Adams, C.M., Miri, A., Wiener, M.J. (eds.) Selected Areas in
Cryptography, 14th International Workshop, SAC 2007, Ottawa, Canada, August
16-17, 2007, Revised Selected Papers. Lecture Notes in Computer Science, vol. 4876,
pp. 278–295. Springer (2007)

11. Haupert, V., Müller, T.: On app-based matrix code authentication in online banking.
In: Furnell, S., Mori, P., Camp, O. (eds.) Proceedings of the 4th International
Conference on Information Systems Security and Privacy, ICISSP 2018, Funchal,
Madeira, Portugal, February 22-24, 2018. pp. 149–160 (2018)

12. Jung, J., Kim, J.Y., Lee, H., Yi, J.H.: Repackaging attack on android banking
applications and its countermeasures. Wireless Personal Communications 73(4),
1421–1437 (2013)

13. Kim, T., Ha, H., Choi, S., Jung, J., Chun, B.: Breaking ad-hoc runtime integrity
protection mechanisms in android financial apps. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2017,
Abu Dhabi, United Arab Emirates, April 2-6, 2017. pp. 179–192 (2017)

14. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: An experimental study
of DRAM disturbance errors. In: ACM/IEEE 41st International Symposium on
Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014. pp.
361–372 (2014)

15. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative
execution. CoRR abs/1801.01203 (2018), http://arxiv.org/abs/1801.01203

16. Krügel, C., Robertson, W.K., Valeur, F., Vigna, G.: Static disassembly of obfuscated
binaries. In: Proceedings of the 13th USENIX Security Symposium, August 9-13,
2004, San Diego, CA, USA. pp. 255–270 (2004)

17. Luu, D.: How out of date are android devices? (2017), https://danluu.com/
android-updates

https://www.gartner.com/doc/3747622/market-guide-application-shielding
https://www.gartner.com/doc/3747622/market-guide-application-shielding
http://arxiv.org/abs/1801.01203
https://danluu.com/android-updates
https://danluu.com/android-updates

18. Maier, D., Müller, T., Protsenko, M.: Divide-and-conquer: Why android malware
cannot be stopped. In: Ninth International Conference on Availability, Reliability
and Security, ARES 2014, Fribourg, Switzerland, September 8-12, 2014. pp. 30–39.
IEEE Computer Society (2014)

19. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Balzarotti, D., Caballero, J. (eds.) Proceedings of the Seventh European Workshop
on System Security, EuroSec 2014, April 13, 2014, Amsterdam, The Netherlands.
pp. 5:1–5:6. ACM (2014)

20. Promon AS: Shield: Application protection and security for mobile apps, https:
//promon.co/products/mobile-app-security

21. Protsenko, M., Kreuter, S., Müller, T.: Dynamic self-protection and tamperproofing
for android apps using native code. In: 10th International Conference on Availability,
Reliability and Security, ARES 2015, Toulouse, France, August 24-27, 2015. pp.
129–138 (2015)

22. Ren, C., Chen, K., Liu, P.: Droidmarking: resilient software watermarking for
impeding android application repackaging. In: Crnkovic, I., Chechik, M., Grünbacher,
P. (eds.) ACM/IEEE International Conference on Automated Software Engineering,
ASE ’14, Vasteras, Sweden - September 15 - 19, 2014. pp. 635–646. ACM (2014)

23. Saxena, A., Wyseur, B.: On white-box cryptography and obfuscation. CoRR
abs/0805.4648 (2008), http://arxiv.org/abs/0805.4648

24. Schrittwieser, S., Katzenbeisser, S., Kinder, J., Merzdovnik, G., Weippl, E.R.:
Protecting software through obfuscation: Can it keep pace with progress in code
analysis? ACM Comput. Surv. 49(1), 4:1–4:37 (2016)

25. Tanriverdi, H.: Überweisung vom Hacker. Süddeutsche Zeitung 73(270) (11 2017)
26. Thomas, D.R., Beresford, A.R., Rice, A.C.: Security metrics for the android ecosys-

tem. In: Lie, D., Wurster, G. (eds.) Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
2015, Denver, Colorado, USA, October 12, 2015. pp. 87–98. ACM (2015)

27. van der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss, D., Maurice, C., Vigna,
G., Bos, H., Razavi, K., Giuffrida, C.: Drammer: Deterministic rowhammer attacks
on mobile platforms. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016.
pp. 1675–1689 (2016)

28. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Moriai, S., Jaeger, T., Sakurai, K. (eds.) 9th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’14, Kyoto, Japan - June 03 -
06, 2014. pp. 447–458. ACM (2014)

29. Wu, L., Grace, M.C., Zhou, Y., Wu, C., Jiang, X.: The impact of vendor cus-
tomizations on android security. In: 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013. pp.
623–634 (2013)

30. Xue, L., Luo, X., Yu, L., Wang, S., Wu, D.: Adaptive unpacking of android apps. In:
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
pp. 358–369 (2017)

31. Yang, W., Zhang, Y., Li, J., Shu, J., Li, B., Hu, W., Gu, D.: Appspear: Bytecode
decrypting and DEX reassembling for packed android malware. In: Research in
Attacks, Intrusions, and Defenses - 18th International Symposium, RAID 2015,
Kyoto, Japan, November 2-4, 2015, Proceedings. pp. 359–381 (2015)

https://promon.co/products/mobile-app-security
https://promon.co/products/mobile-app-security
http://arxiv.org/abs/0805.4648

32. Zhang, Y., Luo, X., Yin, H.: Dexhunter: Toward extracting hidden code from packed
android applications. In: Computer Security - ESORICS 2015 - 20th European
Symposium on Research in Computer Security, Vienna, Austria, September 21-25,
2015, Proceedings, Part II. pp. 293–311 (2015)

33. Zhou, X., Lee, Y., Zhang, N., Naveed, M., Wang, X.: The peril of fragmentation:
Security hazards in android device driver customizations. In: 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. pp. 409–423
(2014)

	Honey, I Shrunk Your App Security:The State of Android App Hardening

