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Abstract—We present HyperCrypt, a hypervisor-based
solution that encrypts the entire kernel and user space
to protect against physical attacks on main memory, such
as cold boot attacks. HyperCrypt is fully transparent for
the guest operating system and all applications running
on top of it. At any time, only a small working set of
memory pages remains in clear while the vast majority of
pages are constantly kept encrypted. By utilizing CPU-bound
encryption, the symmetric encryption key is never exposed
to RAM. We evaluated our prototype running a standard
Linux system with an nginx web sever. With the default
configuration of 1024 cleartext pages, successful cold boot
attacks are rendered highly unlikely due to large caches of
at least 4 MB in modern CPUs. The performance overhead of
nginx is raised by factor 1.37 compared to a non-virtualized
system.

Keywords-memory disclosure attacks, cold boot, memory
encryption

I. INTRODUCTION

Today’s computers are amongst many tasks used to
process, distribute, and store sensitive information. Pro-
tecting these sensitive information has always been an
important goal for many software and hardware solutions.
While the problem of protecting sensitive data is largely
solved for network transfers and permanent storage like
hard disks, volatile memory still remains at risk. For SoCs
and dedicated hardware, full memory encryption rarely
exists [1], but standard hardware used by end users still
cannot be protected with memory encryption.

When a computer is turned off, data in main memory is
not lost immediately, but instead gradually fades away over
time. This fact can be exploited by certain attacks such as
cold boot attacks [2], attacks using the Firewire interface [3]
and other DMA attacks that are capable of extracting RAM
contents [4]. To effectively protect RAM, one of the most
sensitive parts of modern computers, including private RSA
keys, disk encryption keys, online banking credentials and
user logins, we decided to encrypt RAM on hypervisor-
level to be able to protect kernel space and hence, to ensure
maximum compatibility and security.

Just recently Intel announced its Software Guard Ex-
tensions (SGX) [5] which amongst others also encrypt
physical memory of software running within so-called
enclaves, showing the importance of physical security for
standard hardware today. Enclaves, however, are restricted
to a static size and cannot dynamically grow once they
have been created. Also software within enclaves needs to
be written for SGX as the restricted enclave environment,
for example, does not permit syscalls. Consequently, SGX

cannot provide compatibility with existing applications that
should be protected against physical memory disclosure.
Furthermore, sensitive data is not only stored within the
address space of a given application, but also partially
within kernel space due to network and device buffers.
Kernel space cannot be protected by Intel’s SGX as
enclaves cannot be entered in kernel mode but only in
user mode [6]. Thus, SGX is only suitable to protect a
limited set of rewritten applications but not to prevent
physical data exposure of kernel and application memory
in general.

A. Our Contribution

In this paper, we present HyperCrypt, a hypervisor-
based encryption of the guest’s main memory to protect
against physical attacks such as cold boot and DMA attacks,
while being transparent for applications and the OS kernel
running on top of it. In detail our contribution is:

• At any time, the vast majority of main memory is
kept encrypted. Only a small, configurable working
set of pages remains unencrypted. These pages are
kept within caches with a high probability.

• We demonstrate the practicability of our approach
with a prototype implementation running a standard
Linux system with an nginx webserver.

• The prototype of HyperCrypt leads to an overhead of
37% for the nginx webserver under heavy load.

• Utilizing CPU-bound encryption, the encryption keys
used by HyperCrypt are never exposed to RAM.

• HyperCrypt, as a hypervisor-based solution, is fully
transparent to all applications as well as the operating
system kernel.

HyperCrypt is free software published under the GPL v2.
It is available as an open source patch building on top of
BitVisor [7] at https://www1.cs.fau.de/hypercrypt.

B. Related Work

In recent years, work that addresses memory disclosure
attacks not only by keeping encrypted data but also by
computing on the encrypted data led to the concept of
cryptographic processors. Theoretic approaches such as
homomorphic encryption [8], [9] and fully homomorphic
encryption [10] are not yet practical, while other sugges-
tions encrypt the communication channel to peripheral
and storage devices [11], [12] which requires modified
standard hardware. Futhermore, only tamper-resistance and
authenticity has been covered and confidentiality has been
excluded [13].



Solutions targeting specific problems, such as the pro-
tection of full disk encryption keys [14], can protect only
a small fraction of sensitive data but not memory as a
whole. Symmetric register-based encryption on operating
system level [15], [16], [17] and hypervisor level [18],
[19] as well as cache-based solutions [20] emerged in
the field of CPU-bound encryption schemes. Solutions
protecting asymmetric keys, which might be target to
cold boot attacks as well [21], [22], include register-based
implementations [23], [24] and implementations based
on hardware transactional memory [25]. Nevertheless, all
those solutions have in common that only a small portion
of sensitive data, which is usually an encryption key, is
protected.

A survey of full memory encryption solutions [26]
shows theoretical approaches [27] as well as practical
implementations like swap space [28]. For embedded
hardware, full memory encryption solutions exist [1] as
well as for the Linux kernel [29], [30]. To the best of our
knowledge there is no hypervisor-based solution aiming
at encrypting the whole physical address space of a guest
yet.

C. Outline

The remainder of this paper is structured as follows:
In Section II, we give necessary background information
about the memory management of BitVisor and CPU-
bound encryption. Readers familiar with these topics may
safely skip this section. In Section III, we present the
HyperCrypt architecture and provide some implementation
details regarding the challenges that need to be solved with
implementing HyperCrypt. In Section IV, we evaluate
HyperCrypt regarding performance and security while
considering benchmark tests as well as a real world
application. In Section V, we deal with future research
directions, and in Section VI, we finally conclude with a
summary of our work.

II. BACKGROUND

This section describes necessary building blocks that
HyperCrypt relies on. In Section II-A, details of BitVisor
and its memory management are presented, while in
Section II-B, the concept of CPU-bound encryption is
introduced.

A. BitVisor Memory Management

BitVisor [7] is a thin hypervisor based on Intel VT-x
and AMD-V for enforcing I/O device security. It is a so
called parapass-through hypervisor meaning that only a
small set of hardware accesses, for which security should
be enforced, are intercepted by the hypervisor while other
accesses are passed through to the hardware. The advantage
of this concept is a dramatically reduced code size in
comparison to traditional VMMs such as XEN or KVM.
BitVisor with enabled ATA parapass-through driver, for
example, needs only 21,400 lines of code and is capable
of performing transparent full disk encryption. Naturally,
thin hypervisors have limited functionality compared to
real VMMs; most notably, BitVisor allows running a single

VM on top of it, eliminating the components for sharing
and protecting system resources amongst different VMs.

To manage memory within a hypervisor, there are
basically two widely known concepts for x86. The first
concept, known as Shadow Page Tables (SPT), requires
a hypervisor to deny the guest operating system write
access to its own page tables. Instead, write accesses are
trapped and handled in the hypervisor after applying certain
mapping rules. The advantage of this approach is that, apart
from basic virtualization support, no other hardware support
is needed. The disadvantage, however, is that handling all
page table changes within the hypervisor has a serious
impact on performance.

We therefore decided to implement HyperCrypt based
on the modern approach of implementing memory manage-
ment within a hypervisor called Second Layer Address
Translation (SLAT). SLAT requires support from the
processor such as, for example, the Extended Page Tables
(EPT) feature provided for Intel CPUs. With EPT, virtual
addresses are first translated to guest physical addresses
with the help of regular page tables managed by the
guest. These guest physical addresses themselves are then
translated to host physical addresses with the help of
the EPT managed by the hypervisor. Consequently, the
guest has a faked view of physical memory which can be
provided by the hypervisor by manipulating the EPT. For
our implementation of HyperCrypt, we mislead the guest
operating system regarding the number of pages that are
currently accessible in real physical memory by targeted
EPT manipulations.

B. CPU-bound Encryption

To prevent cryptographic keys and key material, like
intermediate states during encryption and decryption, from
being stored in RAM, we use the principle of CPU-bound
encryption. In particular, HyperCrypt is built upon BitVisor
and uses some logic from TreVisor [18]. TreVisor is
a patch for BitVisor that provides a cold-boot resistant
AES implementation which is primarily designed for full
disk encryption. Only CPU registers are used to store the
encryption key as well as any intermediate state like the
AES key schedule. To prevent the intermediate states from
entering RAM, the AES cipher is executed inside an atomic
section within the hypervisor, i.e., interrupts are disabled
and the operating system is paused while the cipher runs
on a particular CPU. According to the authors of TreVisor,
tests have shown that the atomic sections are too short to
affect the system interactivity by disabling interrupts.

TreVisor stores the AES encryption key inside the four
x86 debug registers and prevents access to these registers
for any other purpose. Although the cipher runs within
the hypervisor, hardware breakpoints are not usable by the
guest operating system. Every access to the debug registers
by the guest is intercepted by the hypervisor. For write
accesses, the value to be set is copied to a shadow area
in memory and for read accesses, this value is returned
back. To the guest operating system it seems the registers
are functional, but the processor is not able to use real



hardware breakpoints as the registers are not set to the
value stored within the shadow area. As most debuggers use
software breakpoints by default, which are implemented
by overwriting code with dedicated instructions, this is
mostly a limitation for watchpoints.

For every input block, the AES computation is done
within the SSE registers of the x86 architecture. Prior
to the encryption or decryption of an input block, the
AES key schedule is recalculated for this block. Due
to the use of the AES-NI instruction set, however, the
performance degrade is acceptable. After the encryption or
decryption of an input block, all SSE and general purpose
registers are cleared which effectively wipes any sensitive
intermediate information of the AES computation. The
wiping operation and the atomicity of the AES computation
within the hypervisor ensure that parts of the key material
or intermediate states never enter RAM.

To bootstrap TreVisor, the user has to type a password
at an early stage during start-up right after the hypervisor
is loaded by the boot loader. The password is used to
derive the key which then is stored within the debug
registers. We patched TreVisor such that a random key
is generated during start-up instead of having to enter a
password because for memory encryption, keys can be
arbitrary. The key within the debug registers is protected
against physical attacks like cold boot [31] because debug
registers are cleared during a CPU reset. An attacker would
require logical access to a machine and must be able to
execute hypervisor code in order to read out the key.

III. DESIGN AND IMPLEMENTATION

In Section III-A, we present a high-level view of the
HyperCrypt architecture and in Section III-B, we explain
implementation details like the handling of DMA transfers
and different configuration options for HyperCrypt.

A. HyperCrypt Architecture

HyperCrypt encrypts host physical pages and automat-
ically decrypts those pages which are currently accessed
by the guest OS or an application running on top of the
guest OS. To this end, the EPT fault handler of BitVisor is
extended to support the dynamic encryption and decryption
of physical pages. As BitVisor is a thin hypervisor with
only a single guest OS running, the EPT mapping within
BitVisor is simple. Almost every guest physical address
is mapped one-to-one to the corresponding host physical
address with the exception of the physical pages containing
the hypervisor itself. These pages are hidden from the guest
operating system by hooking the BIOS call for getting the
system memory map and re-mapping the addresses within
the EPT is not allowed.

Applications running on top of the guest OS, as well as
the guest OS itself, can access pages only if a corresponding
EPT entry exists. If no such entry is found, a trap into the
hypervisor occurs and the fault is handled by the EPT fault
handler. HyperCrypt leverages the one-to-one mapping
mechanism by dynamically adding and removing entries
from the EPT when physical pages are encrypted and
decrypted, respectively.

1) Sliding Window: In an ideal world, only the single
page that is currently in use by the guest OS is left
decrypted while all remaining pages are encrypted. Hence,
the EPT only contains a single entry and access attempts
of other pages cause a fault followed by a trap into
the hypervisor. The hypervisor could then encrypt the
current page, remove the current EPT entry, decrypt the
correspondent requested page, and add an EPT entry for
the new page. Although this approach guarantees maximal
security, because of minimal expose time of a given page,
we decided against it for two reasons. First, one single
page is not sufficient for the guest OS to run instruction
and data fetches from two different pages in parallel, and
second, trapping into the hypervisor each time a different
page needs to be accessed decreases the performance
dramatically such that a protected system needs days to
boot up.

Instead of encrypting all but one page, we introduce a
sliding window which keeps references to all pages that
are currently kept in clear. Every page not referenced
from within the sliding window is always kept encrypted.
Consequently, instead of keeping only the currently used
page in clear, the last n pages that have been accessed
are kept in clear. The size n of the sliding window is a
system wide constant and can be defined when building
HyperCrypt; the default value is 1024. Note, that 1024
pages correspond to 4 MB in size which is less than most
cache sizes of modern CPUs and therefore even the pages
that are currently kept in clear are likely not exposed in
clear within RAM.

2) HyperCrypt Workflow: As depicted in Figure 1, the
basic HyperCrypt workflow consists of two main parts.
First, the extended EPT fault handler which on demand
decrypts pages for which a fault has occurred, and second,
the sliding window mechanism which after each page fault
checks whether there are more than n cleartext pages and
potentially re-encrypts pages referenced by the sliding
window if the limit of n pages is exceeded. In detail,
the extended EPT fault handler decrypts a page and then
makes it accessible to the guest by adding an entry for this
physical page to the EPT. The sliding window mechanism
first adds the newly decrypted page to the sliding window
if the page fault was caused by an encrypted page. It then
checks whether the limit is exceeded and which page to
remove from the window. The chosen page is removed
from the EPT table, taken out of the sliding window and
finally encrypted.

Hooking the EPT fault handler within BitVisor is
sufficient for implementing HyperCrypt, because the guest
system is started with an empty EPT table in the hypervisor.
Thus, for each first access of a page, the EPT fault handler
is called and the sliding window mechanism inserts the page
into the sliding window. To decide whether a page needs
to be decrypted within the EPT fault handler or whether
the fault just occurs because of being first accessed, a bit
marks the page as currently being encrypted or in cleartext
for each physical page.
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Figure 1. Overview of HyperCrypt’s Workflow

3) HyperCrypt Challenges: While the concept of Hy-
perCrypt may sound simple, a lot of challenges had to
be solved to transparently encrypt main memory out of
a thin hypervisor. Since BitVisor is a parapass-through
hypervisor, it does not know about the guest’s memory
layout and how the guest OS uses certain memory regions.
We cannot simply encrypt the whole physical address space,
but instead device memory and DMA buffers need to be
excluded, for example. To exclude device memory, we
check each memory access that causes a fault against the
system memory map provided by the BIOS. If a region
is accessed which does not belong to usual system RAM,
the access is mapped through with a one-to-one entry in
the EPT and the page is not considered for encryption.
Handling accesses to DMA buffers is more complicated,
because the hypervisor does not know which areas have
been allocated by the guest OS to be passed to devices as
DMA regions. Encrypting DMA buffers causes problems,
because the devices would read encrypted data. During
writing, the devices would write cleartext data which
the hypervisor then potentially decrypts for the operating
system leading to unpredictable results. Our approach
for mitigating this problem involves using device drivers
provided by BitVisor and will be further explained in
Section III-B.

For the encryption itself, we use a variant of the
TRESOR cipher [15], [18] which behaves like AES-128.
We further chose the XEX mode of operation with the
initialization vector which is needed to generate the tweak
set to the physical address of the page that is about to
be encrypted. The physical page address is a reasonable
choice because it is unique and cannot be forged by the

guest operating system as host physical addresses are only
used within the hypervisor.

B. HyperCrypt Implementation

The EPT fault handler is the point of choice to start
implementing HyperCrypt. As the guest can only access
pages that have an entry within the EPT and every other
access results in a page fault, the EPTs can be manipulated
to only hold the currently decrypted memory pages while
encrypted pages are never inserted into an EPT. When
the guest wants to access a memory page that is currently
encrypted, the MMU cannot find an entry for this address
in the EPT and issues a page fault which is handled by the
hypervisor. The hypervsior then decrypts the page before
adding it to the EPT and returns control to the guest which
will repeat the previous memory access. This memory
access succeeds because the appropriate mappings exist.

1) Page Management: In BitVisor, the EPT is empty at
boot time and is subsequently filled page by page using
the page fault handler. HyperCrypt stores the current status
(encrypted or clear) of each physical page frame using
a single bit within a bitmap. When a page fault occurs,
the bitmap is used to check whether this fault was caused
since the page was accessed for the first time or since it
is currently encrypted and therefore not referenced by the
EPT. In the latter case, the page is decrypted using the
TRESOR cipher and added to the sliding window. If the
page is accessed for the first time, it is added to the sliding
window as well to ensure that it will be encrypted at some
point in time. The sliding window contains structures of
decrypted pages which store the physical addresses of these
pages. In addition, these structures contain information
whether or not the decrypted page is actually mapped



within the EPT. This information is needed because the
hypervisor itself is allowed to access encrypted pages, too,
which get first decrypted. These pages, however, are not
part of the EPT as the hypervisor does not use the EPT but
rather accesses the pages directly via its own page tables.

To ensure that only a certain previously defined maxi-
mum number of pages are decrypted at the same time, the
number of decrypted pages, that is the number of pages
referenced by the sliding window, is compared to this limit
each time after a page has been decrypted. If the limit has
been exceeded, the first page within the sliding window is
encrypted again and removed from the EPT if necessary.
As in standard BitVisor no entry is ever removed from the
EPT, the functionality for removing pages from the EPT
had to be implemented first.

The current strategy for choosing the page which first
gets encrypted again is basically first-in-first-out (FIFO).
However, for more recent CPUs, we also implemented a
better strategy. Recent Intel CPUs now support accessed
and dirty bits within EPTs which allow to use a second
chance algorithm. With second chance, before encrypting
a page, the pages within the sliding window are checked
for the accessed bit. If the bit is set, the page was accessed
recently and therefore gets a second chance. The accessed
bit is then cleared and the page is added to the back of
the list again. This process continues until the first page
without an access bit set within the sliding window is
found. This page is then encrypted instead of just using
the very first page within the sliding window. The second
chance algorithm performs better if there are pages that
are accessed frequently, because these pages get almost
never encrypted. On the other hand, if a lot of different
pages are accessed constantly, the second chance algorithm
introduces additional overhead by iterating over the sliding
window.

BitVisor has the capabilities to map and access pages
within the guest memory, and thus, it must be dealt with
that encrypted pages can be accessed by the hypervisor.
Consequently, the mapping functions used by BitVisor are
modified in a way such that mapped pages are checked
for encryption before adding them to the hypervisor page
table. This is particularly important for the BitVisor drivers
as they usually map guest pages to copy content from the
guest to pass it to devices.

2) Device Memory: When dealing with RAM encryp-
tion, an important part is to consider which different kinds
of memory regions there are. Besides user data, program
code, and kernel level data, parts of the memory are
also used to communicate with devices like hard disks
and keyboards. Some devices are, for example, controlled
using memory mapped I/O, where the operating system
writes to specified memory areas which are then read
by a device and interpreted as a command. If the entire
memory used by the guest OS should be encrypted, these
memory mapped regions have to be excluded. Otherwise,
the encryption routine would write to these memory areas
and send randomized commands to the devices. To check
which regions to exclude, we use the memory map provided

by the BIOS. This map is obtained by BitVisor at an early
stage to check for available memory regions.

Before checking for encryption within the EPT fault
handler, it is additionally checked if the address that causes
a fault is part of a memory region marked as available
in the memory map. Available means that the respective
page can actually be used by the system and is not already
reserved for any device. If the faulted address points to
memory within a reserved region, the extended EPT fault
handler will not be called and the page will be added to
the EPT directly. For future accesses, this device page
is excluded from the encryption process altogether and
remains permanently mapped within the EPT.

3) DMA Buffers: The most critical part of memory that
has to be considered when encrypting data stored in RAM
are DMA buffers. BitVisor allows the guest to directly
communicate with devices and therefore the guest directly
initiates DMA transfers. The guest just passes an address
of a DMA buffer to a device and then proceeds with other
operations. By executing other instructions, other pages
are mapped and decrypted by the hypervisor which causes
pages from the DMA buffer to be encrypted, potentially
before the DMA transfer is completed. A device would
then, for example, write unencrypted data to encrypted
memory which results in unpredictable data once the page
gets decrypted.

To deal with this issue, the BitVisor drivers have been
used to mitigate this problem. BitVisor provides drivers
to intercept commands issued to devices to transparently
implement full disk encryption and tunnel ethernet packets
through a virtual private network, for example. These
drivers perform the actual DMA transfer, meaning that
if data should be provided for a device, the driver uses
BitVisor’s internal mapping functions to map the guest
memory, copy the data from the guest and finally send the
data to the device. With HyperCrypt, we hook all available
mapping functions and ensure that data gets decrypted
properly before being sent to the device. Receiving data
from a device works similar, but instead the data is
encrypted by HyperCrypt before being written to guest
memory.

4) Booting HyperCrypt: For booting HyperCrypt, we
basically provide two options: A user password to derive
the encryption key, or automatically generating a random
key on each boot. The userpassword option can be used
to define if the user wants to enter a particular key for
encryption. In that case, the user is asked to enter a
password at boot time, which is used to generate the
TRESOR encryption key stored in the debug registers.
Otherwise, the key used for the encryption is generated
randomly. The random number generator of the Trusted
Platform Module (TPM) is used to generate 256 bits of
key material consisting of the 128 bit AES key and the
128 bit XEX tweak key. The default setting is to use a
random key as the key only has to be remembered until a
system is rebooted. If the user, however, does not trust the
random generator of the TPM, the password method can
still be used.



When configuring HyperCrypt for the first time, the size
of the sliding window, which defines how many pages
are unencrypted at the same time, has to be fixed. This is
a “security vs. performance” parameter because a higher
number causes more of the RAM to be exposed while the
decryption routine has to be called less frequently. As one
page is 4096 bytes is size, setting the value to 512 results
in 2MB of RAM being exposed, 1024 results in 4MB and
so forth. Although, 4MB of exposed data could contain
a lot of sensitive data, it is very unlikely that this data
can be acquired by physical attacks on main memory due
to large CPU caches nowadays. The size of the sliding
window should be always chosen to expose less data than
the size of the cache, and hence we set the default value
to 1024 pages as a conservative choice and a reasonable
trade-off between security and performance.

IV. EVALUATION

In this Section, HyperCrypt is evaluated regarding per-
formance (Section IV-A) and security (Section IV-B). For
our evaluation, we consider widely accepted benchmarks
as well as a real world application.

A. Runtime Performance

In this Section, HyperCrypt is evaluated regarding
performance. First, we run the SPECINT2006 benchmark
on top of HyperCrypt using a standard Linux distribution
and secondly, we measure the average reply rate of an nginx
webserver using HyperCrypt. All evaluations have been
performed on a standard desktop PC with Intel Core i7-
2600 CPU and 8GB of RAM running a Debian GNU/Linux
7.8 operating system.

1) SPECINT2006 Benchmarks: Naturally, a huge perfor-
mance overhead is created by encrypting memory pages,
and additionally HyperCrypt suffers from a significant
performance drawback due to context switching between
the hypervisor and the guest OS when a page is encrypted
or decrypted, respectively. To have verifiable performance
results, we decided to use the standardized SPECINT2006
benchmark suite.

These tests were performed with our default sliding
window size of 1024. Additionally the same tests were
executed with a plain Linux system and standard BitVisor
running Linux. However, the overhead of Linux on top
of standard BitVisor over Linux without hypervisor is
neglectable and therefore in Figure 2, we show the overhead
of HyperCrypt over a standard Linux system running
SPECINT2006.

The overhead varies a lot depending on the chosen test
which most likely depends on the data locality involved
in the different tests. Altogether the overhead factor of
HyperCrypt varies between 15 and 148 with three outliers
with an overhead factor of 1.15, 388, and 718 respectively.
The bzip2 test which is more memory intense than I/O
intense has an overhead of 15.8 which is the second least
of all tests. The second chance page replacement algorithm
gave a 19% performance boost over the standard FIFO
algorithm.
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Figure 2. Performance overhead of HyperCrypt compared to a native
Linux system using SPECINT2006.

2) HTTP Server Performance: While the SPECINT2006
suite is a standardized benchmark suite that makes a
comparison between other setups easy, we also want to
show how HyperCrypt performs in a real world scenario.
One example, where HyperCrypt could be used is a secure
web server that should be protected against physical attacks
on main memory. We benchmarked the widely used nginx
web server [32] on top of HyperCrypt using a standard
Linux. To measure the performance, we used the program
Httperf [33] on a computer directly connected to our test
machine. Httperf sends various requests to a given host
address and evaluates the response time that the web server
needs to send back the response. Httperf was configured
to send 10,000 requests with a timeout of five seconds.

Table I shows the absolute average reply rates and
connection times for HyperCrypt configured with different
sliding window sizes. As expected, reply rates are lager if
more pages are allowed to reside within RAM in clear. For
our default sliding window size of 1024, the reply rate is
not much lesser than for a plain Linux system. The overall
overhead for different sliding window sizes is visualized
in Figure 3.
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Figure 3. Overall performance overhead of the nginx web server running
on top of HyperCrypt with different sliding window sizes.

The overhead for our default sliding window size of
1024 is just 37% and has been calculated based on the
runtime. For even more secure settings with less decrypted
pages, the factor grows to 6.34 for 768 pages and 13.83 for



Sliding Window Size No Encryption 384 512 768 1024

Test duration (s) 81.0 1,641.3 1,120.8 513.5 110.8
Avg. reply rate (replies/s) 123.4 6.1 8.9 19.5 90.2
Avg. connection time (ms) 8.1 164.1 112.1 51.3 11.1

Table I
AVERAGE REPLY RATES AND CONNECTION TIMES FOR AN NGINX WEB SERVER RUNNING ON TOP OF HYPERCRYPT WITH DIFFERENT SLIDING

WINDOW SIZES.

512 pages. 384 pages caused the web server to reply to the
requests 20.26 times slower. As modern caches are usually
much larger than 4MB, the default sliding window size of
1024 is a good trade-off between security and performance.

With an overhead of only 37% for the default sliding
window size of 1024, the evaluation shows that a real
world example, like a web server, performs a lot better
than the integer benchmark suite SPECINT2006. A web
server is probably far more I/O intense than most tests
within SPECINT2006. As our primary goal was to provide
physical security for severs, this result shows a practical
scenario for using HyperCrypt.

B. Practical Security Evaluation

Besides performance, the most important aspect of
HyperCrypt is of course whether it guarantees the security
we claim. In this section, we show the effectiveness of
HyperCrypt and how the sliding window size affects data
exposure in general.

1) Effectiveness: To verify that HyperCrypt mitigates
data exposure, we filled a certain memory region with
a repeated randomly generated pattern and afterwards
searched for this pattern within physical memory. If
HyperCrypt works as intended, the pattern should at
maximum be only found as often as it fits within all pages
referenced by the sliding window. All other pages should
be either encrypted or should not have been accessed at
all, thus not containing the pattern.

We wrote a small program which runs on top of standard
Linux and uses /dev/urandom to generate a random
128 bit pattern each time it is started. The program then
allocates four gigabytes of memory and fills the allocated
memory area with the just generated pattern. Afterwards,
the program issues a vmcall and passes the pattern as
a parameter to the hypervisor. The hypervisor searches
for the 128 bit pattern within the whole physical address
space and counts the matches. Performing the search from
the hypervisor guarantees atomicity, meaning during the
search, the guest memory contents do not change.

Despite atomicity, however, the identical number of
matches with a given sliding window size for multiple
runs of the test program is not always found. This is due
to the fact that not only the test program but also other
programs are executing and that the guest OS is responsible
for scheduling. We therefore ran the test program ten times
for each sliding window size starting with 256 pages (1MB)
to 1024 pages (4MB) with a step size of 64 pages.

The minimum, maximum, and average numbers of
pattern matches for different sliding window sizes are

shown in Table II. Without encryption enabled, the number
of matches always stays the same for each run, because
the allocated area just resides in RAM in clear. With
encryption, the difference between the maximum and the
minimum is quite large, which depends on, for example,
whether another process was scheduled in the meantime.
The maximum number of matches, however, never exceeds
the potential possible number given by the size of the
sliding window which confirms that the security claims
are really guaranteed.
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Figure 4. Maximum and average matches for different numbers of
decrypted pages.

Figure 4 visualizes the minimum, maximum, and average
numbers of matches with error lines. Furthermore, the
potential possible number of matches determined by the
sliding window size is shown as separate graph. It is clearly
visible that the maximum is always below the potential
maximum of matches. Note that because the vmcall is
issued by the very same program, the number of matches
is generally rather high, while it is usually much lower in
real world scenarios where more processes are scheduled
between the storing and acquiring of sensitive data.

2) Cache Sizes: Generally the size of the sliding window
should be chosen smaller than the cache size to ensure
that sensitive information is not exposed in clear to main
memory. During our evaluation, the CPU cache was 8MB
which is twice the size needed for our default window size
of 1024. It is unlikely that sensitive data is ever exposed
to RAM with HyperCrypt running with a sliding window
size of half the cache size. If, however, additional security
guarantees are needed, existing measures like Cache as
RAM [34] which is used in CoreBoot, must be used to
additionally control the cache. Cache as RAM has also
been used to mitigate cold boot attacks against full disk
encryption keys in FrozenCache [20], [35] which is capable



Sliding Window Size No Encryption 256 512 768 1024

Minimum 249,023,439 4,465 6,505 87,595 179,140
Maximum 249,023,439 35,575 88,615 142,675 207,190
Average 249,023,439 14,767 62,605 132,959.5 200,713

Table II
NUMBER OF PATTERN MATCHES WITHIN PHYSICAL ADDRESS SPACE FOR DIFFERENT SLIDING WINDOW SIZES.

of running a full Linux system. A commercial virtualization-
based solution which leverages Cache as RAM to protect
against physical attacks is called vCage [36]. Of course,
including cache as RAM as a security guarantee would
also come at an additional performance cost. As cache as
RAM is not necessary for HyperCrypt to protect sensitive
data in general, we decided against it and did not include it
into our current implementation for performance reasons.

V. FUTURE WORK

HyperCrypt’s performance slowdown is caused by both
the encryption mechanism and the overhead of the VMM
itself. Limiting the times the VMM performs the actual
page encryption or decryption would of course lead to
a major increase in performance. Therefore, a future
version of HyperCrypt could only enable the encryption
when it deals with sensitive data and disable it for
performance critical operations. This implies, however,
that the physical memory must be decrypted and sensitive
data must be erased from memory before the encryption is
disabled. Further performance gains could be achieved by
switching the VMM on and off during system execution,
thereby entirely disabling the VMM’s trapping mechanism.
Stopping the VMM from running without shutting down
the guest would require a different underlying design
of the VMM though, as BitVisor is implemented as a
bare metal hypervisor. Like Rutkowska’s proof of concept
Bluepill [37], the VMM would need to support on-the-fly
system virtualization and devirtualization.

VI. CONCLUSION

In this paper we presented HyperCrypt, a hypervisor-
based solution to transparently encrypt guest memory,
including both kernel and user space, to effectively protect
against physical memory disclosure. We designed and
implemented our solution on top of BitVisor using the
cold-boot resistant AES implementation from TreVisor
and took care to handle device memory and DMA buffers
securely. The security of HyperCrypt can be adjusted by
configuring the size of the sliding window to determine
how many pages are left unencrypted within main memory
at a time. We evaluated HyperCrypt regarding performance
and security and showed that data exposure is effectively
decreased. With the default sliding window size of 1024
pages, cold boot attacks are rendered unlikely due to large
caches while the reply rate of an nginx web server is 37%
lower than for an unprotected system.
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