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Memory Disclosure

Current practices for protecting sensitive data:
I Security-aware people use full disk encryption
I Only protects data while computer is off
I Does not work with devices in Standby-Mode

RAM contains lots of sensitive data:
I User passwords or login credentials
I Cryptographic keys
I Personal data and credit card information

→ Information is only protected by logical means, e.g., by the OS
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Physical Memory Disclosure

Physical Attacks on RAM:
I By using DMA

Example: Firewire
I Cold Boot Attacks
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Data Lifetime
Goal: Reducing data lifetime of sensitive information within RAM:

I Requires data lifetime knowledge
I Traditional wiping approaches fail (no transparency)

→ Transparent data encryption effectively hides information
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HyperCrypt: Idea
Transparently encrypt data out of the hypervisor:

I Independent from the operating system
I On a per-page basis
I Only a small set of pages remains unencrypted

Sliding window instead of only single page:

clear
present

0x1000

encrypted

0x2000

clear
present

0x3000

encrypted

0x4000

encrypted

0x5000

encrypted

0x6000

0x1000
0x3000

Sliding Window
Size 2

movl 0x3000, %eax
movl 0x4000, %ebx

X
E

→ Sliding window size is a configurable security parameter
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HyperCrypt: Background

Prototype implementation as patch for the BitVisor hypervisor:
I Builds upon the BitVisor patch TreVisor
I CPU-bound implementation of AES (TRESOR)
I Stores the key and all intermediate values in CPU registers

→ No cryptographic keys or key material ever enter RAM

BitVisor memory management:
I BitVisor is a thin hypervisor for I/O device security
I BitVisor uses Second Layer Address Translation (SLAT)
I One-to-one mapping within EPTs

(only hypervisor is protected)
→ Implement HyperCrypt in the EPT fault handler of BitVisor
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HyperCrypt: Workflow
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HyperCrypt: Managing Memory Pages

Catching accesses to encrypted memory pages:
I Delete entries from the EPTs to cause faults
I Store flag within a bitmap to identify encrypted pages
I OS is started with empty EPTs

→ Hooking the EPT fault handler is sufficient
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HyperCrypt: Device Memory and DMA
Support for Device Memory:

I Thin hypervisor is not capable of recognizing device memory
I Device memory must not be affected by HyperCrypt
I Check each memory access against system memory map

(provided by the BIOS)
→ Provide simple one-to-one mapping for non system RAM
Support for DMA:

I DMA buffers are allocated by the guest OS
I Thin hypervisor is not capable of recognizing DMA buffers
I BitVisor provides drivers for certain devices

(hard disk, network card, ...)
I Let BitVisor manage the devices and provide DMA buffers to

guest OS
→ Only devices with driver support can be used by the guest
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HyperCrypt: Replacement Strategy and Cipher

Replacement Strategy:
I Mostly FIFO for selecting pages for re-encryption
I Second chance algorithm if CPU supports accessed bit for

EPTs

TreVisor (CPU-bound implementation of AES):
I Configured to behave like AES-128 in XEX mode of operation
I IV to build tweak: Host physical address of the page
I Host physical address cannot be forged by the guest
I Keys can be derived from user password or generated

randomly during boot up
I Random number generator of the

Trusted Platform Module (TPM) is used
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HyperCrypt: Evaluation Setup

System:
I Intel Quadcore CPU (Intel Core i7-2600) running at 3.1GHz
I 8GB of RAM
I Debian Wheezy with base system on top of HyperCrypt
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HyperCrypt: Runtime Performance
SPECINT2006 Benchmarks with Sliding Window Size of 1024:
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I Overhead of HyperCrypt compared to standard Linux
I Overhead factor between 15 and 148 with three outliers
I 19% performance boost by second chance over FIFO
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HyperCrypt: Runtime Performance

HTTP Server Performance (ngnix web server):

Sliding Window Size No Encryption 384 512 768 1024

Test duration (s) 81.0 1,641.3 1,120.8 513.5 110.8
Avg. reply rate (replies/s) 123.4 6.1 8.9 19.5 90.2
Avg. connection time (ms) 8.1 164.1 112.1 51.3 11.1

I Httpperf configured to send 10,000 requests
I Avg. reply rate decreases with sliding window size
I Avg. connection time increases with sliding window size
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HyperCrypt: Runtime Performance
HTTP Server Performance (ngnix web server):
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I Overhead of 37% for default sliding window size of 1024
I Overhead factor 6.34 for 768 pages and 13.83 for 512 pages
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HyperCrypt: Practical Security Evaluation
Effectiveness:
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I Filled 4GB of RAM with random 128 bit pattern
I Searched for the pattern in physical memory after hypercall
I Worst-case scenario (hypercall issued by test program)
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HyperCrypt: Practical Security Evaluation

Cache Sizes:
I Cache should be larger than sliding window size
I For our evaluations: Cache: 8MB; default SW size: 4MB
I Unlikely that sensitive information is exposed to RAM at all

→ Stronger guarantees with Cache as RAM (cf. Coreboot, vCage)
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Limitations and Other Approaches

Limitations:
I Performance disaster (SPEC benchmarks)
I Not all devices are supported (BitVisor drivers needed)
I Does not protect against non-physical memory disclosure

(swap files, crash reports, vulnerable kernel drivers)

Other Approaches:
I Reducing data lifetime (breaks compatibility)
I Encrypt process address spaces with the help of the OS

(kernel space remains exposed)
I Hardware solutions, e.g., Intel SGX

(lots of restrictions for software)
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Conclusion

Future Work:
I Disable encryption for performance critical tasks
I Turning virtualization on and off during system execution
I Not possible with BitVisor (bare metal hypervisor)

HyperCrypt protects sensitive data within RAM:
I Effectively protects against physical memory disclosure attacks
I Transparently encrypts memory independent of the guest
I Only 37% slowdown for ngnix webserver with default SW size

of 1024
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Thank you for your attention!

Further Information:
https://www1.cs.fau.de/hypercrypt

https://www1.cs.fau.de/hypercrypt
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