
ARES’16
Salzburg, Austria

HyperCrypt: Hypervisor-based Encryption of
Kernel and User Space

Johannes Götzfried, Nico Dörr, Ralph Palutke, and Tilo Müller

Department of Computer Science
FAU Erlangen-Nuremberg, Germany

August 31, 2016

Memory Disclosure

Current practices for protecting sensitive data:
I Security-aware people use full disk encryption
I Only protects data while computer is off
I Does not work with devices in Standby-Mode

RAM contains lots of sensitive data:
I User passwords or login credentials
I Cryptographic keys
I Personal data and credit card information

→ Information is only protected by logical means, e.g., by the OS

2

Physical Memory Disclosure

Physical Attacks on RAM:
I By using DMA

Example: Firewire
I Cold Boot Attacks

3

Data Lifetime
Goal: Reducing data lifetime of sensitive information within RAM:

I Requires data lifetime knowledge
I Traditional wiping approaches fail (no transparency)

→ Transparent data encryption effectively hides information

4

HyperCrypt: Idea
Transparently encrypt data out of the hypervisor:

I Independent from the operating system
I On a per-page basis
I Only a small set of pages remains unencrypted

Sliding window instead of only single page:

clear
present

0x1000

encrypted

0x2000

clear
present

0x3000

encrypted

0x4000

encrypted

0x5000

encrypted

0x6000

0x1000
0x3000

Sliding Window
Size 2

movl 0x3000, %eax
movl 0x4000, %ebx

X
E

→ Sliding window size is a configurable security parameter
5

HyperCrypt: Background

Prototype implementation as patch for the BitVisor hypervisor:
I Builds upon the BitVisor patch TreVisor
I CPU-bound implementation of AES (TRESOR)
I Stores the key and all intermediate values in CPU registers

→ No cryptographic keys or key material ever enter RAM

BitVisor memory management:
I BitVisor is a thin hypervisor for I/O device security
I BitVisor uses Second Layer Address Translation (SLAT)
I One-to-one mapping within EPTs

(only hypervisor is protected)
→ Implement HyperCrypt in the EPT fault handler of BitVisor

6

HyperCrypt: Workflow

Not accessible

Decrypted

Encrypted

Decrypted

Encrypted

Decrypted

Encrypted

Decrypted

Decrypted

Encrypted

Re−encrypted

Device Memory
(unencrypted) (unencrypted)

Device Memory

(unencrypted)
Device MemoryDevice Memory

(unencrypted)
valid

valid

valid

invalidated

memory
VMM

Guest Physical Memory

EPT
Encrypted

Decrypted

Host Physical MemorySLAT
direct access

direct access

direct access

direct access

blocked

trap

decrypt

encrypt

Sliding Window

VMM ViewGuest View

7

HyperCrypt: Managing Memory Pages

Catching accesses to encrypted memory pages:
I Delete entries from the EPTs to cause faults
I Store flag within a bitmap to identify encrypted pages
I OS is started with empty EPTs

→ Hooking the EPT fault handler is sufficient

8

HyperCrypt: Device Memory and DMA
Support for Device Memory:

I Thin hypervisor is not capable of recognizing device memory
I Device memory must not be affected by HyperCrypt
I Check each memory access against system memory map

(provided by the BIOS)
→ Provide simple one-to-one mapping for non system RAM
Support for DMA:

I DMA buffers are allocated by the guest OS
I Thin hypervisor is not capable of recognizing DMA buffers
I BitVisor provides drivers for certain devices

(hard disk, network card, ...)
I Let BitVisor manage the devices and provide DMA buffers to

guest OS
→ Only devices with driver support can be used by the guest

9

HyperCrypt: Replacement Strategy and Cipher

Replacement Strategy:
I Mostly FIFO for selecting pages for re-encryption
I Second chance algorithm if CPU supports accessed bit for

EPTs

TreVisor (CPU-bound implementation of AES):
I Configured to behave like AES-128 in XEX mode of operation
I IV to build tweak: Host physical address of the page
I Host physical address cannot be forged by the guest
I Keys can be derived from user password or generated

randomly during boot up
I Random number generator of the

Trusted Platform Module (TPM) is used

10

HyperCrypt: Evaluation Setup

System:
I Intel Quadcore CPU (Intel Core i7-2600) running at 3.1GHz
I 8GB of RAM
I Debian Wheezy with base system on top of HyperCrypt

11

HyperCrypt: Runtime Performance
SPECINT2006 Benchmarks with Sliding Window Size of 1024:

 0

 100

 200

 300

 400

 500

 600

 700

 800

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sje
ng

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

48
3.

xa
la
nc

bm
k

O
v
e
rh

e
a
d
 F

a
ct

o
r

I Overhead of HyperCrypt compared to standard Linux
I Overhead factor between 15 and 148 with three outliers
I 19% performance boost by second chance over FIFO

12

HyperCrypt: Runtime Performance

HTTP Server Performance (ngnix web server):

Sliding Window Size No Encryption 384 512 768 1024

Test duration (s) 81.0 1,641.3 1,120.8 513.5 110.8
Avg. reply rate (replies/s) 123.4 6.1 8.9 19.5 90.2
Avg. connection time (ms) 8.1 164.1 112.1 51.3 11.1

I Httpperf configured to send 10,000 requests
I Avg. reply rate decreases with sliding window size
I Avg. connection time increases with sliding window size

13

HyperCrypt: Runtime Performance
HTTP Server Performance (ngnix web server):

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

384 512 768 1024

O
v
e
rh

e
a
d
 F

a
ct

o
r

Sliding Window Size

I Overhead of 37% for default sliding window size of 1024
I Overhead factor 6.34 for 768 pages and 13.83 for 512 pages

14

HyperCrypt: Practical Security Evaluation
Effectiveness:

0

5

10

15

20

25

30

 128 256 384 512 640 768 896 1024 1152

N
u
m

b
e
r

o
f

M
a
tc

h
e
s

x
 1

0
^

4

Sliding Window Size

Matches
Theoretical Maximum of Matches

I Filled 4GB of RAM with random 128 bit pattern
I Searched for the pattern in physical memory after hypercall
I Worst-case scenario (hypercall issued by test program)

15

HyperCrypt: Practical Security Evaluation

Cache Sizes:
I Cache should be larger than sliding window size
I For our evaluations: Cache: 8MB; default SW size: 4MB
I Unlikely that sensitive information is exposed to RAM at all

→ Stronger guarantees with Cache as RAM (cf. Coreboot, vCage)

16

Limitations and Other Approaches

Limitations:
I Performance disaster (SPEC benchmarks)
I Not all devices are supported (BitVisor drivers needed)
I Does not protect against non-physical memory disclosure

(swap files, crash reports, vulnerable kernel drivers)

Other Approaches:
I Reducing data lifetime (breaks compatibility)
I Encrypt process address spaces with the help of the OS

(kernel space remains exposed)
I Hardware solutions, e.g., Intel SGX

(lots of restrictions for software)

17

Conclusion

Future Work:
I Disable encryption for performance critical tasks
I Turning virtualization on and off during system execution
I Not possible with BitVisor (bare metal hypervisor)

HyperCrypt protects sensitive data within RAM:
I Effectively protects against physical memory disclosure attacks
I Transparently encrypts memory independent of the guest
I Only 37% slowdown for ngnix webserver with default SW size

of 1024

18

Thank you for your attention!

Further Information:
https://www1.cs.fau.de/hypercrypt

https://www1.cs.fau.de/hypercrypt

	Motivation
	HyperCrypt: Design
	HyperCrypt: Implementation
	HyperCrypt: Evaluation
	Conclusion

