ARES’16
Salzburg, Austria

HyperCrypt: Hypervisor-based Encryption of
Kernel and User Space

Johannes Gotzfried, Nico Dérr, Ralph Palutke, and Tilo Miiller

Department of Computer Science
FAU Erlangen-Nuremberg, Germany

August 31, 2016

Memory Disclosure

Current practices for protecting sensitive data:
» Security-aware people use full disk encryption
» Only protects data while computer is off

» Does not work with devices in Standby-Mode

RAM contains lots of sensitive data:
> User passwords or login credentials
» Cryptographic keys
> Personal data and credit card information

— Information is only protected by logical means, e.g., by the OS

Physical Memory Disclosure

Physical Attacks on RAM:
» By using DMA
Example: Firewire
» Cold Boot Attacks

Data Lifetime

Goal: Reducing data lifetime of sensitive information within RAM:
> Requires data lifetime knowledge
» Traditional wiping approaches fail (no transparency)

— Transparent data encryption effectively hides information

HyperCrypt: Idea
Transparently encrypt data out of the hypervisor:
» Independent from the operating system
» On a per-page basis
» Only a small set of pages remains unencrypted
Sliding window instead of only single page:

Sliding Window
Size 2
e -» 0x1000 movl 0x3000, %eax| v
! 0x3000 [« - |- rmovl 0x4000, %ebx | £

clear |[encrypted| clear |encrypted |encrypted | encrypted
present present

0x1000 | 0x2000 | 0x3000 | 0x4000 | 0x5000 | 0x6000

— Sliding window size is a configurable security parameter

HyperCrypt: Background

Prototype implementation as patch for the BitVisor hypervisor:
» Builds upon the BitVisor patch TreVisor
» CPU-bound implementation of AES (TRESOR)
» Stores the key and all intermediate values in CPU registers

— No cryptographic keys or key material ever enter RAM

BitVisor memory management:
» BitVisor is a thin hypervisor for |/O device security
» BitVisor uses Second Layer Address Translation (SLAT)

» One-to-one mapping within EPTs
(only hypervisor is protected)

— Implement HyperCrypt in the EPT fault handler of BitVisor

HyperCrypt: Workflow

Guest Physical Memory Host Physical Memory

Device Memogy Lo direct accessHevice Memory
(unencrypted e direct acoess (unencrypte:
Decrypted e >»| Decrypted
Encrypted Encrypted
L direct S8
Decrypted —>> trectacees Decrypted
D M i direct access[Ty M . . :
(%\Qggcry%lt%%y > EPT | 1o > (%\rlllgr?cry%rt%%s Sliding Wlﬂd0W3
Encrypted > p Decrypted Z:}:E |
P valid
Encrypted Encrypted alidared
Decrypted 3 Re—encrypted
' P
! . 1 D VMM encrypt|
1 P
1 Not accessible ﬁ#—) —{b]ocked memory decrypt
L oo 1 b —

HyperCrypt: Managing Memory Pages

Catching accesses to encrypted memory pages:
> Delete entries from the EPTs to cause faults
» Store flag within a bitmap to identify encrypted pages
» OS is started with empty EPTs

— Hooking the EPT fault handler is sufficient

HyperCrypt: Device Memory and DMA

Support for Device Memory:
» Thin hypervisor is not capable of recognizing device memory
» Device memory must not be affected by HyperCrypt

» Check each memory access against system memory map
(provided by the BIOS)

— Provide simple one-to-one mapping for non system RAM
Support for DMA:

» DMA buffers are allocated by the guest OS

» Thin hypervisor is not capable of recognizing DMA buffers

» BitVisor provides drivers for certain devices
(hard disk, network card, ...)

» Let BitVisor manage the devices and provide DMA buffers to
guest OS

— Only devices with driver support can be used by the guest

HyperCrypt: Replacement Strategy and Cipher

Replacement Strategy:
> Mostly FIFO for selecting pages for re-encryption

» Second chance algorithm if CPU supports accessed bit for
EPTs

TreVisor (CPU-bound implementation of AES):
» Configured to behave like AES-128 in XEX mode of operation
» IV to build tweak: Host physical address of the page
» Host physical address cannot be forged by the guest

> Keys can be derived from user password or generated
randomly during boot up

» Random number generator of the
Trusted Platform Module (TPM) is used

10

HyperCrypt: Evaluation Setup

System:
» Intel Quadcore CPU (Intel Core i7-2600) running at 3.1GHz
» 8GB of RAM
» Debian Wheezy with base system on top of HyperCrypt

11

HyperCrypt: Runtime Performance

SPECINT2006 Benchmarks with Sliding Window Size of 1024:

800
700
600
500
400
300

Overhead Factor

200

100

» Overhead of HyperCrypt compared to standard Linux
» Overhead factor between 15 and 148 with three outliers
» 19% performance boost by second chance over FIFO

12

HyperCrypt: Runtime Performance

HTTP Server Performance (ngnix web server):

Sliding Window Size No Encryption 384 512 768 1024
Test duration (s) 81.0 11,6413 1,120.8 5135 110.8
Avg. reply rate (replies/s) 123.4 6.1 8.9 19.5 90.2
Avg. connection time (ms) 8.1 164.1 112.1 51.3 11.1

» Httpperf configured to send 10,000 requests
> Avg. reply rate decreases with sliding window size

> Avg. connection time increases with sliding window size

13

HyperCrypt: Runtime Performance
HTTP Server Performance (ngnix web server):

22

20
18 |-
16 |-
14 -
12 -
10 -

512 1024
Sliding Window Size

Overhead Factor

o N » O ©

» Overhead of 37% for default sliding window size of 1024
» QOverhead factor 6.34 for 768 pages and 13.83 for 512 pages

14

HyperCrypt: Practical Security Evaluation
Effectiveness:

30
Matches ——><—
Theoretical Maximum of Matches -
25 -
<
<
o
—
x 20
%]
[
<
o)
® 15 -
=
o
o
2 10 [
IS
=)
=z
5 [
0 I | | |
128 256 384 512 640 768 896 1024 1152

Sliding Window Size

» Filled 4GB of RAM with random 128 bit pattern
> Searched for the pattern in physical memory after hypercall
» Worst-case scenario (hypercall issued by test program)

15

HyperCrypt: Practical Security Evaluation

Cache Sizes:
» Cache should be larger than sliding window size
» For our evaluations: Cache: 8MB; default SW size: 4AMB
» Unlikely that sensitive information is exposed to RAM at all

— Stronger guarantees with Cache as RAM (cf. Coreboot, vCage)

16

Limitations and Other Approaches

Limitations:
» Performance disaster (SPEC benchmarks)
» Not all devices are supported (BitVisor drivers needed)

» Does not protect against non-physical memory disclosure
(swap files, crash reports, vulnerable kernel drivers)

Other Approaches:
» Reducing data lifetime (breaks compatibility)
» Encrypt process address spaces with the help of the OS
(kernel space remains exposed)
» Hardware solutions, e.g., Intel SGX
(lots of restrictions for software)

17

Conclusion

Future Work:
» Disable encryption for performance critical tasks

» Turning virtualization on and off during system execution

» Not possible with BitVisor (bare metal hypervisor)

HyperCrypt protects sensitive data within RAM:
» Effectively protects against physical memory disclosure attacks
» Transparently encrypts memory independent of the guest
» Only 37% slowdown for ngnix webserver with default SW size
of 1024

18

Thank you for your attention!

Further Information:

[§ https://wwwl.cs.fau.de/hypercrypt

https://www1.cs.fau.de/hypercrypt

	Motivation
	HyperCrypt: Design
	HyperCrypt: Implementation
	HyperCrypt: Evaluation
	Conclusion

