
ContrOWL

An Android Security App

Bachelor Thesis

submitted: October 2012

by: Marcel Hrnecek

Student ID Number: 21340224

Department of Computer Science

Friedrich-Alexander-University Erlangen-Nuremberg

D – 91058 Erlangen

Internet: http://www1.informatik.uni-erlangen.de

http://www1.informatik.uni-erlangen.de

ii

Abstract

Android offers developers an extensive Application Programming Interface (API)

that includes access to valuable aspects of the android platform and user data.

The access to these privacy- and security-relevant parts is controlled by permis-

sions which have to be granted to start the installation process.

Android uses intents for inter- and intra-application communication. One way to

use intents is as a broadcast to inform interested apps of changes or events. To

get these intents apps can use the intent filter of their broadcast receivers.

Permissions and intents are both used as gateway for malicious applications1 and

are a crucial aspect of security. This Bachelor Thesis studies the quantity of per-

missions and filtered intents of broadcast receivers of malware and non-malware

apps. The results have been compared in order to form a rating algorithm based

on an app’s permissions and received intents.

The results and the rating algorithm have then been implemented in the security

app ”ContrOWL” which was developed in the course of this Bachelor Thesis.

1Consecutively always Android applications and abbreviated by app

Contents

List of Figures . v

List of Tables . vi

1. Introduction . 1

2. Study on Quantity of Permissions and Intent-Filters of

BroadcastReceivers . 4

2.1. Quantity of Permissions . 4

2.1.1. Prerequisites . 4

2.1.2. Results . 6

2.2. Quantity of Intent-Filters of BroadcastReceivers 8

2.2.1. Prerequisites . 8

2.2.2. Results . 10

2.3. Interpretation of the results . 12

2.4. Rating for an app . 13

3. The security app ContrOWL . 15

3.1. Features of ContrOWL . 15

3.2. Implementation of the features 20

4. Summary, Conclusions, and Further Work 24

5. Acknowledgements . 26

Bibliography . 27

iii

Contents iv

Appendix . 29

A. First class of appendices . 30

A.1. Complete list of rated intents and permissions 30

List of Figures

3.1. Help tab of ContrOWL. 16

3.2. Permissions tab of ContrOWL . 16

3.3. Intents tab of ContrOWL . 17

3.4. Applications tab of ContrOWL. 18

3.5. Details of Trillian app . 19

3.6. Details of Facebook app . 19

A.1. Complete list of rated intents . 30

A.2. Complete list of rated permissions 31

v

List of Tables

2.1. Top permissions of (25994) Google Market apps 6

2.2. Top permissions of (9968) malware apps 7

2.3. Top permission pairs of two in (9968) malware apps 7

2.4. Top permission pairs of three in (9968) malware apps 7

2.5. Top BroadcastReceiver intents of (25994) Google Market apps . . 11

2.6. Top BroadcastReceiver intents of (9968) malware apps 11

vi

1. Introduction

Mobile devices have been drastically improved in the past few years and as a

result they are more and more used and replace the conventional desktop com-

puter at home. The downside to this fast development is the lack of security,

new possibilities for attackers and missing safety awareness of many users. To

countervail this movement this Bachelor Thesis tries to improve the security on

mobile devices and help users in their daily handling with a vast amount of mobile

apps.

Android is a popular platform for mobile app developers because of its unre-

stricted market, open source, and extensive API. For these reasons Android has

been chosen as a basis for this Bachelor Thesis. The access to privacy- and

security-relevant parts is controlled by permissions. Before an app can be in-

stalled the user has to grant the permissions which are requested from the in-

staller of the app at the beginning of the installation process. Otherwise the

installation is canceled.

Many apps are over privileged which means they ask for more permissions than

they actually need (1). This could be by accident or on purpose to harm the user

of the app or seek some valuable data. Either way it can lead to security risks.

Beside permissions malicious apps can also use intents to harm the user. Android

uses intents for inter- and intra-application communication. One way to use

intents is as a broadcast to inform interested apps of changes or events. An

app can register a broadcast receiver for certain intents, decide by itself what

priority it has in receiving this intent, and even consume it so other receivers

will never be informed about the changes or events. A malware app can for

example register itself for the SMS RECEIVED1 intent with the highest priority.

SMS RECEIVED is than broadcasted once after a Short Message Service (SMS)

message is received. The malware app can then catch this event before the

1Full package name is android.provider.Telephony.SMS RECEIVED

1

List of Tables 2

system, read it, and not allow it to be sent to other registered apps. The user

will never notice that he received a SMS message while the malicious app can

read all incoming messages.

Some broadcasted intents can only be received when an app holds a certain

permission. In this way permissions and intents are both used as a gateway for

malicious apps and are a crucial aspect of security. For the example above the

permission RECEIVE SMS2 is needed.

To find out what permissions and broadcast intents are preferably used by mali-

cious apps we studied the quantities of these permissions and intents in mal-

ware and non-malware apps. Therefore a sample collection of about 10.000

malware and 25.000 non-malware apps has been investigated. This huge collec-

tion of sample apps has been provided by the Department of Computer Science

(Friedrich-Alexander-University Erlangen Nuremberg). We developed scripts to

search in this sample collection for permissions and intents filtered by intent-filters

of broadcast receivers.

The results have then been compared in order to form a rating algorithm first

for the single permissions and broadcast intents. Based on these results in a

second step individual ratings for the apps are calculated. The aim was to give

a high rating for permissions and broadcast intents which are preferably used by

malware and accordingly a high overall rating for apps using these permissions

and intents. Needless to say the aim for non-malicious permissions, intents and

apps is a low rating.

Various rating algorithms have been tested on the sample collection to find the

best match for this declared aims.

On base of this study the security app ”ContrOWL” has been developed. The

key features of the app are:

• List of top permissions and broadcast intents used by malware

• Ranking, rating and description of these permissions and intents

• Finding apps on the device which use these permissions and intents

• List of all installed apps on the device and their overall rating

2Full package name is android.permission.RECEIVE SMS

List of Tables 3

• Permissions and intents used by an app

• Possibility to remove apps

Many more features, like a service which runs in the background and immediately

informs the user after the installation of a new app about its rating, are desirable

but haven’t yet been implemented due to the limited extend of this Bachelor

Thesis.

2. Study on Quantity of Permissions and

Intent-Filters of BroadcastReceivers

The aim of this study is to search in a collection of malicious and non-malicious

apps for their permissions and intent filters of broadcast receivers. Afterwards the

quantity of the results will be compared. We found that particular permissions

and filtered intents in malware apps are noticeable different from non-malware

apps.

For this purpose the Department of Computer Science (Friedrich-Alexander-

University Erlangen-Nuremberg) provided a collection of sample apps. We down-

loaded the 25994 non-malicious sample apps on 08.05.2012 and the 9968 malicious

apps on 12.08.2012 form this collection (2).

2.1. Quantity of Permissions

Some apps ask for permissions, which they don’t really need. This can be to

leave room for future updates, by accident, to harm or to spy on the user.

The malware apps described above are such apps and it is of interest to take a

look at their permissions and compare them to normal non-harmful apps.

2.1.1. Prerequisites

For the purpose of reading the permissions, filtering and sorting them a Win-

dows Power Shell1 script has been developed (see Listing 2.1). To get permis-

sions Android Asset Packaging Tool2 (aapt) with the parameters “d permissions

filename”3 has been executed. Most apps have more than one permission and to

1This is Microsoft’s task automation framework, consisting of a command-line shell and asso-
ciated scripting language built on top of, and integrated with the .NET Framework (3).

2A SDK-tool of android that allows to view, create and update apk files
3d[ump] the permissions from file.apk

4

2.1. Quantity of Permissions 5

find any pattern or popular combinations of permissions, pairs of two and three

have been filtered as well.

1 $market = get−ch i l d i t em ” . . . path . . . ” −r e c u r s e |
2 where{ $. name − l i k e ” ∗ . apk”}
3 $hashVals = @{}
4

5 foreach ($ f i l e in $market)

6 {
7 # . . . get $ f i l e I t e m . . .

8 $ApPerm = aapt d permi s s i ons $ f i l e I t e m

9 $hashSemiVals = @{}
10

11 # Purging Double Permiss ions :

12 foreach ($entry in $ApPerm)

13 {
14 i f ($entry −ne $NULL)

15 {
16 $hashSemiVals [$entry]++

17 }
18 }
19

20 foreach ($entry in $hashSemiVals . Keys)

21 {
22 $hashVals [$entry]++

23 }
24 }
25

26 # . . . wr i t e $hashVals to f i l e . . .

Listing 2.1: Code snippet to find single permissions

2.1. Quantity of Permissions 6

Table 2.1.: Top permissions of (25994) Google Market apps

Rank Permission Quantity

1 INTERNET 22272
2 ACCESS NETWORK STATE 13721
3 WRITE EXTERNAL STORAGE 8936
4 READ PHONE STATE 8653
5 ACCESS COARSE LOCATION 6064

17 SEND SMS 957

2.1.2. Results

Table 2.1 shows very common permissions in the top. INTERNET4 for example

is used by over 85% of non-malware apps, so there is no reason to be very

suspicious about this permission.

Permissions like SEND SMS5 which have a lower quantity and are only

used by less than 4% of the Google Market sample apps could be more

dangerous. There is another reason why this permission is critical, but this

is shown later in Section 2.3.

Table 2.2 is of the same kind as Table 2.1 but only for malicious apps. Some

permissions have a similar percentage as in Table 2.1 (e.g. INTERNET

with 89%). Others have a noticeable different percentage (e.g. SEND SMS

with 40% 10 times as many). This indicates that these permissions are often

exploited for malicious behavior.

Table 2.3 shows pairs of two permissions often found in the sample of malware

apps.

Table 2.4 shows paris of three permissions often found in the sample of malware

apps.

4Full package name is android.permission.INTERNET
5Full package name is android.permission.SEND SMS

2.1. Quantity of Permissions 7

Table 2.2.: Top permissions of (9968) malware apps

Rank Permission Quantity

1 INTERNET 8827
2 READ PHONE STATE 5515
3 ACCESS NETWORK STATE 4910
4 SEND SMS 4010
5 WRITE EXTERNAL STORAGE 3835

11 ACCESS COARSE LOCATION 1920

Table 2.3.: Top permission pairs of two in (9968) malware apps

Rank Permission pairs Quantity

1 INTERNET + READ PHONE STATE 5423
2 INTERNET + ACCESS NETWORK STATE 4875
3 INTERNET + SEND SMS 3729
4 INTERNET + WRITE EXTERNAL STORAGE 3721
5 ACCESS NETWORK STATE + READ PHONE STATE 3263

Table 2.4.: Top permission pairs of three in (9968) malware apps

Rank Permission triple Quantity

1 INTERNET + READ PHONE STATE
+ ACCESS NETWORK STATE

3187

2 INTERNET + READ PHONE STATE
+ SEND SMS

3064

3 INTERNET + READ PHONE STATE
+ WRITE EXTERNAL STORAGE

2858

4 INTERNET + ACCESS NETWORK STATE
+ WRITE EXTERNAL STORAGE

2722

5 SEND SMS + RECEIVE SMS
+ INTERNET

2275

2.2. Quantity of Intent-Filters of BroadcastReceivers 8

2.2. Quantity of Intent-Filters of BroadcastReceivers

Just like permissions it can be dangerous for the user when malicious apps filter

for particular broadcasted intents. To investigate this matter this study also

searched in the sample app collection for the quantity of certain intent filters

in the malware and the non-malware scope. To narrow the results down to the

relevant intents only action intents have been checked.

2.2.1. Prerequisites

This time it was trickier to get the results because the output of this command

is not a list with the wanted intents but all the entries of the app’s Android

Manifest6 and the challenge was to filter for the right intents. The script was

built on the base of a few sample apps and debugged against all malware-apps

until no errors occurred. The result was Listing 2.2.

1 $market = get−ch i l d i t em ” . . . path . . . ” −r e c u r s e |
2 where{ $. name − l i k e ” ∗ . apk”}
3 $hashVals = @{}
4 foreach ($ f i l e in $market)

5 {
6 # . . . get $ f i l e I t e m . . .

7 $AppMF = aapt d xmltree $ f i l e I t e m AndroidManifest . xml

8

9 # Search ing f o r Action In t en t s o f BroadcastRece iver :

10 foreach ($entry in $AppMF)

11 {
12 i f ($entry −ne $NULL)

13 {
14 $entryTrim = $entry . Trim ()

15 while (($entryTrim . Length −ge 11) −and ($entryTrim .

sub s t r i ng (0 ,11) −eq ”E: r e c e i v e r ”))

16 {

6The manifest presents essential information about the app to the Android system (4)

2.2. Quantity of Intent-Filters of BroadcastReceivers 9

17 [void] $ fo r each . moveNext ()

18 $entryTrim = $foreach . cur r ent . Trim ()

19 while (($entryTrim . sub s t r i ng (0 , 2) −eq ”A: ”) −or (

$entryTrim . sub s t r i ng (0 , 2) −eq ”C: ”))

20 {
21 [void] $ fo r each . moveNext ()

22 i f ($ fo r each . cur r ent −eq $NULL){break}
23 $entryTrim = $foreach . cur r ent . Trim ()

24 }
25 while (($entryTrim . Length −ge 16) −and ($entryTrim .

sub s t r i ng (0 ,16) −eq ”E: intent− f i l t e r ”))

26 {
27 [void] $ fo r each . moveNext ()

28 $entryTrim = $foreach . cur r ent . Trim ()

29 while ($entryTrim . sub s t r i ng (0 , 2) −eq ”A: ”)

30 {
31 [void] $ fo r each . moveNext ()

32 i f ($ fo r each . cur r ent −eq $NULL){break}
33 $entryTrim = $foreach . cur r ent . Trim ()

34 }
35 while (($entryTrim . Length −ge 9) −and ($entryTrim

. sub s t r i ng (0 , 9) −eq ”E: ac t i on ”))

36 {
37 [void] $ fo r each . moveNext ()

38 #FOUND! −> wr i t e in to t ab l e

39 $entryTrim = $foreach . cur r ent . Trim ()

40 $entryTrim = $entryTrim . sub s t r i ng (29)

41 $ i n t I = $entryTrim . IndexOf (”Raw”)−3

42 i f ($ i n t I −ne −1) { $entryTrim = $entryTrim .

sub s t r i ng (0 , $ i n t I) }
43 i f ($entryTrim . Length −ge 70) { $entryTrim =

$entryTrim . sub s t r i ng (0 ,70) }
44 $hashVals [$entryTrim]++

45

2.2. Quantity of Intent-Filters of BroadcastReceivers 10

46 [void] $ fo r each . moveNext ()

47 i f ($ fo r each . cur r ent −eq $NULL){break}
48 $entryTrim = $foreach . cur r ent . Trim ()

49 }
50 while ((($entryTrim . Length −ge 7) −and (

$entryTrim . sub s t r i ng (0 , 7) −eq ”E: data ”)) −or
‘

51 (($entryTrim . Length −ge 11) −and ($entryTrim .

sub s t r i ng (0 ,11) −eq ”E: category ”)))

52 {
53 [void] $ fo r each . moveNext ()

54 [void] $ fo r each . moveNext ()

55 i f ($ fo r each . cur r ent −eq $NULL){break}
56 $entryTrim = $foreach . cur r ent . Trim ()

57 } } } } } }
58 # . . . wr i t e $hashVals to f i l e . . .

Listing 2.2: Code snippet to find intents of broadcast receivers

2.2.2. Results

Table 2.5 It is noticeable, that the action intents of broadcast receivers are less

used like permissions. The most frequent one, INSTALL REFERRER7, is

used only in about 12% of the Google Market sample apps. Others, further

down of the list like PHONE STATE8 are even used only in about 0.8%.

Table 2.6 shows that malware apps also use less intents of broadcast receivers

than permissions but the difference is not so big as it is in non-malware

apps. The most frequent intent BOOT COMPLETED9 is used by almost

32% of the malicious sample apps.

7Full package name is com.android.vending.INSTALL REFERRER
8Full package name is android.intent.action.PHONE STATE
9Full package name is android.intent.action.BOOT COMPLETED

2.2. Quantity of Intent-Filters of BroadcastReceivers 11

Table 2.5.: Top BroadcastReceiver intents of (25994) Google Market apps

Rank Action Intent Quantity

1 INSTALL REFERRER 3099
2 APPWIDGET UPDATE 2398
3 BOOT COMPLETED 2068
4 REGISTRATION 609
4 RECEIVE 609

12 PHONE STATE 209

Table 2.6.: Top BroadcastReceiver intents of (9968) malware apps

Rank Action Intent Quantity

1 BOOT COMPLETED 3260
2 PHONE STATE 799
3 SMS RECEIVED 763
4 INSTALL REFERRER 690
5 APPWIDGET UPDATE 624

13 REGISTRATION 123

2.3. Interpretation of the results 12

2.3. Interpretation of the results

Only permissions will be discussed in this chapter. However intents filtered by

broadcast receivers have the same outcome when it comes to their interpretation.

One way to look at the results is to compare top ranked malware permissions to

the percentage of the same permissions in the list of non-malware apps.

INTERNET for example has rank 1 in both lists and their percentage is almost

equal. The only conclusion to make here is that this permission is generally very

common and the user doesn’t need to worry that it is at the top of the malware

list.

SEND SMS on the other hand is on rank 17 of non-malware and rank 4 of malware

apps. As described before its frequency among non-malware apps is only about

4%, but about 40% of malicious apps use this permission. That is 10 times as

many and a lot of other permissions show similar or even worse ratios. It should

raise the suspicion of the user if such a permission is demanded by an app and it

is recommended to check whether this app really needs that permission to achieve

its purpose.

The conclusion on this approach is that permissions which have a significant

higher percentage in the malware list than in the non-malware list are critical

and apps using these permissions to be treated carefully. This can be easily

calculated by dividing the percentage of the malware permission by the non-

malware permission. The result can be seen as rating and the higher the rating

the more likely it is that this permission indicates malicious behavior of its app.

One example is presented above with the SEND SMS permission where 10 is

the rating (40%
4%

= 10). Another example is INSTALL PACKAGES10 with

a percentage of 11.8% among malicious and only 0.54% among non-malicious

apps. The rating of this permission is almost 22 and for that even more critical

than SEND SMS.

An other way to look at the result is the combination of permissions (see Table

2.3 and Table 2.4) and take them as a basis to find possible malware apps. This

approach is similar to the one for single permissions but instead of looking at

10Full package name is android.permission.INSTALL PACKAGES

2.4. Rating for an app 13

perfect matches between the lists and the app it is statistically better, because

of the vast amount of possibilities, just to find similarities.

As stated before the same interpretation and calculation of the rating apply for

broadcast intents.

2.4. Rating for an app

To give an overall evaluation about an app a rating algorithm that takes the above

conclusions in consideration has been developed. The basic idea is to average over

the ratings of the single permissions the app uses and the intents its broadcast

receivers filter for. To counter the effect that a single permission or intent with a

high rating carries no weight between a lot of other permissions or intents with

low ratings, the ratings are squared. For better understanding it makes sense to

give the user a minimal (0) and a maximal rating (100).

Different ideas of rating algorithms for the purpose to give a high rating for

malicious and a low rating for non-malicious apps have been tested on the sample

apps. The best result has been achieved by this version:

• PR = permission rating of a permission used by this app

• n = number of the app’s rated permissions

• IR = intent rating of an intent filtered by this app’s broadcast receivers

• m = number of the app’s rated intents

• APR = app’s overall permission rating

• AIR = app’s overall intent rating

• SR = semi result

• Rating = final result. Rating for this app

APR =
n∑ 4 ∗ PR2

n
with n > 0

AIR =
m∑ 4 ∗ IR2

m
with m > 0

2.4. Rating for an app 14

SR = (APR + AIR) ∗ (
1

2
if APR ∧ AIR 6= 0)

Rating = min{100;SR}

The test result of this algorithm on the sample apps is an average rating of about

15 for the Google Market and about 54 for the malware apps. This doesn’t mean

that all apps with a rating under 15 are non-malicious and above 54 malicious. It

gives the user an indication what apps are more likely malware. Especially apps

with a rating of 50 and above deserve more detailed investigation.

Only apps with at least one permission or intent filtered by a broadcast receiver

are taken into consideration, which are 90% of the Google Market and 95% of

the malware apps.

3. The security app ContrOWL

In order to implement the research results and the rating algorithm in a working

prototype the security app ”ContrOWL” has been developed. It helps the user to

better understand permissions and intents filtered by broadcast receivers. It also

supports the user to estimate the security and safety risks of all installed apps

on the device and gives the opportunity to delete an app when it is considered

dangerous.

3.1. Features of ContrOWL

These are the key features of ”ContrOWL” and will be discussed subsequently in

detail:

• List of top permissions and broadcast intents used by malware

• Ranking, rating and description of these permissions and intents

• Finding apps on the device which use these permissions and intents

• List of all installed apps on the device and their overall rating

• Permissions and intents used by an app

• Possibility to remove apps

The app starts with a splash screen to fill the gap until the app is fully loaded.

This is necessary as it takes some time, depending on how many apps are installed

on the device, till it fetches all installed apps and calculates their rating.

After the loading process the app shows four tabs with the first one activated

per default. This is the ”Help tab” containing some basic information about

”ContrOWL” and a brief explanation of its key features (see Figure 3.1).

The ”Permission tab” (see Figure 3.2a) lists the 50 most used permissions among

malicious apps. Three numbers are displayed next to the name of a permission.

15

3.1. Features of ContrOWL 16

Figure 3.1.: Help tab.

The number on the left side (in the red box) represents the percentage of the

corresponding permission among malicious apps. The number on the right side

(in the green box) describes the percentage among non-malicious apps. The

central number in the yellow box is the calculated rating.

(a) Permissions tab. (b) Permission details.

Figure 3.2.: Permissions tab of ContrOWL

3.1. Features of ContrOWL 17

(a) Intents tab. (b) Intent details.

Figure 3.3.: Intents tab of ContrOWL

By using the menu button the user has the possibility to sort this list alphabeti-

cally, by the percentage of malware as well as of non-malware, and by the rating.

In Figure 3.2a the list is sorted by percentage of malicious apps.

Clicking on a list item leads to its details (see Figure 3.2b). This includes the

full package name, a more detailed description, and a list of all installed apps

using this permission. In Figure 3.2b this description is in German because it is

loaded dynamically from the Android platform and therefore in the language of

the device on which ”ContrOWL” is installed.

The ”Intents tab” (see Figure 3.3a) lists the 17 most used intent filters of broad-

cast receivers among malicious apps. It is structured in the same way as the

”Permissions tab”. The possibility to sort the list items is also implemented in

the menu button. In Figure 3.3a the list is sorted by the rating.

The user can click on a list item just like in the ”Permissions tab” and gets the

same kind of information (see Figure 3.3b). This time the description is English

since it is static due to the lack of intent descriptions on the Android platform.

The ”Applications tab” (see Figure 3.4) is a list of all non standard apps the

user has installed on his device. Each list item consists of an app name and its

calculated overall rating. The rating is colored by its value from green for 0 to

3.1. Features of ContrOWL 18

Figure 3.4.: Applications tab.

red for 100. By default the list is sorted descending ordered by the rating of the

apps but can also be sorted alphabetically by using the menu button.

Each list item can by opened to get more details. The details page is subdivided

in summary, permissions, and intents (see Figure 3.5 and 3.6). In summary the

user can see the rating for this app based only on permissions, intents, or the

combined overall rating. The user has the possibility to delete the app at this

point if he sees it fit in consideration of its ratings. The permissions section is

further divided into normal android permissions in the top and other permissions

(e.g. app specific) in the bottom. The intents section has the same structure but

the “other intents” part is not filled with data since the Android platform doesn’t

support a possibility to realize this feature. Figure 3.5 shows details of an app

with a high rating. It indicates that this app should be further investigated.

Figure 3.6 on the other hand shows details of a less suspicious app with a lower

rating even though it has more permissions. This is because most of them have

a low rating and some even no rating at all. Permissions with no rating are

marked with “-1”. These are permissions which belong to the Android standard

but don’t belong to the top 50 permissions used by malware. They are used by

only 2% and less of malicious apps and therefore not of interest for this study.

3.1. Features of ContrOWL 19

(a) Summary details. (b) Permission details. (c) Intent details.

Figure 3.5.: Details of Trillian app

(a) Summary details. (b) Permission details. (c) Intent details.

Figure 3.6.: Details of Facebook app

3.2. Implementation of the features 20

3.2. Implementation of the features

This chapter describes some of the code developed to realize the features shown

in Section 3.1.

When “ContrOWL” is started (see Listing 3.1) it first loads all non standard

installed apps (see line 1-5), scans them for their permissions and intents filtered

by their broadcast receivers (see line 9+10), and calculates their ratings on base

of the scan results (see line 11-15).

1 Li s t<PackageInfo> packs = pm. ge t In s t a l l ed Package s (0) ;

2 for (PackageInfo packInfo : packs) {
3 //Pre−i n s t a l l e d System−Apps

4 i f ((packInfo . a p p l i c a t i o n I n f o . f l a g s &

App l i c a t i on In f o .FLAG SYSTEM) != 0) {
5 continue ; }
6 St r ing name = packInfo . a p p l i c a t i o n I n f o . loadLabe l (

pm) . t oS t r i ng () ;

7 S t r ing pkgName = packInfo . packageName ;

8 f loat permRating = calculatePermRating (pkgName) ;

9 f loat in tRat ing = c a l c u l a t e I n t R a t i n g (name) ;

10 f loat r a t i n g = permRating + intRat ing ;

11 i f (permRating != 0 && intRat ing != 0)

12 r a t i n g /= 2 ;

13 i f (r a t i n g > 100)

14 r a t i n g = 100F ;

15 . . . }

Listing 3.1: Gets all non standard apps installed on the device and calculates

their ratings

As you can see in Listing 3.1 the method calculatePermRating(String) has been

called (see Listing 3.2). This method gets all permissions of an app and calculates

a part of the rating based on the found permissions. For demonstration purposes

some variable declarations and try catch blocks are left out the code snippet.

3.2. Implementation of the features 21

1 pkgInfo = mCtx . getPackageManager () . getPackageInfo (pkgName ,

PackageManager .GET PERMISSIONS) ;

2 . . .

3 i f (pkgInfo != null && pkgInfo . r eques t edPermi s s i ons != null

){
4 for (S t r ing pe r In f o : pkgInfo . r eques t edPermi s s i ons){
5 i f (pe r In f o . s tartsWith (” android . permis s ion . ”) | |

pe r In f o . s tartsWith (”com . android . launcher . permis s ion

. ”) | | pe r In f o . s tartsWith (”com . android . browser .

permis s ion . ”)){
6 Cursor curs = mPermDbHelper . fetchPermByPkgName (

pe r In f o) ;

7 i f (curs . getCount () != 0){
8 r a t i n g += curs . ge tF loat (curs .

getColumnIndexOrThrow (PermsDbAdapter .

KEY RATING)) ∗ curs . ge tF loat (curs .

getColumnIndexOrThrow (PermsDbAdapter .

KEY RATING)) ;

9 rat ingCount++;

10 }
11 curs . c l o s e () ;

12 . . .

13 } } }
14 i f (rat ingCount != 0)

15 r a t i n g = 4 ∗ r a t i n g / ratingCount ;

16 return r a t i n g ;

17 }

Listing 3.2: calculatePermRating(String pkgName)

In line 1-5 all requested permissions of the app with the package name “pkgName”

are loaded, checked, and iterated. “mCtx” is the context1 of the activity2 instan-

tiating the class from the shown code snippet(s) (AppsDbAdapter.java). In line

1Interface to global information about an application environment (5)
2An activity is an app component that provides a screen with which users can interact in

order to do something (6)

3.2. Implementation of the features 22

6-8 the found permission and its rating is loaded from “ContrOWL”s database3.

In line 8-18 all found ratings are used to calculate the overall rating of the app

and return it by this method.

The same approach is used to find all apps using a certain permission. All apps

are loaded from the database and then checked for their permissions. When there

is a match the app is added to the list.

1 PackageManager pm = mCtx . getPackageManager () ;

2 Cursor mIntentsCurs = mIntDbHelper . f e t c h A l l I n t e n t s () ;

3 mIntentsCurs . moveToFirst () ;

4 do{
5 Intent i n t e n t = new In tent (intentPkgName) ;

6 Lis t<Reso lveIn fo> a c t i v i t i e s = pm.

queryBroadcastRece ivers (intent , 0) ;

7 for (Reso lve In fo r i : a c t i v i t i e s) {
8 i f (appName . equa l s (r i . loadLabe l (pm) . t oS t r i ng ())){
9 //Get r a t i n g from cur rent i n t e n t and c a l c u l a t e

10 }
11 }
12 }
13 while (mIntentsCurs . moveToNext ()) ;

14 // Ca lcu la te r e s t

Listing 3.3: Code snippet of how to get intents filterd by the broadcast receiver

of an app

It is not possible on Android 4.0 to get intents filtered by the broadcast receiver

of an app directly. But it is possible to ask for apps which are registered for

certain broadcast intents. This is used in Listing 3.3 and also narrows down the

found broadcast intents of an app to those which are saved in the database of

“ContrOWL”. Lines 2-4 and 13 are used to get all intents saved in the database

and iterates them. In lines 5 and 6 all apps are requested which registered a

broadcast receiver for the given intent. Afterwards lines 7 and 8 iterate the

found apps and search for a match. The comments4 are standing for the logic

3”ContrOWL” has its own SQLite database with a table for permissions, intents, and apps
4Green text after // which is not compiled

3.2. Implementation of the features 23

for the rating calculation which is very similar to Listing 3.2 and therefore left

out. In “ContrOWL” Listing 3.3 is divided in two parts due to performance

reasons. First all apps for certain broadcast intents are searched and saved

in an array list. This list is then used for each app to find its broadcast in-

tents. The performance enhancement from this approach shows that the method

queryBroadcastReceivers(intent, int) slows down the app when used frequently.

The description of a permission is saved in the Android platform and can be

loaded dynamically (see Listing 3.4). This description is normally in the language

of the device.

1 PackageManager pm = mCtx . getPackageManager () ;

2 //pkgName = package name o f permis s ion

3 CharSequence c s Pe rm i s s i on In f oD e s c r i p t i on = pm.

ge tPermi s s i on In fo (pkgName , 128) . l oadDesc r ip t i on (pm) ;

Listing 3.4: Code snippet of how to get the permission description

In order to delete an app “ContrOWL” creates an ACTION DELETE intent

with the URI5 of the app’s package name and starts an activity to do the job

(see Listing 3.5). When the app has been successfully deleted the “ContrOWL”

database is updated by removing this app.

1 //pkgName = package name o f app

2 Uri packageURI = Uri . parse (” package : ” + pkgName) ;

3 Intent u n i n s t a l l I n t e n t = new In tent (In tent .ACTION DELETE,

packageURI) ;

4 s t a r t A c t i v i t y F o r R e s u l t (u n i n s t a l l I n t e n t , 0) ;

Listing 3.5: Code snippet of how to delete an app

5A Uniform Resource Identifier that identifies an abstract or physical resource (7)

4. Summary, Conclusions, and Further Work

This Bachelor Thesis examines the permissions and intents of broadcast receivers

of malicious and non-malicious Android apps and determines the differences and

similarities between them.

The Study: To investigate this matter a study on about 10.000 malware and

25.000 non-malware apps has been performed. The results showed that some

permissions and broadcast intents have a much higher relative quantity among

malicious apps than among non-malicious apps. Based on this findings a rating

algorithm was developed which can be used to determine how likely an app

is malware or non-malware. The algorithm has also been tested on the app

collection mentioned above to see whether it calculates proper ratings.

The test shows that there is still room for improvement as there are many more

possibilities to analyze the sample collection and contribute the results to the

rating algorithm. Pairs of two and three permissions have already been investi-

gated in this study but haven’t yet been implemented in the algorithm. Other

possibilities would be to also analyze pairs of two and three of broadcast intents

and combination of permissions and intents. The problem is the vast amount of

possible combinations and a pattern matching algorithm would be needed to find

a good hit-rate on malicious apps and a low false-positive rate on non-malicious

apps.

The rating itself could use some more tweaks as well to get a higher hit-rate on

malicious apps and a lower false-positive rate on non-malicious apps. This could

be done with some changes on the algorithm and with more input from further

studies.

In conclusion this study is based on empirical observations and intuition which

means no code analysis on malware and non-malware apps has been performed.

On these grounds the results have a pure statistical nature and therefore the rat-

ing is an information which indicates the likeliness of malicious behavior. There is

24

3.2. Implementation of the features 25

no guarantee that an app with certain permissions and intents is in fact malware

or not. The success rate however is for this early state of the algorithm already

very satisfying: Average rating of about 15 for Google Market and about 54 for

the malware apps.

ContrOWL: In order to implement the research results and the rating algorithm

in a working prototype the security app ”ContrOWL” has been developed. With

this app the user gets all information on permissions and broadcast intents gath-

ered in this study as well as the permissions, intents, and calculated ratings of

his apps.

“ContrOWL” has only been tested on the device of the author so far. 34 non-

standard apps are installed on this device and none of them are malware. Three

have a rating of 100, one of 67.8, and one of 55.2 which makes 5 suspicious apps

and a false-positive rate of about 15%. Considering the findings of the study this

is an expected outcome.

To give a better insight of how well “ContrOWL” performs it would need a feature

which collects usage data from users. These would be the user’s apps ratings and

the input of the user whether he considers them to be valid or not. These statistics

could also be used as advice for other users to make better decisions about their

apps.

At the moment the user has to open “ContrOWL” manually and look how his

apps are rated. A good feature here would be a background service which prompts

the user immediately after the installation of an app about its rating and other

details. This would not only improve the likeliness of the use of “ContrOWL”

but also the security since a recently installed app has less time to do harm.

In summary the study and the security app “ContrOWL” already provide a good

insight on permissions and intents filtered by broadcast receivers. ”ContrOWL”

also improves the security aspect on devices where it is installed. Nevertheless

both the study and the app could be improved as suggested above and provide

still room for further work.

5. Acknowledgements

I want to thank Prof. Felix Freiling for making it possible for me to work on this

subject and write this Bachelor Thesis.

I want to especially thank Michael Spreitzenbarth for supervising my work,

friendly support and professional help.

I also want to thank my girlfriend Kristin Rudolph for coming up with the app

name “ContrOWL” and my good friend Hannes Stadler for proofreading.

26

Bibliography

1 A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permissions

Demystified,” 2011. [Online]. Available: http://www.cs.berkeley.edu/∼afelt/

android permissions.pdf

2 mobilesandbox.org, “Android Mobile Sandbox,” 2012. [Online]. Available:

http://mobilesandbox.org

3 Microsoft, “Windos PowerShell,” 2012. [Online]. Available: http://www.

microsoft.com/en-us/download/details.aspx?id=7217

4 Android, “Android Manifest File,” 2012. [Online]. Available: http:

//developer.android.com/guide/topics/manifest/manifest-intro.html

5 ——, “Android Context,” 2012. [Online]. Available: http://developer.

android.com/reference/android/content/Context.html

6 ——, “Android Activity,” 2012. [Online]. Available: http://developer.

android.com/guide/components/activities.html

7 ——, “Android Uniform Resource Identifier,” 2012. [Online]. Available:

http://developer.android.com/reference/java/net/URI.html

8 J. Burns, “Mobile Application Security On Android,” 2009. [Online].

Available: http://www.blackhat.com/presentations/bh-usa-09/BURNS/

BHUSA09-Burns-AndroidSurgery-PAPER.pdf

9 Android, “Android Developers,” 2012. [Online]. Available: http://developer.

android.com/develop/index.html

10 J. Oberheide, “A look at a modern mobile security model,” 2009. [Online].

Available: http://jon.oberheide.org/files/cansecwest09-android.pdf

27

http://www.cs.berkeley.edu/~afelt/android_permissions.pdf
http://www.cs.berkeley.edu/~afelt/android_permissions.pdf
http://mobilesandbox.org
http://www.microsoft.com/en-us/download/details.aspx?id=7217
http://www.microsoft.com/en-us/download/details.aspx?id=7217
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/reference/java/net/URI.html
http://www.blackhat.com/presentations/bh-usa-09/BURNS/BHUSA09-Burns-AndroidSurgery-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/BURNS/BHUSA09-Burns-AndroidSurgery-PAPER.pdf
http://developer.android.com/develop/index.html
http://developer.android.com/develop/index.html
http://jon.oberheide.org/files/cansecwest09-android.pdf

Bibliography 28

11 L. P. Software, “How to be safe, avoid viruses, and find trusted

apps,” 2011. [Online]. Available: http://alostpacket.com/2010/02/20/

how-to-be-safe-find-trusted-apps-avoid-viruses/

12 C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M. Gissing,

A. Marsalek, J. Leibetseder, and O. Prevenhueber, “Android security

permissions - can we trust them?” nA. [Online]. Available: https:

//online.tugraz.at/tug online/voe main2.getvolltext?pCurrPk=57576

13 T. Vidas, N. Christin, and L. F. Cranor, “Curbing android permission

creep,” nA. [Online]. Available: http://www.andrew.cmu.edu/user/nicolasc/

publications/VCC-W2SP11.pdf

14 Android, “Android security overview,” 2012. [Online]. Available: http:

//source.android.com/tech/security/

http://alostpacket.com/2010/02/20/how-to-be-safe-find-trusted-apps-avoid-viruses/
http://alostpacket.com/2010/02/20/how-to-be-safe-find-trusted-apps-avoid-viruses/
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57576
https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=57576
http://www.andrew.cmu.edu/user/nicolasc/publications/VCC-W2SP11.pdf
http://www.andrew.cmu.edu/user/nicolasc/publications/VCC-W2SP11.pdf
http://source.android.com/tech/security/
http://source.android.com/tech/security/

Appendix

29

A. First class of appendices

A.1. Complete list of rated intents and permissions

Intents of Broadcast Receiver Malware Non-Malware
Package Percentage Percentage Rating
android.intent.action.BOOT_COMPLETED 32,7046549 7,95568208 4,110855
android.intent.action.PHONE_STATE 8,01565008 0,8040317 9,969321
android.provider.Telephony.SMS_RECEIVED 7,654494382 1,161806571 6,588441
com.android.vending.INSTALL_REFERRER 6,922150883 11,921982 0,580621
android.appwidget.action.APPWIDGET_UPDATE 6,260032103 9,225205817 0,678579
android.intent.action.USER_PRESENT 4,173354735 0,223128414 18,70382
android.net.conn.CONNECTIVITY_CHANGE 2,768860353 1,100253905 2,516565
android.intent.action.SIG_STR 2,437800963 0,1 24,37801
com.android.launcher.action.INSTALL_SHORTCUT 2,036516854 0,1 20,36517
com.android.launcher.action.UNINSTALL_SHORTCUT 2,036516854 0,1 20,36517com.android.launcher.action.UNINSTALL_SHORTCUT 2,036516854 0,1 20,36517
android.intent.action.NEW_OUTGOING_CALL 1,534911717 0,45010387 3,410128
android.intent.action.BATTERY_CHANGED_ACTION 1,374398074 0,1 13,74398
com.google.android.c2dm.intent.RECEIVE 1,233948636 2,34284835 0,526687
com.google.android.c2dm.intent.REGISTRATION 1,233948636 2,34284835 0,526687
android.intent.action.PACKAGE_ADDED 1,21388443 0,438562745 2,767869
android.provider.Telephony.WAP_PUSH_RECEIVED 1,043338684 0,184657998 5,650114
android.intent.action.INPUT_METHOD_CHANGED 0,922953451 0,1 9,229535

Figure A.1.: The complete list of all rated intents filtered by broadcast receiver

30

A.1. Complete list of rated intents and permissions 31

Permissions: Malware Non-Malware
Package Percentage Percentage Rating
android.permission.INTERNET 88,55337079 85,68131107 1,03352
android.permission.READ_PHONE_STATE 55,32704655 33,28845118 1,662049
android.permission.ACCESS_NETWORK_STATE 49,2576244 52,78525814 0,93317
android.permission.SEND_SMS 40,22873194 3,681618835 10,92691
android.permission.WRITE_EXTERNAL_STORAGE 38,47311396 34,37716396 1,119147
android.permission.RECEIVE_SMS 25 2,431330307 10,28244
android.permission.RECEIVE_BOOT_COMPLETED 23,97672552 7,070862507 3,390919
android.permission.ACCESS_COARSE_LOCATION 19,26163724 23,32846041 0,825671
android.permission.ACCESS_FINE_LOCATION 18,03772071 22,63599292 0,79686
android.permission.VIBRATE 17,09470305 18,28498884 0,934904
android.permission.ACCESS_WIFI_STATE 14,90770465 10,9332923 1,363515
android.permission.READ_CONTACTS 14,17536116 7,732553666 1,833206
android.permission.READ_SMS 13,93459069 1,750403939 7,960786
android.permission.CALL_PHONE 13,04173355 9,252135108 1,409592
android.permission.WAKE_LOCK 12,01845907 12,02585212 0,999385
android.permission.INSTALL_PACKAGES 11,7776886 0,542432869 21,71271
android.permission.WRITE_SMS 11,50682183 1,227206278 9,376437
android.permission.CHANGE_CONFIGURATION 10,98515249 0,300069247 36,60872
android.permission.SET_WALLPAPER 10,10232745 6,270677849 1,611042
android.permission.CAMERA 8,617576244 7,22089713 1,193422
com.android.launcher.permission.INSTALL_SHORTCUT 7,403691814 1,669616065 4,434368
android.permission.WRITE_CONTACTS 7,142857143 2,954527968 2,417597
android.permission.GET_TASKS 6,611155698 5,293529276 1,248913
android.permission.READ_LOGS 5,617977528 1,86966223 3,004809
com.android.browser.permission.READ_HISTORY_BOOKMARKS 5,607945425 0,530891744 10,56326com.android.browser.permission.READ_HISTORY_BOOKMARKS 5,607945425 0,530891744 10,56326
android.permission.WRITE_SETTINGS 5,447431782 3,843194583 1,417423
android.permission.BATTERY_STATS 5,006019262 0,353927829 14,14418
android.permission.GET_ACCOUNTS 4,785313002 3,004539509 1,592694
android.permission.WRITE_APN_SETTINGS 4,725120385 0,242363622 19,496
android.permission.RECEIVE_WAP_PUSH 4,624799358 0,1 46,24799
android.permission.EXPAND_STATUS_BAR 4,293739968 0,169269831 25,36624
android.permission.CHANGE_WIFI_STATE 4,273675762 2,096637686 2,038347
android.permission.RESTART_PACKAGES 4,163322632 2,173578518 1,915423
android.permission.MODIFY_AUDIO_SETTINGS 3,962680578 1,750403939 2,263866
android.permission.DELETE_PACKAGES 3,832263242 0,184657998 20,7533
com.android.launcher.permission.UNINSTALL_SHORTCUT 3,782102729 0,469339078 8,058359
android.permission.WRITE_CALENDAR 3,752006421 2,242825267 1,672893
android.permission.READ_CALENDAR 3,691813804 2,400553974 1,537901
android.permission.MOUNT_UNMOUNT_FILESYSTEMS 3,551364366 2,146649227 1,654376
android.permission.BLUETOOTH 3,360754414 0,557821036 6,02479
com.android.browser.permission.WRITE_HISTORY_BOOKMARKS 2,849117175 0,234669539 12,14098
android.permission.CHANGE_NETWORK_STATE 2,738764045 1,11179503 2,463371
android.permission.RECEIVE_MMS 2,738764045 0,253904747 10,78658
android.permission.SYSTEM_ALERT_WINDOW 2,718699839 0,242363622 11,21744
com.android.launcher.permission.READ_SETTINGS 2,42776886 0,126952374 19,12346
android.permission.STATUS_BAR 2,407704655 0,323151496 7,450699
android.permission.CONTROL_LOCATION_UPDATES 2,357544141 0,250057706 9,428
android.permission.READ_FRAME_BUFFER 2,237158909 0,1 22,37159
com.android.launcher.permission.WRITE_SETTINGS 2,227126806 0,1 22,27127
android.permission.SET_WALLPAPER_HINTS 2,106741573 0,153881665 13,69066

Figure A.2.: The complete list of all rated permissions

Eidesstattliche Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer

als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder

ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von

dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,

die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Ich bin ferner damit einverstanden, dass meine Arbeit zum Zwecke eines Pla-

giatsabgleichs in elektronischer Form anonymisiert versendet und gespeichert wer-

den kann. Mir ist bekannt, dass von der Korrektur der Arbeit abgesehen werden

kann, wenn die Erklärung nicht erteilt wird.

Ort, Datum

Marcel Hrnecek

	List of Figures
	List of Tables
	Introduction
	Study on Quantity of Permissions and Intent-Filters of BroadcastReceivers
	Quantity of Permissions
	Prerequisites
	Results

	Quantity of Intent-Filters of BroadcastReceivers
	Prerequisites
	Results

	Interpretation of the results
	Rating for an app

	The security app ContrOWL
	Features of ContrOWL
	Implementation of the features

	Summary, Conclusions, and Further Work
	Acknowledgements
	Bibliography
	Appendix
	First class of appendices
	Complete list of rated intents and permissions

