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Zusammenfassung

RAM-Forensik wird immer mehr als wertvolle Erweiterung zur bisherigen Forensik
persistenter Speicher erkannt. Nach ersten Erfolgen mit Windows-Systemen, können
mittlerweile auch Linux- und MacOS-Systeme gut analysiert werden. Bewährte Tools
sind LiME zur Speicher-Akquirierung bei Linux und Android sowie Volatility zur Analyse.
Android basiert auf Linux und es gibt bereits Forschungsergebnisse zur entsprechenden
Hauptspeicher-Untersuchung. Diese Arbeiten konzentrieren sich überwiegend auf ein
virtualisiertes Android.

In dieser Thesis klären wir die praktische Anwendbarkeit in der Strafverfolgung. Dafür
haben wir untersucht, inwiefern es praktikabel ist, den Hauptspeicher eines kon�szierten
Smartphones mit LiME auszulesen und mit Volatility auszuwerten. Der Vorgang wurde
im Allgemeinen aus bewährten Techniken im Zusammenhang mit Windows und Linux
hergeleitet. Anschließend wurde er auf Android-Geräte übertragen. Zusätzlich haben
wir eine Ansatz erarbeitet, um den zur Verfügung stehenden Zeitrahmen für eine Spei-
cher-Akquise zu ermitteln.

Wir kommen zu dem Ergebnis, dass nur in seltenen Fällen zusätzlich zur regelmäßig
angewendeten Tot-Analyse auch eine Live-Analyse angewendet werden kann. Androids
Sicherheits-Mechanismen können den erfolgreichen Einsatz von LiME im Rahmen einer
Strafverfolgung vereiteln. Die Überwindung dieser Sperren riskiert nicht nur den an-
visierten Hauptspeicher sondern auch persistenten Speicher. Zudem dürften die in diesem
Zusammenhang anzuwendenden Methoden selten gerichtsfest sein.
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Abstract

There is an increasing awareness of RAM forensics as a useful enhancement to the
forensics of persistent memory. After initial achievements for Windows systems, Linux
and Mac OS X can now also be well analyzed. Reliable tools include LiME for Linux
and Android memory acquisition and Volatility for analysis. There are already research
papers on the corresponding RAM analysis for Linux based Android devices. These
papers are mainly directed at virtualized Android devices.

This thesis examines their practical feasibility for law enforcement. We examined to
what extent it is feasible to acquire volatile memory from a seized smartphone leveraging
LiME and to interpret it with Volatility. The related processes were generally derived
from proven techniques developed for Windows and Linux. Afterwards the process
was adapted to work with Android devices. Additionally, we developed an approach to
evaluate a time frame for the memory acquisition.

We arrive at the conclusion that only in rare cases can a live analysis successfully add
value to the regularly performed dead analysis. Android’s security features can defeat
successful utilization of LiME in the context of criminal proceedings. Overcoming these
obstacles endangers not only the targeted RAM but also the persistent memory of the
device. Furthermore, the related methods are unlikely to stand up in court.
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1

Introduction

“Forensic practitioners are well acquainted with push-button forensics software.
They are an essential tool to keep on top of high case loads – plug in the device
and it pulls out the data. Gaining access to that data is a constant challenge
against sophisticated protection being built into modern smartphones. Combined
with the diversity of �rmware and hardware on the Android platform it is not
uncommon to require some manual methods and advanced tools to get the data
you need.”

Thomas Cannon, Director of Research and Development, NowSecure

1.1 Motivation

Mobile phone forensics is daily routine for law enforcement. There are several plug-and-
play solutions on the market for the criminal prosecutor. Promotion promises—to phrase
it a bit exaggerated—you just connect the phone, press a button and all the data stored
on the device is getting extracted and prepared report-ready. But, this is at best valid for
non-volatile data.

For some very good reasons (cmp. section 2.2) live memory forensics in general is raising
in popularity. This is even though this kind of investigation presumes advanced technical
skills. With this trend come an increasing number of scienti�c papers about smartphone

1



CHAPTER 1. INTRODUCTION

live forensics (cmp. section 1.3), particularly regarding Android. It is sound to assume
that an Android smartphone’s volatile memory can be examined in principle. Also it is
indisputable that such an examination can deliver quite valuable �ndings. But: Is Android
live forensics always feasible or even advisable?

1.2 Task

We will discuss if Android live memory forensics can be solved by practitioners who have
to keep on top of high case loads. What is needed to acquire the volatile memory? How can
the memory dump be analyzed? What puts obstacles into the examiner’s path? Are there
reasons which make Android live memory forensics impossible? Memory acquisition is
done using the Linux Memory Extractor (LiME) module (introduced in section 2.2.1). The
Volatility framework is used for the memory dumps’ analysis (introduced in section 2.2.2).

1.3 Related Work

Due to the novelty of Android live memory forensics there is a manageable amount of
related academic work.
Thing et al. [71] developed both their own memory acquisition tool memgrab and a
memory dump analyzer MDA for the Android platform. The former connects to an
Android phone and retrieves a copy of the volatile memory, while the latter decodes
and extracts information from the retrieved data. The used hardware is speci�ed as “an
Android mobile phone, the Google development set”.
In 2011 Sylve Sylve et al. [64], Sylve [65] developed Droid Memory Dumper (DMD), “the
�rst methodology and toolset for acquiring full physical memory images from Android
devices” which today is known as Linux Memory Extractor (LiME).
Ali-Gombe [2] described in 2012 how to extract messages sent and received by the
Motorola Motoblur application. Though LiME was known to the author, memfetch [79]
was used to only extract the application’s memory instead of the full device’s memory.
Müller and Spreitzenbarth [47] proved 2012 the cold-boot-attack applicable to Android
smartphones. A cold-boot-attack sidelines any lock screen (PIN, password, etc.) by
booting into a minimal custom OS while at the same time preserving most of the former
RAM. They were able to acquire the full device’s volatile memory of a Galaxy Nexus
independent of the boot loader being locked or unlocked. The downside of their method
is the loss of the non-volatile memory in case of a locked boot loader.
In 2013 Macht [44] presented extensions to the Volatility framework with focus on the
Dalvik Virtual Machine (DVM) and speci�c popular Android applications.
Apostolopoulos et al. [10] discovered “authentication credentials in volatile memory of
Android mobile devices”. They worked with the Dalvik Debug Monitor Server (DDMS) on
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emulators and phones without mentioning if or how the latter were prepared. Later in
[78] they described using LiME.

Stirparo et al. [61] presented 2013 their work on extracting data like online banking
credentials out of Android memory. They worked completely on Android Virtual Devices
(AVDs).

The currently most important publication about memory forensics is “The Art of Memory
Forensics” [42] from 2014. This book covers the OSs Windows, Linux and MacOS. Though
the string “Android” appears only four times in this over 800 pages work, quite a lot of
the Linux part is transferable.

In 2014 Sun et al. [63] presented a new approach to memory acquisition. They refer to the
“TrustZone” [3, 11] which ARM already introduced 2004 with the ARMv7 architecture.
The ARMv7 architecture can be found in many mobile devices, e.g. in Apple (A4, A5,
A6), nVidia (Tegra), Qualcomm (Snapdragon), Samsung (Exynos) and Texas Instruments
(OMAP) processors. The TrustZone is a system level isolation solution, which divides
the mobile platform into two isolated execution environments, called normal domain
(e.g. with the Android OS) and secure domain. Sun et al. developed “a TrustZone-based
reliable memory acquisition mechanism called TrustDump, which is capable of obtaining
the RAM memory and CPU registers” of the OS in the normal domain. For that purpose a
memory acquisition module called TrustDumper is installed in the secure domain.

We will have a further look at these sources in section 2.3.4.

1.4 Results

Our experiments and observations made us arrive at the conclusion that in most cases
Android smartphone live memory forensics is not feasible for law enforcement purposes.
There are too many factors that make memory acquisition and/or analysis uncertain or
even impossible and could yet endanger the non-volatile memory. We identi�ed these
disturbing factors:
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1 Identify model: A smartphone model can not always be identi�ed solely
by visual inspection. (cmp. section 4.5)

2 Identify OS: Without unlocked screen or enabled USB debugging there
is no way to identify the OS version. This information is
indispensable for attacks like FROST. (cmp. section 2.3.3)

3 Root exploit: The availability of an appropriate “reboot-less” root ex-
ploit at exactly the right time is anything but reliable.
(cmp. section 2.3.3)

4 Lock screen: USB debugging is needed in some attack scenarios. With
enabled lock screen there is no way to enable it with-
out deleting the volatile memory contents. (cmp. sec-
tion 2.3.2)

5 Availability of sources: Theoretically the kernel sources should be available. But
this is not always the case. (cmp. section 4.2)

6 Kernel con�guration: If the OS version is known and o�cial sources as well
as a kernel con�guration �le are available, there is still
no guarantee, that the actual kernel was compiled the
o�cial way. (cmp. section 3.3.1)

7 Evidence erosion: The fact that the RAM is permanently changing, results in
a steadily increasing loss of evidence over time. This pro-
hibits long lasting investigations about how to overcome
security barriers. (cmp. chapter 5)

Even if the conditions were appropriate, there is no one-click solution. Instead time
pressure calls for a highly specialized forensics expert who can do the job with all tools
at hand and without the need to gather more information.

It is important to repeat that the scope of this work is the practical feasibility of Android
live memory forensics in criminal investigations. Our negative conclusion focuses on
exactly this scope. It does not apply for live memory forensics of

• desktop and server systems or rather their OSs (in particular Windows, Linux,
MacOS) in the �eld of criminal investigations, or

• groomed Android systems in the �eld of malware analysis or otherwise academic
research.

For these use cases we rate live memory forensics as invaluable.

1.5 Outline

Following this introduction, in chapter 2 we go into some key terms of this thesis. We
expose our perception of smartphones and why we should deal with memory forensics in
general. The basic thesis’ tools LiME and the Volatility framework are depicted as well as
Android security features that give the forensics expert a hard time.
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In chapter 3 we describe memory acquisition and analysis on the basis of VMs. We start
with Windows 7, discuss the di�erences of �ve GNU/Linux distributions and close with
an Android Virtual Device.

Based on the experiences with the virtual machines we address real devices in chapter 4.
We begin with a groomed scenario and then elaborate on several obstacles we faced while
experimenting with miscellaneous hardware.

The time consuming work so far led to the question if there is a time limit after that the
target’s memory has changed that much that acquisition and analysis became meaningless.
In chapter 5 we try to approach an answer with memory endurance tests.

Our conclusions and proposals are summarized in chapter 6.

This work includes a lot of code examples. We used predominantly a GNU/Linux bash.1
From GNU/Linux bash sometimes there will be a switch to an Android shell and there are
also examples with Windows command line. In order to visualize the current environment
the logo of the corresponding OS is shown in each case (cmp. �g. 1.1).

$

(a) GNU/Linux console

shell@android:/ $

(b) Android console

C:\>

(c) Windows console

Figure 1.1: Console representations are marked with corresponding OS logos in order to clarify
the current OS context.

1.6 Acknowledgments

We have to thank Joe Sylve, Andrew Case, Holger Macht, and many other for patiently
answering our newcomer questions.

We are proud that the Volatility project allowed us to contribute our timekeeper patch
(cmp. section 3.2.7).

1For reference—if the reader might not be familiar with a GNU/Linux command or its arguments—we
recommend explainshell.com [39] for �rst orientation.
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Background

In this chapter we enlarge upon the basic terms employed in this work. We illustrate the
focus on Android smartphones and explain the rising signi�cance of memory forensics
in general. In addition, the essential software tools LiME and Volatility are introduced.
Finally we o�er a résumé of those Android security features we address mainly in chapter 4.

2.1 Smartphones

Our investigative targets are Android smartphones. Smartphones on the one hand because
of the interwovenness of these little devices with the life of so many people. Android on
the other hand because of its mobile OS market share.

2.1.1 Smartphone activities

Smartphones are an integral part of many people’s lives. A representative survey by
Bitkom Research [53] says that in February 2015 63% of the Germans age 14 and above
used smartphones. 58% of them used the alarm function to start into the day which 83%
managed with assistance of the smartphone’s calendar. 71% communicated via short
messages and 70% used social networks.
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Pew Research Center [52] say that 7% of U.S. American adults “do not have broadband
access at home, and also have relatively few options for getting online other than their cell
phone”. For younger adults at ages 18–29 this rises to 15%.

Google’s Our Mobile Planet website allows a little insight in their treasure of data. For
20131 they show a similar picture for many countries. (See [29] for an example chart we
created based on Google’s data.)

A distressing but striking indicator for the pervasiveness of mobile phones in the lives of
many people is the role they play in car crashes. The AAA Foundation for Tra�c Safety
researched police-reported motor vehicle crashes from 963,000 drivers aged 16-19 in 2013
[23]. The driver was engaged in cell phone use in 12% of all crashes. Filmmaker and
documentarian Werner Herzog in 2013 directed a short �lm on the dangers of texting
and driving. “From One Second to the Next” [36] looks at how four lives were impacted
by texting-related accidents. Matt Ritchel, a reporter for The New York Times, won a
Pulitzer Prize in 2010 for his series of articles about distracted driving. In 2014 he wrote
“A Deadly Wandering” [54] about one crash from Werner Herzogs’s �lm with two people
dead.

Smartphones even disclose information about their users without the need of forensic
investigation. Android devices for instance constantly search for known wireless net-
works using their original MAC address.2 This allows for the transparent generation of
movement pro�les and is already in use by marketing companies.

Last but not least there is an upcoming trend to control smart homes with smart phones.
Hence access to such a smartphone can imply virtual and practical admittance to the
owner’s home.

2.1.2 Smartphone OSs

There are many OSs in the smartphone cosmos. Google’s Android and Apple’s iOS are
dominant. Others try to gain their market share (cmp. table 2.1 and �g. 2.1). Even mobile
phones with a discontinued OS (cmp. table 2.2) continue to be used. The author for
example still uses phones and tablet computers with 2012 cancelled WebOS. Last but
not least the building of a smartphone is no longer the sole domain of big companies as
do-it-yourself projects now prove [35, 60].

In the mobile device market Android plays the prominent role. In 2014 over one billion
Android devices were sold according to Gartner [27] and IDC [37].

Android is prevalent as operating system for smart phones, tablets, wearables, car info-
tainment systems etc. There is a wide range of devices for low prices. The OS is unrivaled

1the most current data available at Google’s Our Mobile Planet as of this writing
2Apple’s iOS since version 8 uses random MAC addresses for WLAN scans. For rooted Android devices

additional software like Chain�re’s Pry-Fi [14] is available.
3Samsung’s 2013 smart camera NX300M was the �rst consumer product based on Tizen. But the �rst

smartphone with Tizen, the Samsung Z1, was released in January 2015.
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Table 2.1: Examples of current smartphone OSs
OS by since examples for devices

BlackBerry OS BlackBerry 1999 BlackBerry devices
iOS Apple 2007 iPhone, iPod Touch, iPad, iPad Mini, Apple TV
Android Google 2008 �rst device was HTC Dream; countless followed
Windows Phone Microsoft 2010 Nokia Lumia devices
Firefox OS Mozilla 2013 Alcatel OneTouch Fire E, Geeksphone Revolution,

ZTE Open C
Sail�sh OS Jolla 2013 Jolla Phone
Ubuntu Touch Canonical 2014 BQ Aquaris E4.5 Ubuntu Edition
Tizen mainly Intel 20153 Samsung Z1 (India)

and Samsung

Table 2.2: Examples of past smartphone OSs
OS by from to

Palm OS Palm 1996 2004
Symbian Nokia 2002 2011
Windows Mobile Microsoft 2003 2010
WebOS Palm / HP 2009 2012
Bada OS Samsung 2010 2013

0 10 20 30 40 50 60 70 80 90 100

Others
BlackBerry OS

Windows Phone
iOS

Android
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Figure 2.1: IDC: Worldwide Smartphone OS Market Share, Q4 2014 [37]
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in letting manufacturers, developers and consumers put their own ideas into practice
while o�ering an uniform platform for all of them. It is usually not much work to gain
root permissions.4 For quite a lot of devices the pre-installed Android version can be
replaced by a customized ROM. This makes Android both the most chaotic and the
most dynamic system compared to competitors like Apple’s iOS or Microsoft’s Windows
Phone.

0 10 20 30 40 50 60 70 80 90 100

Others
Xiaomi
Huawei
Lenovo

Apple
Samsung

45.7

4.4

6.3

6.5

19.7

19.9

Share in Unit Shipments [%]

Figure 2.2: IDC: Worldwide Smartphone Vendor Market Share, Q4 2014 [38]

Biggest vendors in the smartphone market are Samsung and Apple (see �g. 2.2). In the
Android market however, Samsung dominated in 2014.

2.2 Memory forensics

In an interview for Eric Huber’s blog “A Fistful of Dongles” (AFoD) [33]5 Andrew Case—a
core developer of Volatility—summarizes his view of Memory Forensics:

“Memory forensics is the examination of physical memory (RAM) to support
digital forensics, incident response, and malware analysis. It is [sic] has the
advantage over other types of forensics, such as network and disk, in that much
of the system state relevant to investigations only appears in memory. This can
include artifacts such as running processes, active network connections, and
loaded kernel drivers. There are also artifacts related to the use of applications
(chat, email, browsers, command shells, etc.) that only appear in memory and
are lost when the system is powered down.” [33]

An example for the latter is given by Lenny Zeltser who interacted with a scammer posing
as a help desk technician [80]. This person accessed websites leveraging the Microsoft

4But it is problematic to gain root privileges without losing the current RAM content. This is discussed
repeatedly in this thesis.

5As the blog is no longer active the citation refers to an archived version on web.archive.org.
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Windows HTML Help application %windir%\hh.exe instead of a common web browser.
Zeltser afterwards analyzed the incident. Only memory forensic methods were able to
disclose the URLs.

“Furthermore, attackers are well aware that many investigators still do not
perform memory forensics and that most AV/HIPS systems don’t thoroughly
look in memory (if at all). This has led to development of malware, exploits,
and attack toolkits that operate solely in memory. Obviously these will be
completely missed if memory is not examined. Memory forensics is also being
heavily pushed due to its resilience to malware that can easily fool live tools on
the system, but have a much harder time hiding within all of RAM.” [33]

Schulz [56] describes how an Android application can dynamically load encrypted code
during runtime and have it decrypted during execution only. In this case the analyst’s
only chance to access meaningful code is memory analysis.

“Besides the aforementioned items, memory forensics is also becoming heavily
used due to its ability to support e�cient triage at scale and the short time
in which analysis can begin once indicators have been found. Traditional
triage required reading potentially hundreds of MBs of data across disk looking
for indicators in event logs, the registry, program �les, LNK �les, etc. This
could become too time consuming with even a handful of machines, much less
hundreds or thousands across an enterprise. On other hand, memory-based
indicators, such as the names of processes, DLLs, services, and kernel drivers, can
be checked by only querying a few MBs of memory. Tools, such as F-Response,
makes [sic] this fairly trivial to accomplish across huge enterprise environments
and also allow for full acquisition of memory if indicators are found on a
particular system.

The last reason I will discuss related to the explosive growth of the use of
memory forensics is the ability to recover encryption keys and plaintext versions
of encrypted �les. Whenever software encryption is used, the keying material
must be stored in volatile memory in order to support decryption and encryption
operations. Through recovery of the encryption key and/or password, the entire
store (disk, container, etc.) can be opened. This has been successfully used many
times against products such as TrueCrypt, Apple’s Keychain, and other popularly
used encryption products. Furthermore, as �les and data from those stores are
read into memory they are decrypted so that the requesting application (Word,
Adobe, Notepad) can allow for viewing and editing by the end user. Through
recovery of these �le caches, the decrypted versions of �les can be directly
reconstructed from memory.“ [33]

During the following chapter 3 we brie�y deal with Windows and Linux before we draw
the connection to Android memory forensics.
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2.2.1 Memory acquisition with LiME

As of this writing Joe Sylve’s LiME [1, 64, 65] is the most accurate Open-Source Soft-
ware (OSS) memory acquisition tool available for systems with a Linux kernel. That is,
amongst others, because it is implemented as a loadable kernel module (LKM), which is
a convenient way to extend the Linux kernel without the need to completely recompile
it. Using this technique means that no context switches between userland and the kernel
are required to transfer data. [42, pg. 580 et seqq.]

A drawback however is that the examiner usually has to compile the external kernel
module using header �les6. That is because kernel modules have to be compatible with the
kernel they are loaded into. Therefore Linux memory acquisition with LiME is somehow
less convenient than the comparable task at a Windows system. We depict both in the
following chapter 3.

Forensic principles forbid compiling any software on a computer which is subject to the
investigation. Compilation would signi�cantly change the system by installing persistent
and temporary �les not to mention the modi�cations to the system’s RAM. Thus, a second
system with the same kernel version and con�guration should be set up. Alternatively
one can cross-compile the module. As discussed later in connection with Android (see
chapter 4) there are situations where the more complex requirements of cross-compiling
can’t be avoided.

On Linux systems the �le /proc/iomem shows the current map of the system’s memory
for each physical device (see �g. 2.6 for an exemplary excerpt). LiME basically copies
those RAM segments listed in /proc/iomem which are named “System RAM”. The user
can choose from three di�erent �le formats to store memory dumps:

1. raw: All “System RAM” ranges simply get concatenated.

2. padded: Starting from physical address 0 all non-”System RAM” ranges get padded
with zeros.

3. lime: Like “raw” but the memory segments are prepended with a 32 bytes header
containing address space information.

The latter is our format of choice. This is because Volatility contains an address space
de�nition for the “lime” format. Furthermore this format is useful for debugging. The
LiME memory segment header de�nition is shown in �g. 2.3 and a commented hex dump
in �g. 2.4.

If the LiME memory dump was successful and if there is a working Volatility pro�le
available (cmp. section 2.2.2), then the Volatility plugin limeinfo prints the enclosed
memory segments. An example taken from the experiment in section 3.3 is shown in
�g. 2.5.

6On GNU/Linux systems header �les often are located in a version speci�c directory under /lib/modules .
Android devices usually come without their sources.
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typedef struct {

unsigned int magic;

unsigned int version;

unsigned long long s_addr;

unsigned long long e_addr;

unsigned char reserved[8];

} __attribute__ ((__packed__)) lime_mem_range_header;

Figure 2.3: LiME: Memory segment header de�nition

$ xxd -c 8 -l 32 goldfish.lime

0000000: 454d 694c 0100 0000 EMiL....

0000008: 0000 0000 0000 0000 ........

0000010: ffff ff1f 0000 0000 ........

0000018: 0000 0000 0000 0000 ........

Memory segment header (little-endian):

• magic LiME & version 1

• start address 0x 0000 0000

• end address 0x 1fff ffff ⇒ 512MiB

• the last 16 bytes are reserved

Figure 2.4: LiME: Memory segment header in dump

$ export VOLATILITY_LOCATION=file:///tmp/dump/goldfish.AVD00900.047.lime

$ export VOLATILITY_PROFILE=LinuxAndroid_Goldfish_3_4_67-01413-g9ac497fARM

$ python vol.py limeinfo

Volatility Foundation Volatility Framework 2.4

Memory Start Memory End Size

------------ ---------- ----------

0x0000000000 0x1fffffff 0x20000000

Figure 2.5: Gold�sh memory dump: Volatility plugin “limeinfo”
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When we did our �rst experiments with acquiring Android memory dumps they all
failed. We used the option to write the dump to the targets �le system. The lime
format’s memory segment headers helped during debugging as they showed that the
�rst from three expected segments was always missing. This was not the case though
when selecting the option to transfer the dump over TCP. Together with Joe Sylve we
ascertained that LiME’s default behavior to attempt to use Direct I/O caused the error
[74]. Joe Sylve hereupon changed the default to not attempting Direct I/O.

shell@android:/ $ cat /proc/iomem | grep -i ram

30000000-323fffff : System RAM

35000000-35ffffff : onedram

40000000-4b7aefff : System RAM

50000000-57efffff : System RAM

57f00000-57ffefff : ram_console

Figure 2.6: Nexus S: /proc/iomem lists three System RAM memory ranges for LiME to acquire

We now brie�y depict the debug process. Based on /proc/iomem (cmp. �g. 2.6) we
expected to �nd three segments in the LiME dump:

1. 30000000-323fffff

2. 40000000-4b7aefff

3. 50000000-57efffff

$ # >>>> start of dump = memory segment header of second expected segment

$ xxd -l 0x20 ~/android/dump/NexusS_4.0.4.dump

0000000: 454d 694c 0100 0000 0000 0040 0000 0000 EMiL.......@....

0000010: ffef 7a4b 0000 0000 0000 0000 0000 0000 ..zK............

$ # >>>> next header belongs to third expected segment

$ xxd -s $((0x20 + 0x4b7aefff - 0x40000000 + 1)) -l 0x20

~/android/dump/NexusS_4.0.4.dump

b7af020: 454d 694c 0100 0000 0000 0050 0000 0000 EMiL.......P....

b7af030: ffff ef57 0000 0000 0000 0000 0000 0000 ...W............

$ # >>>> total size of these two segments incl. headers ...

$ echo $(( 0x20 + 0xb7aefff + 1 + 0x20 + 0x7efffff + 1 ))

325775424

$ # >>>> ... equals total size of dump file

$ stat -c %s ~/android/dump/NexusS_4.0.4.dump

325775424

Figure 2.7: Nexus S: LiME dump contains just two out of three memory ranges

Each memory segment’s header has a �xed length of 32 bytes ( 0x20 ). Within each header
the corresponding segment’s start and end addresses are given. With this knowledge we
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can walk through the dump from one segment to another (cmp. �g. 2.7). By doing so we
only spot the second and third segment. The �rst is clearly missing.

2.2.2 Memory analysis with Volatility

Andrew Case provides a résumé of Volatility’s history and philosophy in his interview
for Eric Huber’s blog AFoD [33]:

“The Volatility Project was started in the mid-2000s by AAron Walters and
Nick Petroni. Volatility emerged from two earlier projects by Nick and AAron,
Volatools and The FATkit. These were some of the �rst public projects to integrate
memory forensics into the digital investigation process. Volatility was created as
the open source version of these research e�orts and was initially worked on by
AAron and Brendan Dolan-Gavitt. Since then, Volatility has been contributed
to by a number of people, and has become one of the most popular and widely
used tools within the digital forensics, incident response, and malware analysis
communities.

Volatility was designed to allow researchers to easily integrate their work into a
standard framework and to feed o� each other’s progress. All analysis is done
through plugins and the core of the framework was designed to support a wide
variety of capture formats and hardware architectures. As of the 2.4 release
(summer 2014), Volatility has support for analyzing memory captures from 32
and 64-bit Windows XP through 8, including the server versions, Linux 2.6.11
(circa 2005) to 3.16, all Android versions, and Mac [OS X] Leopard through
Mavericks.”

One aspect of Volatility’s modularity is the pro�les concept. “Pro�les in Volatility allow
for plugins to be written generically while the backend code handles all the changes between
di�erent versions of an operating system (e.g. Windows XP, Vista, 7, and 8).” [33] For
each combination of a speci�c OS version and hardware architecture (x86, x64, ARM) a
separate pro�le is needed. Any pro�le includes [42, pg. 55]:

• A collection of the VTypes, overlays, and object classes

• Metadata such as the operating system’s name, the kernel version, and build number

• Indexes and names of system calls

• Global variables that can be found at hard-coded addresses in some operating
systems

• Low-level types for native languages (usually C), including the sizes for integers,
long integers, and so on

• System map: Addresses of critical global variables and functions (Linux and OS X
only)
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By default Volatility (as of this writing) comes with a set of 31 Windows pro�les (cmp.
table 2.3). Additionally Windows 10 beta support is available from the project’s GitHub
repository [73].

Table 2.3: Volatility 2.4 Windows pro�les
OS Architecture Service pack

/ SP1 SP2 SP3
Windows XP x86   

x64   

Windows Vista x86    
x64    

Windows 7 x86   
x64   

Windows 8 x86   
x64  

Windows 8.1 x64  

Windows 2003 x86    
x64   

Windows 2008 x86   
x64   

Windows 2008 R2 x64   

Windows Server 2012 x64  
Windows Server 2012 R2 x64  

Figure 2.8: Twitter conversation about the
need for speci�c Volatility pro-
�les for every variant of the
Linux kernel.
By Brian Keefer (@chort0) and
Andrew Case (@attrc).

According to Ligh et al. [42, pg. 583] Volatility supports Linux kernel versions from 2.6.11
to 3.14 which adds up to at least 40 base kernels and 500 sub-versions plus countless
user compiled kernels. Such a huge amount of variation makes it infeasible to provide all
prospective Linux pro�les. Thus each time an examiner analyzes a new Linux system
they concurrently have to create a new individual pro�le. A tiny exception to this rule is a
small—but intended to grow—collection of pro�les for standard GNU/Linux installations
provided by the Volatility Foundation [72].

In general, though onerous, a Linux pro�le can be generated without great di�culty. We
run through some examples in section 3.2. What is unproblematic for Linux becomes full
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of stumbling blocks for Android. We discuss these obstacles in chapter 4.

Creating a Volatility Linux pro�le means generating a set of VTypes (structure de�nitions)
and a System.map �le for a particular kernel version and packing those together into
one .zip �le.

The VTypes can be extracted from the compiled Linux kernel �le vmlinux if available.
Else Volatility’s kernel module tools/linux/module.c has to be compiled against the
kernel to be analyzed. module.c declares members of all the types needed. Its compilation
adds the type de�nitions into the module’s debugging information. However dwarfdump —
a tool that parses the debugging information from ELF �les, such as the Linux kernel and
kernel modules—extracts the structure de�nitions the way Volatility needs them.

To locate static data structures, the System.map �le is needed because it contains the
name and address of every static data structure used in the kernel. The kernel build
process creates the �le by using nm on the compiled vmlinux �le. If a GNU/Linux
distribution comes with a System.map —and many do7—it should be found in the /boot

folder. Alternatively one can again extract it with nm out of the vmlinux �le if available.
(This is demonstrated in section 3.2.3.) Otherwise the target kernel’s compilation has to be
reproduced which produces, amongst other �les, the kernel vmlinux and the System.map .
The latter is the standard procedure for Android (cmp. chapter 4).

2.3 Android security features

Android was designed for mobile devices which in general are more exposed than sta-
tionary systems. This results in some characteristic security features separate from Linux.
A complete description of these di�erences would �ll books. Inside this section we we
will just enter into some aspects which are referred to in later sections.

2.3.1 Android partitions and boot process

Linux is well supported by LiME and Volatility. But even though Android is based on a
Linux kernel, its modi�cations and additions add up to major di�erences. Knowledge
about the Android partitions is presupposed in order to understand most rooting tech-
niques. Especially the recovery partition is mentioned in sections 2.3.3 and 4.1.3. To grasp
the idea of the partitions is also a prerequisite for understanding the boot process which
in turn is helpful in understanding what to expect in Android RAM.

The following is mainly based on Drake et al. [19], Elenkov [21] and additional details
and illustrations from blog posts [40, 45, 51]. For better context recognition, terms from
the summary �g. 2.9 appear in bold and italic typeface.

7see the Manjaro Linux experiment at section 3.2.3 for a counterexample
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Figure 2.9: Android boot process

An Android device’s persistent storage memory is subdivided into logical storage units
or divisions which are called partitions. Although the partition layout varies between
vendors and platforms, and two di�erent devices typically do not have the same partitions
or the same layout, we can say that the most common are the boot, system, data, recovery,
and cache partitions. [19]

When the device gets switched on, the Boot ROM is executed. This small piece of code
is hardwired in the CPU Application-speci�c integrated circuit (ASIC). It determines the
boot partition and loads the �rst stage of the Boot Loader from the boot media into the
internal RAM. Once this is completed the Boot ROM gives over execution to the Boot
Loader.

The Boot Loader is tailor-made for the device’s board and processor architecture. Device
manufacturers might either build on popular boot loaders like RedBoot [20], U-Boot
[17], Qi [49], or they develop own proprietary boot loaders. In particular the latter allow
Original Equipment Manufacturers (OEMs) for implementing locks and restrictions.

Boot loaders execute in stages which we won’t further di�erentiate here. During these
stages external RAM is detected and set up in order to load and execute further boot
loader code. This main Boot Loader is the �rst major program that will run and may
contain code to set up �le systems, additional memory, network support, the modem CPU,
low level memory protections, security options, etc. It also provides support for loading
recovery images or putting the phone into a “fastboot mode” (also named “download
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mode”). These allow for the writing (usually called �ashing) of raw partition images
to the device’s persistent storage, as well as booting transient system images (without
�ashing them to the device). (cmp. sections 2.3.3 and 4.1.3)
Finally, the Boot Loader will place the Linux kernel and the root �le system RAM disk
(initrd) from the boot media into the RAM as well as boot parameters for the kernel
to read when it starts up. Now a jump to the kernel is performed which then assumes
responsibility for the system.
The Linux kernel—the heart of the Android—is responsible for the process creation,
inter process communication, device drivers, �le system management etc. It �rst sets
up everything that is needed for the system to run by initializing memory, I/O areas,
interrupt controllers, setting up memory protections, caches and CPU scheduler, and
mounting the root �le system. Once the memory management units and caches have
been initialized the system will be able to use virtual memory and launch user space
processes.
The initial user space process executed on booting is the init executable located in the
root folder. It is the “grandmother” [e.g. 40, 51] or “father” [19] of all other user-space
processes because every other process in the system will be launched from this process
or one of its descendants. The init process sets up the system, mounts directories like
/sys , /dev , /proc , creates daemons and launches native service processes as described
by the start up script init.rc (e.g. rild for telephony, mtpd for VPN access, and the
Android Debug Bridge daemon (adbd)).
The very �rst service started by init is the service manager . It manages all further
services running in the system. Every service created registers itself with this process
and gets a handler. Other processes will use this information for references.
One of the �rst init processes created on boot is Zygote8. It initializes the Dalvik VM
and forks to create multiple instances to support each android process. It facilitates using
shared code across the VM instances resulting in a low memory footprint and minimal
startup time which is ideal for embedded systems. Finally Zygote starts the System Server.
The System Server is the �rst Java component to run in the system. It will start all the
Android Framework services and managers such as the battery service, Wi-Fi service,
package manager or window manager, to name but a few.
Once the services are started and running Android broadcasts an ACTION_BOOT_COMPLETED

event to all applications that have registered to receive this broadcast intent in their
manifest. When this is complete, the system is considered fully booted.
The Android package manager parses each .apk �le in /system[/vendor]/app and val-
idates its AndroidManifest.xml . The application that is con�gured as the “Home” in
its manifest—which is typically the launcher application—is launched resulting in the
appearance of the user interface (UI).

8“A zygote (from Greek ζυγωτός zygōtos "joined" or "yoked", from ζυγοῦν zygoun "to join" or "to yoke"),
is the initial cell formed when two gamete cells are joined by means of sexual reproduction. [. . . ] In
single-celled organisms, the zygote divides to produce o�spring, [. . . ]” [77]
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2.3.2 USB Debugging and ADB

In case of a running Android device being used as evidence, any form of the device’s
communication should be blocked. However, the examiner, when tending to acquire
a RAM dump with LiME, needs a communication channel to the target device: �rst to
place the LiME LKM and second to transfer the memory data to his forensic workstation.
The predestined lane for this task is leveraging the Android Debug Bridge (ADB) over an
USB cable.

Stock Android comes with this option disabled for security reasons. In order to enable
it one must manually go to the system settings, switch on the “Developer options” and
within these authorize “USB debugging”. For both actions a separate security question
has to be con�rmed. As this is direct interaction with the target’s GUI a lock screen (PIN
code, password, etc.) could get in the way very e�ciently.

It is sometimes possible to activate ADB without interacting with the GUI. In 2013 Oss-
mann and Osborn [50] presented their research on particular Android devices featuring
multiplexed wired interfaces. They demonstrated an attack against a function that per-
mits unauthorized access to the device and to user data. Though the vulnerability was
proven in general their degree of success varied signi�cantly according to the installed
software and the di�erences presented by di�erent hardware platforms.

In section 3.3.2 we leverage this kind of communication to send commands with root
permission to an Android Virtual Device. The same command fails when we send it
to a real smartphone (e.g. in section 4.1.4). The reason is stated in the error message:
“adbd cannot run as root in production builds”. In this case we circumvent the restriction
by manually opening a shell on the smartphone and entering the command here. In
section 5.2 we have to execute commands by a shell script. Hence we replace the ADB
daemon temporarily by adbd Insecure from XDA developer Chain�re [13].

2.3.3 Rooting a booted Android

As stated in section 2.2.1 LiME is a kernel module which has to be copied onto the target
device and activated with the insmod command. The latter requires root permissions.

Root is a special user on Unix-like systems sometimes referred to as the superuser because
it has the broadest permissions to access the OS and its resources. Programs that are
supposed to only be run by root belong to both the user and group root. A regular user
can temporarily gain root permissions by using the superuser command su , if he knows
the root password and if con�guration allows root to logon at all. Alternatively a single
command can be run as root by preceding the sudo command if the user is member of
the sudo group.

As a matter of security Android by default denies root permissions to the human user. In
contrary to Linux the human user has no user account by himself. In fact, every single
Android application operates under its own user ID and group. There is nothing like su
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or sudo in principle. Thus rooting means basically—albeit oversimpli�ed—to copy a su

binary to /system/xbin . There are almost always solutions to root an Android device
even if the manufacturer tries to circumvent this. Normally it takes a few days or weeks
after the release of a new device or after an OS update until the �rst rooting instructions
can be found in the Internet. Typically, a big constraint regarding this work’s focus is
that the device has to be rebooted which erases the volatile memory we want to acquire.
Even more destructive is unlocking the boot loader which is often an essential part of the
rooting recipe and by de�nition deletes even the otherwise non-volatile user data. We
demonstrate this kind of rooting step by step in section 4.1. Lossless variants are used in
sections 4.2 and 4.3.1.

Müller and Spreitzenbarth [47] developed a method to acquire volatile memory from low
temperature cooled Samsung Nexus devices. They called their method Forensic Recovery
Of Scrambled Telephones (FROST). It is based on �ashing a custom recovery image and
thus assumes an unlocked boot loader. Otherwise the boot loader has to become unlocked
during the process and all persistent data is lost. Nevertheless in this case the RAM still
can be dumped.

Drake et al. [19, chap. 3] describe in general how to theoretically root a booted Android
device. Initial temporary root access ought be gained by getting an ADB root shell
through an unpatched Android security �aw. Permanent root access can then be achieved
by placing a su binary with setuid root permissions onto the system partition. The
system partition therefore has to be remounted in read/write mode beforehand and again
remounted in read-only mode afterwards. The main challenge however at this juncture
is to have an available security �aw and a corresponding exploit at hand.

2.3.4 A second look at related work

It is interesting to check the papers mentioned in section 1.3 for statements about used
devices and how security mechanisms were handled. In general we can classify three
groups of Android devices:

• Android Virtual Devices (AVDs): No obstacles for the examiner.

• Google Nexus devices: These devices are meant for developers. They have security
mechanisms that allow for normal, everyday use. But the owner is free to deactivate
them.

• all others: Most non-Nexus devices are protected by additional mechanisms against
modi�cation.

Thing et al. [71] just mention: “The mobile phone used in our investigation was an Android
mobile phone, the Google development set”. No further modi�cations are discussed.

Sylve [65] tested LiME (or rather DMD at this time) on four di�erent phones (two HTC
EVO 4G, Droid Eris, Droid 2) and of course the Android Emulator. He mentions “[. . . ]
an investigator should only use rooting techniques that have been veri�ed to work reliably
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on a particular device and furthermore, veri�ed not to have undesirable consequences, such
as introduction of malicious code. The chosen rooting technique should also not require the
device to be reset, which will likely wipe volatile memory.” But the paper’s focus was not
on “rooting toolkit quality management”.

Ali-Gombe [2] gets root access without rebooting on two Motorola devices with a rooting
tool called “Androot” [34]. These phones were from 2009 (Motorola Droid, also known as
Milestone) and 2010 (Motorola Flipout). The paper is from 2012 which means the phones
were two years old when examined.

Macht [44] writes: “What method works depends heavily on the device and the Android
version it is powered by. [. . . ] Because of this, this thesis assumes that an unlocked, rooted
device is already available”.

Apostolopoulos et al. [10] work with DDMS on emulators and phones without mentioning
how they were prepared. Later in [78] they described using LiME but mentioned some
limitations: “1. It requires rooted devices [. . . ] 2. [. . . ] The source code of kernel is not always
available [. . . ] 3. It requires the con�g.gz �le [. . . ]”.

So we already see a trend: For research purposes it is easiest to work with a virtualized
Android device. If real hardware is needed a Google Nexus places the least obstacles
in the researcher’s path. Other hardware is applicable if there is a rooting solution
available. Most times the hardware is prepared for experiments by unlocking the boot
loader, rooting or disabling the lock screen. However, in contrast to research papers a
law enforcement forensics specialist is not free to chose a smartphone model. They have
to analyze whatever arrives in their lab.
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3

Virtual machines – Windows, Linux,

Android

Forensic memory analysis is a young discipline. The work on Volatility started in the
mid-2000s. It was originally developed for use with Windows operation systems. Around
2010 Andrew Case contributed his work on Linux memory analysis to the Volatility
project. Today Android stands out because of the discrepancy between its ubiquity and
the comparatively small amount of research for this operating system in the �eld of
memory analysis.

In this chapter we demonstrate the ease of getting started with memory analysis on
Windows. For a Linux target the same process requires additional steps and with di�erent
GNU/Linux Systems we additionally have to pay attention to divergent characteristics.
Finally Android—though based on a Linux kernel—has to be handled quite di�erently in
comparison with GNU/Linux.

For the sake of convenience this chapter’s experiments are performed with Virtual Ma-
chines. Windows and GNU/Linux are emulated with VirtualBox, Android is represented
as an AVD. Publications predominantly mention AVDs in their reviews. This allows for
e�cient research whereas working with real devices is more complex as we discuss in
chapter 4.
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3.1 VirtualBox Windows Guest

A simple demonstration shall show how e�ortless memory analysis can be when starting
out with a Windows target.

There are numerous approaches to acquiring a Windows PC’s memory. For RAM up
to 4 GB Inception [43] is a noteworthy tool for hardware-based acquisition. It exploits
PCI-based Direct Memory Access (DMA). That means it can attack over any PCI/PCIe
interfaces such as FireWire or Thunderbolt, etc. and has full read/write access to the lower
4 GB of RAM on the victim’s computer. In addition, Volatility itself supports acquisition
and interrogation of memory over FireWire [42, pg. 79].

The Volatility project lists 10 software-based acquisition tools [42, pg. 79 et seqq.]. Most
of them are commercial. We demonstrate how straightforward the process is using the
freely available MoonSols DumpIt [62] on a Windows 7 computer.

DumpIt is a single executable which can be saved to a USB �ash memory drive. Once
inserted into the target computer’s USB port, the DumpIt executable can be run. After
con�rming the Windows 7 User Account Control (UAC) security question, the program
writes a memory dump to the �ash drive. The console output is shown in �g. 3.1.

DumpIt - v1.3.2.20110401 - One click memory memory dumper

Copyright (c) 2007 - 2011, Matthieu Suiche <http://www.msuiche.net>

Copyright (c) 2010 - 2011, MoonSols <http://www.moonsols.com>

Address space size: 2147418112 bytes ( 2047 Mb)

Free space size: 171407523840 bytes ( 163466 Mb)

* Destination = \??\E:\WIN7-20141225-222255.raw

--> Are you sure you want to continue? [y/n] y

+ Processing... Success.

Figure 3.1: Windows: Moonsols DumpIt output

Volatility can analyze the data straightaway as shown in Figure �g. 3.2. Just by using this
dump Volatility can determine the Windows version and propose the correct pro�le. The
command python vol.py -info lists about 30 pro�les for the di�erent major versions
of Windows.

Though this demonstration was quite simple, it is important to note that several require-
ments had to be met:

• physical access to the computer

• access to the UI
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$ python vol.py -f ~/tmp/WIN7-20141225-222255.raw imageinfo

Volatility Foundation Volatility Framework 2.4

Determining profile based on KDBG search...

Suggested Profile(s) : Win7SP0x86, Win7SP1x86

AS Layer1 : IA32PagedMemoryPae (Kernel AS)

AS Layer2 : FileAddressSpace (/tmp/WIN7-20141225-222255.raw)

PAE type : PAE

DTB : 0x185000L

KDBG : 0x8296ec30

Number of Processors : 1

Image Type (Service Pack) : 1

KPCR for CPU 0 : 0x8296fc00

KUSER_SHARED_DATA : 0xffdf0000

Image date and time : 2014-12-25 22:23:03 UTC+0000

Image local date and time : 2014-12-25 23:23:03 +0100

$ python vol.py -f ~/tmp/WIN7-20141225-222255.raw --profile Win7SP1x86 pslist

Volatility Foundation Volatility Framework 2.4

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x84a3c630 System 4 0 88 553 -1 0 2014-12-25 20:12:19 UTC+0000

0x85ede380 smss.exe 288 4 2 29 -1 0 2014-12-25 20:12:19 UTC+0000

0x865227a0 csrss.exe 368 360 9 432 0 0 2014-12-25 20:12:20 UTC+0000

<snip>

Figure 3.2: Windows: Volatility output

• administrator privileges

The examiner requires at minimum physical access to the computer. That is the USB
port if a USB �ash drive is used as well as an input device—usually a keyboard and/or a
mouse—in order to answer the UAC question and to start the program. The latter requires
an unlocked screen and a running user account with su�cient privileges.

In case the screen was locked by a password and/or privileges had to be escalated the
beforementioned tool Inception will be useful. For privilege escalation on many Windows
systems the “NTLM re�ection attack through WebDAV” can be leveraged. Google’s
security research team disclosed this vulnerability and a proof-of-concept exploit in
March 2015 [30]. It is reported that Microsoft won’t �x this issue.

3.2 VirtualBox GNU/Linux Guests

Compared to Windows the e�ort increases with a GNU/Linux target. As Android is based
on a Linux kernel we now examine how to start the memory analysis of a GNU/Linux
system.

We demonstrate the utilization of LiME and adjacent analysis with Volatility targeting
�ve VirtualBox VMs which are each running a di�erent GNU/Linux distribution in their
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particular current release as of this writing. These are:
1. Debian 7.7 stable (64 bit)
2. Fedora 21 Workstation (64 bit)
3. Manjaro Linux Xfce 0.8.11 (64 bit)
4. openSUSE 13.2 (64 bit)
5. Ubuntu Desktop 14.04.1 LTS (64 bit)

Two major di�erences to the Windows example demonstrated before (cf. section 3.1) will
now become apparent. We used LiME for acquisition. There were almost no ready-to-use
Volatility Linux pro�les available.
The following demonstrations show that the process of making an applicable LiME
module as well as creating a Volatility pro�le might di�er signi�cantly between varying
GNU/Linux distributions. Not only the VirtualBox guest additions which at minimum
are needed to exchange terminal text and �les between host and guest conveniently are
handled in di�erent ways. But also commands, software, and �les available come in
various �avors.
LiME is able to write the acquired memory dump to either a local drive or over the
network. For these experiments the local drive option is depicted. With Android in
section 3.3 we will use the network option.
The Linux VM experiments have been processed on a Windows workstation. The Win-
dows standalone version of Volatility is used to proof the interoperability of memory
dump and Volatility pro�le.

3.2.1 Debian GNU/Linux

The �rst system looked at is a Debian 7.7 stable (64 bit). After installation from the
ISO image [68] the commands apt-get update and apt-get upgrade install all updates.
A VM snapshot S1 preserves this state for later RAM acquisition.
Debian di�ers from the subsequently described GNU/Linux distributions by providing
full VirtualBox guest additions by default. Additionally Debian and Ubuntu are the only
tested systems to come with both a compiler and the Linux header �les installed during
the standard installation process. With the command apt-get install dwarfdump the
only software which has to become installed subsequently is added. It will later be needed
for creating a Volatility pro�le.
The LiME source code from 504ENSICS Labs [1] can become compiled as illustrated in
�g. 3.3. The Volatility pro�le creation displayed in �g. 3.4 shows a Debian characteristic:
The standard installation did not come with the zip command. Instead we leverage the
7z command available in default Debian.
As we have now both the compiled LiME LKM and the Volatility pro�le, the VM state is
stored to snapshot S2. Previous state S1 which is to be examined is restored. As before
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$ unzip LiME-master.zip

<snip>

$ cd LiME-master/src

$ make

<snip>

mv lime.ko lime-3.2.0-4-amd64.ko

Figure 3.3: Debian: Compile LiME

$ unzip volatility-master.zip

<snip>

$ cd volatility-master/tools/linux/

$ make

<snip>

dwarfdump -di module.ko > module.dwarf

<snip>

$ 7z a -tzip Debian_7.7.0_3.2.0-4-amd64.zip module.dwarf /boot/System.map-‘uname -r‘

<snip>

Figure 3.4: Debian: Create Volatility pro�le

$ sudo insmod lime-3.2.0-4-amd64.ko "path=/home/foo/debian.lime format=lime"

Figure 3.5: Debian: Initiate memory acquisition

with DumpIt in the Windows example (cmp. section 3.1) the LiME module has to be
copied onto the target system. Acquisition is started with the insmod command (cmp.
�g. 3.5).

With the memory dump and the tailored pro�le Volatility can be called to analyze the
dump; for instance list the processes as shown in �g. 3.6

3.2.2 Fedora GNU/Linux

The second experiment is done on a Fedora 21 Workstation (64 bit) system [69]. The
software is ensured to be up to date by the command yum update and stored to snapshot
S1.

In order to be able to compile the LiME LKM and create the Volatility pro�le, the kernel
headers, a compiler, and dwarfdump have to be installed with yum . The VirtualBox guest
additions can be installed from the VirtualBox ISO image. To compile successfully the
guest additions require Dynamic Kernel Module Support (DKMS). The whole process
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$ sudo yum install gcc kernel-devel dkms libdwarf-tools

<snip>

$ sudo /run/media/foo/VBOXADDITIONS_4.3.10_93012/VBoxLinuxAdditions.run

<snip>

Figure 3.7: Fedora: Install dependencies

$ cd ~

$ unzip LiME-master.zip

<snip>

$ cd LiME-master/src

$ make

<snip>

mv lime.ko lime-3.17.8-300.fc21.x86_64.ko

$ cd ~

$ unzip volatility-master.zip

<snip>

$ cd volatility-master/tools/linux/

$ make

<snip>

dwarfdump -di module.ko > module.dwarf

<snip>

$ sudo zip -j Fedora_21_3.17.8-300.fc21.x86_64.zip module.dwarf

/boot/System.map-‘uname -r‘

<snip>

Figure 3.8: Fedora: Compile LiME and create Volatility pro�le

$ sudo insmod lime-3.17.8-300.fc21.x86\_64.ko "path=/home/foo/fedora.lime

format=lime"

Figure 3.9: Fedora: Initiate memory acquisition
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is shown in �g. 3.7. After these changes the VM’s state is saved to snapshot S2 for the
RAM acquisition to come.

Compiling the LiME and Volatility modules is similar to Debian (cmp. �g. 3.8). For this
and the following GNU/Linux distributions zip can be leveraged to pack the Volatility
pro�le.

The system’s state is frozen in snapshot S3. A memory dump is acquired from the
snapshot S2 (cmp. �g. 3.9).

As we can see in �g. 3.10 Volatility fails at handling the memory dump.

D:\vol>$volatility-2.4.standalone.exe --plugins=. -f fedora.lime --profile

LinuxFedora_21_3_17_8-300_fc21_x86_64x64 linux_pslist

Volatility Foundation Volatility Framework 2.4

Offset Name Pid Uid Gid

DTB Start Time

------------------ -------------------- --------------- ---------------

------ ------------------ ----------

Traceback (most recent call last):

File "<string>", line 192, in <module>

File "<string>", line 183, in main

File

"C:\volatility\build\pyinstaller\out00-PYZ.pyz\volatility.plugins.linux.common",

line 62, in execute

File "C:\volatility\build\pyinstaller\out00-PYZ.pyz\volatility.commands",

line 127, in execute

File

"C:\volatility\build\pyinstaller\out00-PYZ.pyz\volatility.plugins.linux.pslist",

line 93, in render_text

File

"C:\volatility\build\pyinstaller\out00-PYZ.pyz\volatility.plugins.overlays.linux.linux",

line 1545, in get_task_start_time

File "C:\volatility\build\pyinstaller\out00-PYZ.pyz\volatility.obj", line

254, in __getattr__

AttributeError: ’long’ object has no attribute ’tv_sec’

Figure 3.10: Fedora: List processes with Volatility fails

We were not able to solve this issue and submitted a bug report to the Volatility project
[76]. At the time of this writing the issue was being examined but had not been solved
yet.

3.2.3 Manjaro GNU/Linux

With the Manjaro Linux Xfce 0.8.11 (64 bit) distribution [46] we face another package
manager: The system is updated with pacman -Syu . Again we save this state with a
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snapshot S1. VirtualBox host and guest can share their clipboards by default. But for
�le exchanges initiated from the Windows host by the VBoxManage.exe command, on
the guest VBoxService must be started. For the modules to compile and to create the
Volatility pro�le the kernel headers and dwarfdump have to be installed. (cmp. �g. 3.11)

$ sudo pacman -S linux316-headers libdwarf

<snip>

$ sudo VBoxService

Figure 3.11: Manjaro: Install dependencies

$ cd ~

$ unzip LiME-master.zip

<snip>

$ cd LiME-master/src

$ make

<snip>

mv lime.ko lime-3.16.7.3-1-MANJARO.ko

$ cd ~

$ unzip volatility-master.zip

<snip>

$ cd volatility-master/tools/linux/

$ make

<snip>

dwarfdump -di module.ko > module.dwarf

<snip>

$ nm /usr/lib/modules/3.16.7.3-1-MANJARO/build/vmlinux > System.map-‘uname -r‘

$ zip -j Manjaro_Xfce_0.8.11_3.16.7.3-1-MANJARO.zip module.dwarf System.map-‘uname

-r‘

<snip>

Figure 3.12: Manjaro: Compile LiME and create Volatility pro�le

$ sudo insmod lime-3.16.7.3-1-MANJARO.ko "path=/home/foo/manjaro.lime format=lime"

Figure 3.13: Manjaro: Initiate memory acquisition

Compilation of the LiME and Volatility modules works as expected. Only when it becomes
time to pack the Volatility pro�le does the missing System.map �le in the /boot folder
need to be addressed. This is because Manjaro standard kernels don’t come with this �le.
Instead the required symbol table can be extracted from the vmlinux �le by leveraging
the nm command. (cmp. �g. 3.12)
While the memory acquisition performs without further issues (see command in �g. 3.13),
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Volatility’s linux_pslist module presents an unexpected output. Though processes are
listed, there is no information in the “Start Time” column. (cmp. �g. 3.14). This is a bug
in Volatility at the time of this writing and the following two experiments show the same
behavior. This very special bug and a solution will be discussed later in section 3.2.7.

3.2.4 OpenSUSE GNU/Linux

The fourth GNU/Linux distribution in this chapter is openSUSE 13.2 (64 bit). It presents
the fourth package management engine named ZYpp. User interfaces are zypper on the
command line and YaST as the graphical frontend. The system is updated to an up-to-date
software level with the command zypper update . This state gets locked in snapshot S1.

$ sudo VBoxService

<snip>

$ sudo zypper install gcc kernel-desktop-devel-3.16.7-7.1 libdwarf-tools

<snip>

Figure 3.15: OpenSUSE: Install dependencies

$ cd ~

$ unzip LiME-master.zip

<snip>

$ cd LiME-master/src

$ make

<snip>

mv lime.ko lime-3.16.7-7-desktop.ko

$ cd ~

$ unzip volatility-master.zip

<snip>

$ cd volatility-master/tools/linux/

$ make

<snip>

dwarfdump -di module.ko > module.dwarf

<snip>

$ zip -j OpenSUSE_13.2_3.16.7-7-desktop.zip module.dwarf /boot/System.map-‘uname -r‘

<snip>

Figure 3.16: OpenSUSE: Compile LiME and create Volatility pro�le

As with Manjaro Linux the full VirtualBox guest additions features have to be enabled
with the VBoxService command. For the steps to come the compiler, kernel headers, and
dwarfdump have to be installed. (cmp. �g. 3.15) With these requirements ful�lled there
are no more hurdles to take in order to prepare LiME and Volatility (cmp. �g. 3.16) and
save the system’s state to snapshot S2.
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$ sudo insmod lime-3.16.7-7-desktop.ko "path=/home/foo/opensuse.lime

format=lime"

Figure 3.17: OpenSUSE: Initiate memory acquisition

Memory acquisition of the snapshot S1 itself does not di�er from the other experiments
(cmp. �g. 3.17).

As mentioned before, LiME is able to write the acquired memory dump not only to a local
drive but also over TCP. Although the Linux experiments describe only the former the
latter was also tested. For the network option LiME creates a listening socket on the target
system and starts acquisition as soon as the network connection has been established from
the examiner’s workstation. In the special case of openSUSE the SUSE �rewall arrives
activated in the standard installation and blocks any incoming requests by default. Thus
a port has to be opened with an appropriate entry in /etc/sysconfig/SuSEfirewall2

before the acquisition can begin. One way to achieve this is using the command line is
shown in �g. 3.18. However, both modifying the �rewall rules and writing a dump to disk
is negatively a�ecting the integrity of the forensic analysis. The examiner has to decide
whether it is more important to make sure that no network bu�ers are overwritten or to
avoid changes on disk.

$ sed -i "s|\(FW_SERVICES_EXT_TCP=\".*\)\"|\1 4444\"|;s|\" |\"|"

/etc/sysconfig/SuSEfirewall2

$ /sbin/SuSEfirewall2 start

Figure 3.18: OpenSUSE: Open port 4444 in SUSE Firewall

3.2.5 Ubuntu GNU/Linux

The �nal tested distribution is Ubuntu Desktop 14.04.1 LTS (64 bit). Compared with the
Debian experiment (cmp. section 3.2.1) only three di�erences were observed:

• VirtualBox guest additions have to be installed

• the zip command is available

• Volatility’s linux_pslist plugin does not show start times

3.2.6 Cross compilation

We have shown how to act if a development system similar to the one to be examined
is available. In an arti�cial environment with cloneable VMs or, as we did, with the
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ability to create snapshots this is easy to accomplish. But if these ideal conditions aren’t
given, cross compilation might be a solution. That is, the LiME LKM and the Volatility
debug module each compile against the target’s kernel headers instead of those of the
current system. In order to compile with the correct settings the .config �le has to be
extracted from either the target’s kernel header �les package or the appropriate kernel
image package. The same applies for the System.map �le which is needed to create the
Volatility pro�le.
Ligh et al. [42, pg. 587 et seqq.] demonstrate cross compiling by building a Volatility
pro�le for an Ubuntu kernel. At this point we show how to create a LiME LKM and a
Volatility pro�le for the above mentioned Fedora 21 VM (cmp. section 3.2.2).
Initially, this task was attempted on a Debian 7.7 (stable) system. Due to a missing
suitable compiler �nally an Ubuntu 14.04 system was used instead. However, both rely
on the Debian Advanced Packaging Tool (APT). As there is no APT package repository
available for the Fedora packages required, a web research is done and leads to the “Fedora
buildsystem” o�ering �le downloads for building kernel-3.17.8-300.fc21 [70]. The
kernel-devel RPM package contains all required �les:

• Con�guration for compiling: config-3.17.8-300.fc21.x86_64

• Symbol table used by the kernel: System.map-3.17.8-300.fc21.x86_64

• Header �les: /usr/src/kernels/3.17.8-300.fc21.x86_64

Basically RPM package payloads come as cpio archives [55]. One gains access by extract-
ing the payload with rpm2cpio and pipes the output stream to the cpio command for
extracting.
Before the modules can become compiled, their Makefile s have to be edited so that they
point to the Fedora header �les. The Fedora 21 kernel has been compiled with gcc version
4.9 and the con�guration includes an option -fstack-protector-strong which was
introduced with this compiler version. Our �rst choice as development system Debian 7.7
(stable) just comes with gcc-4.7 . Though Ubuntu 14.04 only has gcc-4.8 installed, it
o�ers an additional gcc-4.9 testing package for installation. The new Makefile s and
the new compiler version have to be added as parameters to the make command.
The whole process is shown in �g. 3.19.
We have shown how to compile a LiME module and a Volatility pro�le in case that there
is no copy of the target system available. Although the development system and the
target are both standard Linux systems we still had to carefully gather and assemble
all the required tools and �les. In addition, a major disadvantage of this method is the
unavailability of a test system.

3.2.7 Volatility timekeeper bug

As mentioned in sections 3.2.3 to 3.2.5 the linux_pslist plugin essentially showed
the process list but failed to include the data in the “Start Times” columns. No error
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$ # >>>> prepare Ubuntu with gcc-4.9 and dwarfdump

$ sudo add-apt-repository ppa:ubuntu-toolchain-r/test

<snip>

$ sudo apt-get update

<snip>

$ sudo apt-get install gcc-4.9 dwarfdump

<snip>

$

$ # >>>> get devel package and check existence of .config and System.map

$ mkdir ~/xc && cd $_

$ wget https://kojipkgs.fedoraproject.org/packages/kernel/3.17.8/300.fc21/x86_64/

kernel-devel-3.17.8-300.fc21.x86_64.rpm

<snip>

$ rpm2cpio kernel-devel-3.17.8-300.fc21.x86_64.rpm | cpio -t | egrep ’\.config’

./usr/src/kernels/3.17.8-300.fc21.x86_64/.config

75312 blocks

$ rpm2cpio kernel-devel-3.17.8-300.fc21.x86_64.rpm | cpio -t | grep ’System.map’

./usr/src/kernels/3.17.8-300.fc21.x86_64/System.map

75312 blocks

$ # >>>> extract RPM package

$ rpm2cpio kernel-devel-3.17.8-300.fc21.x86_64.rpm | cpio -id

<snip>

$

$ # >>>> edit LiME Makefile

$ cd ~/LiME/src/

$ cat Makefile | \

> sed ’/KVER ?=/i KDIR ?= ~/xc/usr/src/kernels/3.17.8-300.fc21.x86_64’ | \

> sed ’s/$(shell uname -r)/3.17.8-300.fc21.x86_64/’ | \

> sed ’s:/lib/modules/$(KVER)/build:$(KDIR):’ > Makefile.fedora

$ # >>>> compile LiME module

$ make CC=’/usr/bin/gcc-4.9’ -f Makefile.fedora

<snip>

mv lime.ko lime-3.17.8-300.fc21.x86_64.ko

$

$ # >>>> edit Volatility Makefile

$ cd ~/volatility/tools/linux/

$ cat Makefile | \

> sed ’s:KDIR ?= /:KDIR ?= ~/xc/usr/src/kernels/3.17.8-300.fc21.x86_64:’ | \

> sed ’s:$(KDIR)/lib/modules/$(KVER)/build:$(KDIR):’ > Makefile.fedora

$ # >>>> compile Volatility module and create profile

$ make CC=’/usr/bin/gcc-4.9’ -f Makefile.fedora

<snip>

dwarfdump -di module.ko > module.dwarf

<snip>

$ sudo zip -j Fedora_21_3.17.8-300.fc21.x86_64.zip module.dwarf

~/xc/usr/src/kernels/3.17.8-300.fc21.x86_64/System.map

<snip>

$ # >>>> result

$ find ~ -type f -name ’*fc21*’

/home/foo/LiME/src/lime-3.17.8-300.fc21.x86_64.ko

/home/foo/volatility/tools/linux/Fedora_21_3.17.8-300.fc21.x86_64.zip

Figure 3.19: Cross compile LiME and Volatility for Fedora 21
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message pointed to a reason for this unexpected behavior. Volatility commands can be
supplemented by a debug option -d . With this we accessed the following two error
messages associated with the processes:
Requested symbol wall_to_monotonic not found in module kernel

Requested symbol total_sleep_time not found in module kernel

The two mentioned symbols wall_to_monotonic and total_sleep_time are part of a C
structure timekeeper . This structure is de�ned in Volatility’s /tools/linux/module.c .
The code originates from Linux’ kernel/time/timekeeping.c until kernel version 3.6
[25]. Starting with Linux kernel version 3.7 the structure is de�ned in the header �le
/include/linux/timekeeper_internal.h [24, 26].

In consequence we forked the GitHub Volatility project, added our �ndings and submitted
a pull request (see �g. 3.20) which has been accepted by the project’s maintainers [75].

@@ -404,6 +404,11 @@ struct slab slab;

404 404 #endif

405 405

406 406 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,31)

407 +#if LINUX_VERSION_CODE >= KERNEL_VERSION(3,7,0)

408 +/* Starting with Linux kernel 3.7 the struct timekeeper is defined in

include/linux/timekeeper_internal.h */

409 +#include <linux/timekeeper_internal.h>

410 +#else

411 +/* Before Linux kernel 3.7 the struct timekeeper has to be taken from

kernel/time/timekeeping.c */

407 412

408 413 typedef u64 cycle_t;

409 414

@@ -465,6 +470,7 @@ struct timekeeper {

465 470 seqlock_t lock;

466 471 };

467 472

473 +#endif

468 474

469 475 struct timekeeper my_timekeeper;

470 476

Figure 3.20: Volatility �x in tools/linux/module.c [75]

3.2.8 Recapitulation

We showed for �ve di�erent GNU/Linux distributions how to initiate a memory analysis.
No systems was like the other. The processes had to be tailored for each target. Table 3.1
shows the characteristics we encountered.

Despite all disparities the process in general was similar and memory acquisition was
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Table 3.1: Di�erences noticed during GNU/Linux experiments
GNU/Linux Debian Fedora Manjaro OpenSUSE Ubuntu
Version 7.7 21 0.8.11 13.2 14.04.1
Kernel 3.2.0 3.17.8 3.16.7 3.16.7 3.13.0
Guest additions OK install VBoxService VBoxService install

Package APT RPM pacman Libzypp APT
manager apt-get yum pacman zypper apt-get

Dependencies
DKMS — dkms — — —
Compiler — gcc — gcc —
Headers — kernel-devel linux316-headers kernel-desktop-

devel-3.16.7-7.1
—

dwarfdump dwarfdump libdwarf-tools libdwarf libdwarf-tools dwarfdump

Firewall # # #  #

System.map /boot/... /boot/... nm vmlinux /boot/... /boot/...

zip 7z zip zip zip zip

Volatility OK error no time no time no time

always feasible. Apart from the Fedora related bug mentioned in section 3.2.2 we could
demonstrate Volatility’s successful operation.

Both the unsolved Fedora bug and the solved timekeeper bug showed that the forensic
practitioner has to know his open source tools in depth. If you are pressed for time it is
not productive to open an issue and wait for volunteers to solve it.

Compared to the previous Windows experiment this section illustrated an increased
complexity. The previously mentioned preconditions remain valid and are broadened.
On the target system we need:

• access to a terminal

• administrator privileges

Additionally we need a development system for (cross-)compiling the LiME and Volatility
modules with:

• Linux header �les of the target system

• compiler .config settings from either the target’s

– /proc/config.gz

– header �les

– kernel image package

• symbol table System.map from either the target’s

– /boot/System.map-...
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– header �les

– kernel image package

– kernel vmlinux (extracted with nm )

• speci�c version of C compiler

• dwarfdump

Now that it is clear how LiME and Volatility can be used to examine a Linux system we
will have a look at Linux kernel based Android in the following section.

3.3 Android Emulator

Most papers about Android memory forensics deal with Android Virtual Devices (AVDs).
On the one hand this is understandable as an AVD is much easier to handle than a real
device. This is on account of the many barriers we will discuss in the next chapter 4. A
caveat on the other hand is that the AVD kernel by default is not LKM enabled. Thus a
new kernel has to be compiled in order to use a LiME module on an AVD.

There used to be an easy way to dump an AVD’s memory from the command line. Sylve
et al. [64] describe how they tested LiME’s accuracy on the Gold�sh1 device with the
QEMU Monitor command pmemsave . But as of February 2014 the Android SDK Emulator
does not support QEMU Monitor anymore [7]. Instead one could compile the Android
kernel for ARM’s Versatile Express platform [12] and have it executed directly by QEMU
which will not be further discussed in this document.

In this section we create an AVD and compile a LKM enabled Gold�sh kernel with which
to run the AVD. Lastly we adapt the steps from the former Linux experiments.

All software required for this experiment such as android , emulator and adb are
included in the Android SDK Tools [8]. For convenience we add the location of these
commands to the $PATH variable. Furthermore the Android Open Source Project (AOSP)
provides the Gold�sh kernel sources [9] and the correct toolchain for cross compiling to
the ARM processor architecture [6].

3.3.1 Compile Goldfish kernel

First we create the AVD with the command android create avd (cmp. �g. 3.21) and start
it with emulator . A look at /proc/version then presents the exact point of development
of the kernel which is in this case the commit ID 9ac497f . The compiler used was
gcc version 4.7 (GCC) .

1The emulated Android hardware’s codename is “Gold�sh”.
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$ echo no | android create avd -n test -t ’android-21’ -b ’default/armeabi-v7a’ -c 2G

-f

Android 5.0.1 is a basic Android platform.

Do you wish to create a custom hardware profile [no]

Created AVD ’test’ based on Android 5.0.1, ARM (armeabi-v7a) processor, with the

following hardware config:

hw.cpu.model=cortex-a8

hw.lcd.density=240

hw.ramSize=512

hw.sdCard=yes

vm.heapSize=48

$ emulator -avd test &

$ adb shell cat /proc/version

Linux version 3.4.67-01413-g9ac497f (ghackmann@ghackmann.mtv.corp.google.com) (gcc

version 4.7 (GCC) ) #1 PREEMPT Mon Jul 7 13:02:28 PDT 2014

Figure 3.21: Create Android Virtual Device (AVD)

$ mkdir -p ~/android/test-goldfish && cd $_

$ # >>>> get the configuration file from AVD

$ adb pull /proc/config.gz

121 KB/s (10361 bytes in 0.083s)

$ gunzip config.gz

$ # >>>> get the toolchain

$ git clone

https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.7

<snip>

$ find . -name *-gcc

./arm-eabi-4.7/bin/arm-eabi-gcc

$ # >>>> get the kernel sources and checkout correct commit

$ git clone https://android.googlesource.com/kernel/goldfish.git

<snip>

$ cd ~/android/test-goldfish/goldfish

$ git checkout 9ac497f

<snip>

HEAD is now at 9ac497f... Merge branch ’android-3.4’ into android-goldfish-3.4

$ # >>>> prepare some constants

$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=~/android/test-goldfish/arm-eabi-4.7/bin/arm-eabi-

$ export CoresPlus1=$((‘grep -c processor /proc/cpuinfo‘ + 1))

$ # >>>> add loadable module support to config

$ make clean && make mrproper

$ cp ../config .config

$ make menuconfig

<snip>

Figure 3.22: AVD: Compile Gold�sh kernel (1/3)
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.config - Linux/arm 3.4.67 Kernel Configuration

------------------------------------------------------------------------------

+----------------- Linux/arm 3.4.67 Kernel Configuration -----------------+

¦ Arrow keys navigate the menu. <Enter> selects submenus --->. ¦

¦ Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, ¦

¦ <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> ¦

¦ for Search. Legend: [*] built-in [ ] excluded <M> module < > ¦

¦ +---------------------------------------------------------------------+ ¦

¦ ¦ General setup ---> ¦ ¦

¦ ¦ [*] Enable loadable module support ---> ¦ ¦

¦ ¦ -*- Enable the block layer ---> ¦ ¦

¦ ¦ System Type ---> ¦ ¦

¦ ¦ [ ] FIQ Mode Serial Debugger ¦ ¦

¦ ¦ Bus support ---> ¦ ¦

¦ ¦ Kernel Features ---> ¦ ¦

¦ ¦ Boot options ---> ¦ ¦

¦ ¦ CPU Power Management ---> ¦ ¦

¦ ¦ Floating point emulation ---> ¦ ¦

¦ +----v(+)-------------------------------------------------------------+ ¦

+-------------------------------------------------------------------------¦

¦ <Select> < Exit > < Help > ¦

+-------------------------------------------------------------------------+

.config - Linux/arm 3.4.67 Kernel Configuration

------------------------------------------------------------------------------

+-------------------- Enable loadable module support ---------------------+

¦ Arrow keys navigate the menu. <Enter> selects submenus --->. ¦

¦ Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, ¦

¦ <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help, </> ¦

¦ for Search. Legend: [*] built-in [ ] excluded <M> module < > ¦

¦ +---------------------------------------------------------------------+ ¦

¦ ¦ --- Enable loadable module support ¦ ¦

¦ ¦ [ ] Forced module loading ¦ ¦

¦ ¦ [*] Module unloading ¦ ¦

¦ ¦ [ ] Forced module unloading ¦ ¦

¦ ¦ [ ] Module versioning support ¦ ¦

¦ ¦ [ ] Source checksum for all modules ¦ ¦

¦ ¦ ¦ ¦

¦ ¦ ¦ ¦

¦ ¦ ¦ ¦

¦ ¦ ¦ ¦

¦ +---------------------------------------------------------------------+ ¦

+-------------------------------------------------------------------------¦

¦ <Select> < Exit > < Help > ¦

+-------------------------------------------------------------------------+

Figure 3.23: AVD: Compile Gold�sh kernel (2/3); make menuconfig ; the red colored options have
to be selected
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$ make modules_prepare

<snip>

$

$ # >>>> compile kernel

$ make -j$CoresPlus1

<snip>

SYSMAP System.map

<snip>

Kernel: arch/arm/boot/zImage is ready

$

$ # >>>> save System.map

$ cp System.map ../System.map

<snip>

$

$ # >>>> start AVD with new kernel

$ emulator -avd test -kernel ~/android/test-goldfish/goldfish/arch/arm/boot/zImage &

Figure 3.24: AVD: Compile Gold�sh kernel (3/3)

This is enough knowledge to compile a customized Gold�sh kernel. From the running
AVD we gather the con�guration �le. We download the toolchain [6] and kernel [9]
and checkout the correct git commit from the latter. With make menuconfig we add the
ability to load and unload modules to the .config . Then we make the new kernel and
�nally start the AVD with it. The whole process is shown in �gs. 3.22 to 3.24.

3.3.2 Compile LiME and Volatility for Goldfish kernel

Cross compiling LiME and Volatility has been done for Fedora GNU/Linux before (cmp.
�g. 3.19) but now we have not only to consider a foreign kernel but also an alternative
processor architecture. Thus each of the Makefile s has to become quite modi�ed in
order to �nd the kernel sources and the toolchain. (See listings 3.1 to 3.2.) The previously
created .config �le is used again. For creating the Volatility pro�le the System.map

generated during the kernel’s compilation process has been put aside.

Both modules can now be compiled and the Volatility pro�le created as depicted in
�g. 3.25.

For memory acquisition the LiME module is pushed over the ADB to the AVD. The
command insmod activates the module (cmp. �g. 3.26) and the dump is transfered over
TCP to the waiting forensic workstation where it can be examined with Volatility (cmp.
�g. 3.27).
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Listing 3.1: AVD/Makefile.LiME.cross

1 obj-m := lime.o

2 lime-objs := tcp.o disk.o main.o

3

4 KDIR := ~/android/test-goldfish/goldfish/

5 KVER := goldfish

6

7 PWD := $(shell pwd)

8 CCPATH := ~/android/test-goldfish/arm-eabi-4.6/bin

9

10 default:

11 $(MAKE) -C $(KDIR) M=$(PWD) modules

12 $(CCPATH)/arm-eabi-strip --strip-unneeded lime.ko

13 mv lime.ko lime-$(KVER).ko

14

15 $(MAKE) tidy

16

17 tidy:

18 rm -f *.o *.mod.c Module.symvers Module.markers modules.order \.*.o.cmd \

\.*.ko.cmd \.*.o.d

19 rm -rf \.tmp_versions

20

21 clean:

22 $(MAKE) tidy

23 rm -f *.ko

Listing 3.2: AVD/Makefile.Volatility.cross

1 obj-m += module.o

2

3 KDIR := ~/android/test-goldfish/goldfish/

4 CCPATH := ~/android/test-goldfish/arm-eabi-4.6/bin

5

6 -include version.mk

7

8 all: dwarf

9

10 dwarf: module.c

11 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-eabi- -C $(KDIR) \

CONFIG_DEBUG_INFO=y M=$(PWD) modules

12 dwarfdump -di module.ko > module.dwarf
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$ # >>>> compile LiME loadable module

$ cd ~/android/test-goldfish/

$ git clone https://github.com/504ensicsLabs/LiME.git

<snip>

$ cp Makefile.LiME.cross LiME/src/Makefile

$ cd LiME/src

$ make clean && make

<snip>

$ mv lime.ko lime-goldfish.ko

cp lime-goldfish.ko ../..

$ # >>>> create Volatility profile

$ cd ~/android/test-goldfish/

$ git clone https://github.com/volatilityfoundation/volatility.git

<snip>

$ cp Makefile.Volatility.cross volatility/tools/linux/Makefile

$ cd volatility/tools/linux/

$ make

<snip>

dwarfdump -di module.ko > module.dwarf

$ zip -j Android_Goldfish_3.4.67-01413-g9ac497f.zip module.dwarf ../../../System.map

adding: module.dwarf (deflated 90%)

adding: System.map (deflated 74%)

$ cp Android_Goldfish_3.4.67-01413-g9ac497f.zip ../../..

$ cp Android_Goldfish_3.4.67-01413-g9ac497f.zip

../../volatility/plugins/overlays/linux/

Figure 3.25: AVD: Compile LiME and create Volatility pro�le

$ cd ~/android/test-goldfish/

$ adb push lime-goldfish.ko /sdcard/lime.ko

41 KB/s (5268 bytes in 0.123s)

$ adb forward tcp:4444 tcp:4444

$ adb shell insmod /sdcard/lime.ko "path=tcp:4444 format=lime" &

$ nc localhost 4444 > goldfish.lime

$ ls -1gGh goldfish.lime

-rw-r--r-- 1 513M Feb 8 17:20 goldfish.lime

Figure 3.26: AVD: LiME TCP transfer
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$ cd ~/android/test-goldfish/volatility/

$ export

VOLATILITY_LOCATION=file:///home/hotblack/android/test-goldfish/goldfish.lime

$ export VOLATILITY_PROFILE=LinuxAndroid_Goldfish_3_4_67-01413-g9ac497fARM

$ python vol.py linux_pslist

Volatility Foundation Volatility Framework 2.4

Offset Name Pid Uid Gid DTB StartTime

0xde81bc00 init 1 0 0 0x1ebc4000 2015-02-08 16:09:23 UTC+0000

0xde81b800 kthreadd 2 0 0 -0x1 2015-02-08 16:09:23 UTC+0000

0xde81b400 ksoftirqd/0 3 0 0 -0x1 2015-02-08 16:09:23 UTC+0000

<snip>

0xd100ac00 ndroid.exchange 1104 10027 10027 0x9918000 2015-02-08 16:14:39 UTC+0000

0xc98c8000 sh 1135 0 0 0x9a28000 2015-02-08 16:15:02 UTC+0000

0xc99ff800 insmod 1137 0 0 0x9a40000 2015-02-08 16:15:02 UTC+0000

Figure 3.27: AVD: Start Volatility

3.3.3 Recapitulation

Each time a copy of volatile memory is to be acquired, there are several prerequisites
to be ful�lled. We only had a few little of them with Windows (cmp. section 3.1) and a
lot more with Linux (cmp. section 3.2). In this section with a virtualized Android the
complexity is again increased.

On the target system we require:

• access to a shell via ADB

• root privileges

• to create a LKM enabled kernel

Additionally we need an Android development system for cross compiling the LiME and
Volatility modules with:

• Android SDK Tools [8]

• Android kernel sources for the speci�c hardware platform and Android version;
for the latter the exact same git commit as stated by /proc/version is needed

• toolchain for cross compiling to the ARM processor architecture

• compiler .config settings from the target’s /proc/config.gz

• symbol table System.map generated by kernel compilation

• dwarfdump
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3.4 Conclusion

We acquired the RAM of diverse virtualized systems: one Windows 7 VM, �ve GNU/Linux
VMs, and one AVD. From these experiments we gained essentially three insights:

1. Complexity in terms of time, e�ort, and required skills increases from Windows to
Linux to Android.

2. Actual real, “live” memory capture isn’t possible for Linux kernel based systems.

3. Know your tools!

We document the rising complexity by comparing selected experiment details (see also
table 3.22).

For all cases escalated privileges were required in order to access memory. While Windows
investigators can resort to pre-built binaries, specialists for Linux based systems have to
identify the explicit version and con�guration of the target system before they can tailor
a proper LiME module. The time necessary for that defeats a “live” memory capture in
terms of “immediately after seizure”.

Table 3.2: Comparison of the VM experiments
Process step Windows GNU/Linux Android

Common aspects
Detailed knowledge about the exact OS version and con�gu-
ration is required

#   

Modules have to be compiled against the target’s kernel #   
Cross compilation always necessary # #  
Find compatible compiler version #   

Memory acquisition
Software has to be tailored for target #   
Root permissions required    

Memory analysis
Volatility pro�les have to be tailored #   

The same is valid for Volatility pro�les. Volatility comes with almost all Windows pro�les
out-of-the-box and even does a good job at proposing the correct Windows version just
from the memory dump. Due to the vast number of possible Linux kernel versions and
con�gurations the examiner has to create Volatility pro�les for every newly explored
Linux or Android kernel.

Regarding the examined virtualized systems, Android (with LKM support) only di�ers
from Linux by the imperative to cross compile. The following chapter will show how
real Android smartphones di�er in further aspects.

2See table 4.7 at the conclusion of the following chapter for an expanded version which includes Android
smartphones.
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An issue which must not be underestimated is the ability to troubleshoot the utilized OSS.
There is no right to prompt support or bug-�xes. If you work under time pressure you
have to support yourself. In fact the use of community driven software includes some
moral commitment to play a part in the respective project.
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4

Real machines – Android smartphones

The preceding chapter traced an arc from the straightforward memory analysis of a
Windows system across more complex explorations involving several GNU/Linux dis-
tributions and culminated in an analysis using an Android Virtual Device. Common to
all of these systems was that they were virtualized and employed unhardened standard
installations. Thus full root access was available by default. Now we turn towards real
Android smartphones which vary in many aspects from the previously examined virtual
Gold�sh device.

The selection process was primarily subject to budget restrictions. We used our own
phones, attractive o�ers from online auctions and classi�eds as well as a borrowed device.
The mixture (cmp. table 4.1) is interesting in that we have a balanced range of Android
versions. The age of the devices varies from an ancient 2009 HTC Magic to a cutting-edge
2015 Sony Xperia Z3. The mid�eld mainly is made up of Samsung Galaxy mainstream
devices which are still popular and widely used as of this writing.

Google’s Nexus devices are not only popular among security researchers. This is because
they are easy to unlock and root which is prior condition for many tasks. Hence we
purchased a Nexus S (see �g. 4.1) to commence our examination of real devices.

We were not able to perform a completely successful, realistic forensic live memory
research with any of our phones with respect to a) root without reboot, b) acquiring
RAM with LiME, and c) have Volatility handle the dump. Each device presented its own
obstacles which we depict in this chapter.
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Table 4.1: Tested Android devices
Manufacturer
Model Android Kernel Build

HTC
Magic 2.2.1 2.6.32.9-27237-gbe746fb FRG83D

Google (Samsung)
Nexus S (GT-I9023) 2.3.6 2.6.35.7-gf5f63ef GRK39F

4.0.4 3.0.8-g6656123 IMM76D
4.1.2 3.0.31-g5894150 JZO54K

Samsung
S III (GT-I9300) 4.3 3.0.31-2713958 JSS15J.I9300XXUGNG3

S III LTE (GT-I9305) 4.2.2 3.0.64-CM-g9c2e2bc cm_i9305-userdebug 4.2.2
CyanogenMod JDQ39E eng.jenkins.20130923
10.1.3-i9305 .145024 test-keys

S III mini (GT-I8190) 4.1.2 3.0.31-1332988 JZO54K.I8190XXAMG4

S III mini (GT-I8200N) 4.2.2 3.4.5-2818574 JDQ39.I8200NXXUAOA1

Sony Ericsson
Xperia Mini Pro (SK17i) 4.0.4 2.6.32.9-perf 4.1.B.0.587

Sony
Xperia Z3 (D6603) 4.4.4 3.4.0-perf-g1b1963a- 23.0.1.A.5.77

02930-g23f7791

Figure 4.1: Google Nexus S (Samsung GT-I9023): After three HTC de-
vices (the G1, myTouch and Nexus One) the Nexus S was
the �rst Google designed Android phone manufactured
by Samsung Electronics. It was released in December
2010 and introduced Android 2.3 “Gingerbread” to the
market. The most recent o�cial update was Android 4.1.2
“Jelly Bean” in October 2012.
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4.1 Google Nexus S: Loss of volatile memory

In this section we prepare a Google Nexus S with the latest o�cial factory image Android
4.1.2 “Jelly Bean”. While unlocking and rooting the user’s data is deleted. We did not �nd
a solution for rooting the booted phone without the need to also reboot. We acquire the
phone’s memory, demonstrate successful Volatility usage and �nally have a look at the
di�erences compared to the previous AVD experiment.
When working with Android devices one is confronted with multiple code names. The
Google Nexus S (see �g. 4.1) was manufactured by Samsung under the model name
“GT-I9023”. Google’s code name for the model is “soju” which is needed to identify
the correct factory images (cmp. section 4.1.2). As a minor consequence of Android
device diversi�cation there are also derived models “sojua” (850MHz version, i9020a),
“sojuk” (Korea version, m200), and “sojus” Nexus S 4G (d720). The device’s code name is
“crespo” which is later referenced in the recovery image (cmp. section 4.1.1). According
to the “sojus” model there is also a device with code name “crespo4g”. The mainboard
is referenced under the code name “herring”. All this information and more about the
target device can be gathered from the �le /system/build.prop (see �g. 4.2).

$ adb shell "cat /system/build.prop" | grep product

ro.product.model=Nexus S

ro.product.brand=google

ro.product.name=soju

ro.product.device=crespo

ro.product.board=herring

ro.product.cpu.abi=armeabi-v7a

ro.product.cpu.abi2=armeabi

ro.product.manufacturer=samsung

ro.product.locale.language=en

ro.product.locale.region=US

<snip>

Figure 4.2: Nexus S: build.prop

4.1.1 Unlock boot loader

Before anything like �ashing a ROM or rooting can be tackled, the device’s boot loader
(section 2.3.1) �rst needs to be unlocked.
If the Nexus S is powered o� it can be booted into boot loader mode by pressing the
volume up and power buttons simultaneously. Now the boot loader can be unlocked
with the command fastboot oem unlock 1 sent from an USB connected computer (see
�g. 4.3). A security question on the phone needs con�rmation, warning that a “factory
data reset” wipes all “personal data” from the phone (see �gs. 4.6a to 4.6c).

1 fastboot is part of the Android SDK.
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$ fastboot oem unlock

...

OKAY [ 20.267s]

finished. total time: 20.270s

Figure 4.3: Nexus S: Unlock boot loader

At this point latest it becomes obvious that this common way of rooting is not adequate
for volatile memory acquisition. First, the volatile memory is erased by switching o� the
phone. Second, all additional non-volatile personal artifacts are deleted as a matter of
principle. Nevertheless, we tread this path in order to draw the connecting line from an
AVD to real world devices.

4.1.2 Flash factory image

Google o�ers three “Factory Images ‘soju’ for Nexus S (worldwide version, i9020t and
i9023)” [28]:

2.3.6 (GRK39F) Gingerbread
4.0.4 (IMM76D) Ice Cream Sandwich
4.1.2 (JZO54K) Jelly Bean

With the phone in boot loader mode the factory image of choice can be �ashed by calling
a single included script flash-all.sh (cmp. �g. 4.4).

$ wget https://dl.google.com/dl/android/aosp/soju-jzo54k-factory-36602333.tgz

<snip>

$ tar -zxvf soju-jzo54k-factory-36602333.tgz

<snip>

$ cd soju-jzo54k

$ ./flash-all.sh

<snip>

Figure 4.4: Nexus S: Flash factory image

At this stage the phone is completely reset. The user is greeted by the Android welcome
screen and has to perform an initial con�guration such as choosing a language, timezone,
etc.

4.1.3 Flash custom recovery and root device

The goal is to install the application SuperSU by XDA developer Chain�re [15, 16]. In
order to be able to sideload SuperSU on the Nexus S a custom recovery image is needed

52



4.1. GOOGLE NEXUS S: LOSS OF VOLATILE MEMORY

because the default one (see �g. 4.6d) does not o�er this. The recovery image of choice
is Team Win Recovery Project (TWRP) [66, 67] which is installed with fastboot . With
TWRP SuperSU can be sideloaded by selecting this option on the phone and �nally
starting the installation from ADB (see �gs. 4.6e to 4.6i). A reboot completes the process.
(For the commands see �g. 4.5.)

$ wget http://techerrata.com/file/twrp2/crespo/openrecovery-twrp-2.8.5.0-crespo.img

<snip>

$ fastboot flash recovery openrecovery-twrp-2.8.5.0-crespo.img

sending ’recovery’ (5872 KB)...

OKAY [ 0.790s]

writing ’recovery’...

OKAY [ 0.908s]

finished. total time: 1.701s

$ wget http://download.chainfire.eu/696/SuperSU/UPDATE-SuperSU-v2.46.zip

<snip>

$ adb sideload UPDATE-SuperSU-v2.46.zip

Total xfer: 1.41x

Figure 4.5: Nexus S: Unlock boot loader; install TWRP2 and SuperSU

4.1.4 Compile LiME and Volatility modules

Up to now we unlocked the Nexus S boot loader, �ashed a fresh factory image to the
phone, �ashed a custom recovery image and escalated permissions to root by sideloading
SuperSU. That gives us a device with which we can test memory acquisition. A few
details about our target are disclosed at “Settings” →“About phone”:
Model number Nexus S
Android version 4.1.2
Baseband version I9023XXKI1
Kernel version 3.0.31-g5894150

android-build@vpbs1 )
#1 PREEMPT Mon Sep 10 14:10:13 PDT 2012

Build number JZO54K
The kernel version’s last seven digits 5894150 are the commit ID of the kernel sources.
We will need this later in this section to checkout the kernel from GitHub.
In order to get info from and transfer the LiME kernel module to the phone we need
to enable “USB debugging” (found in “System settings” →“Developer options”). While
this is the standard form of communication with an AVD, a real Android device forces
the user to con�rm two security questions (“Allow development settings?”, “Allow USB
debugging?”) underlining the security weakening impact of this action.
With adb shell we now can get additional information from /proc/version such as
the originally used compiler (see �g. 4.7).
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(a) Lockstate locked (b) Unlock boot loader (c) Lockstate unlocked

(d) Default recovery (e) TWRP →Advanced (f) TWRP →ADB Sideload

(g) ADB Sideload (h) Sideload start (i) Sideload complete

Figure 4.6: Nexus S: Screens while unlocking and sideloading SuperSU
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$ adb shell cat /proc/version

Linux version 3.0.31-g5894150 (android-build@vpbs1.mtv.corp.google.com) (gcc version

4.6.x-google 20120106 (prerelease) (GCC) ) #1 PREEMPT Mon Sep 10 14:10:13 PDT 2012

Figure 4.7: Nexus S: /proc/version

At this point we are missing two important �les which were available in the Linux
experiments (3.2) and which we created during Gold�sh kernel compilation for the AVD
experiment (3.3): the kernel .config and the System.map . They were both not available
in any of the Android devices we examined. Thus we are forced to compile a kernel
exactly the same way as our target device’s kernel was built in order to obtain a correct
System.map . Before we can compile the kernel, the LiME module, and the Volatility
module, we have to make the correct kernel con�guration used by the manufacturer.
The URIs to the kernel sources for all Nexus devices are listed at the AOSP [9]. In table 4.2
the Nexus S / Crespo information is shown.

Table 4.2: Nexus S: Figuring out which kernel to build (excerpt from [9])
Device Binary location Source location Build con�guration

. . . . . . . . . . . .
crespo device/samsung/crespo/kernel kernel/samsung herring_defcon�g
. . . . . . . . . . . .

Here the locations are always pre�xed by https://android.googlesource.com/. We
download the Samsung kernel tree [4] with git clone . From /proc/version we know
that a gcc version 4.6 compiler has to be used. We download the appropriate prebuilt
toolchain from the AOSP [5]. After adding the compiler to the $PATH , we check that
the version is identical to /proc/version . Finally the .config has to be built from
herring_defconfig and the kernel can be compiled. As a by-product the System.map is
created which we put aside. All these commands are shown in �g. 4.8.
Similar to the process depicted for the Gold�sh device in section 3.3.2 both the Makefile s
of LiME and Volatility have to be adapted to suit the planned cross compiling. That is, the
paths to kernel sources and toolchain have to be edited. Both Makefile s can be reviewed
in listings 4.1 to 4.2.
Compilation of both the LiME and Volatility module as well as creation of the Volatility
pro�le do not vary signi�cantly from the AVD process (3.3.2). The corresponding bash
interaction is documented in �g. 4.9.

4.1.5 RAM acquisition and analysis

When it comes to RAM acquisition the LiME module is pushed over the ADB to the
Nexus S. Now we experience a constraint due to an Android security feature we already
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$ # >>>> download prebuilt toolchain and check compiler version

$ git clone

https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6

<snip>

$ export PATH=/media/ultrabay/thesis/nexuss/arm-eabi-4.6/bin/:$PATH

$

$ arm-eabi-gcc --version

arm-eabi-gcc (GCC) 4.6.x-google 20120106 (prerelease)

<snip>

$ # >>>> download Samsung kernel sources and checkout correct commit

$ git clone https://android.googlesource.com/kernel/samsung

<snip>

$ cd samsung

$ git checkout 5894150

<snip>

$ # >>>> prepare environment variables for kernel build

$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=arm-eabi-

$ make herring_defconfig

<snip>

$ export CoresPlus1=$((‘grep -c processor /proc/cpuinfo‘ + 1))

$ make -j$CoresPlus1

<snip>

$ cp System.map ..

$ cd ..

Figure 4.8: Nexus S: Downloads for kernel compilation

Listing 4.1: NexusS/Makefile.Volatility.cross

1 obj-m += module.o

2

3 KDIR := /media/ultrabay/thesis/nexuss/samsung/

4 CCPATH := /media/ultrabay/thesis/nexuss/arm-eabi-4.6/bin

5

6 -include version.mk

7

8 all: dwarf

9

10 dwarf: module.c

11 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-eabi- -C $(KDIR) \

CONFIG_DEBUG_INFO=y M=$(PWD) modules

12 dwarfdump -di module.ko > module.dwarf
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Listing 4.2: NexusS/Makefile.LiME.cross

1 obj-m := lime.o

2 lime-objs := tcp.o disk.o main.o

3 KDIR := /media/ultrabay/thesis/nexuss/samsung/

4 KVER := NexusS

5 PWD := $(shell pwd)

6 CCPATH := /media/ultrabay/thesis/nexuss/arm-eabi-4.6/bin

7

8 default:

9 $(MAKE) -C $(KDIR) M=$(PWD) modules

10 $(CCPATH)/arm-eabi-strip --strip-unneeded lime.ko

11 mv lime.ko lime-$(KVER).ko

12

13 $(MAKE) tidy

14

15 tidy:

16 rm -f *.o *.mod.c Module.symvers Module.markers modules.order \.*.o.cmd \

\.*.ko.cmd \.*.o.d

17 rm -rf \.tmp_versions

18

19 clean:

20 $(MAKE) tidy

21 rm -f *.ko

$ # >>>> compile LiME loadable module

$ git clone https://github.com/504ensicsLabs/LiME.git

<snip>

$ cp Makefile.LiME.cross LiME/src/Makefile

$ cd LiME/src

$ make clean && make

<snip>

$ cp lime-NexusS.ko ../..

$ cd ../..

$ # >>>> create Volatility profile

$ git clone https://github.com/volatilityfoundation/volatility.git

<snip>

$ cp Makefile.Volatility.cross volatility/tools/linux/Makefile

$ cd volatility/tools/linux/

$ make

<snip>

$ zip -j Android_NexusS_3.0.31-g5894150.zip module.dwarf ../../../System.map

<snip>

$ cp Android_NexusS_3.0.31-g5894150.zip ../../..

$ cp Android_NexusS_3.0.31-g5894150.zip ../../volatility/plugins/overlays/linux/

$ cd ../../..

Figure 4.9: Nexus S: Compile LiME and create Volatility pro�le
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predicted in section 2.3.2. Other than with the AVD we cannot send the insmod command
directly from our Linux bash. We don’t have root permissions on the target. Instead
we log on to the Nexus S with adb shell and start the LiME LKM interactively on the
smartphone. Hence we need a second Linux terminal in order to control the data transfer
over TCP. See �g. 4.10 for an visualization of the two terminals’ interplay.

Terminal 1

$ adb push lime-NexusS.ko

/sdcard/lime.ko

117 KB/s (5284 bytes in 0.043s)

$ adb forward tcp:4444 tcp:4444

$ adb shell

shell@android:/ $ su

root@android:/ # insmod

/sdcard/lime.ko "path=tcp:4444

format=lime"

root@android:/ # exit

shell@android:/ $ exit

Terminal 2

$ nc localhost 4444 > NexusS.lime

$ ls -lgGh NexusS.lime

-rw-r--r-- 1 357M Mär 10 23:08

NexusS.lime

Figure 4.10: Nexus S: LiME TCP transfer

Due to the previously created pro�le Volatility is �nally able to analyze the just acquired
Nexus S memory dump. Figure 4.11 shows the execution of the linux_pslist plugin.

$ cd volatility

$ export VOLATILITY_LOCATION=file:///media/ultrabay/thesis/nexuss/NexusS.lime

$ export VOLATILITY_PROFILE=LinuxAndroid_NexusS_3_0_31-g5894150ARM

$ python vol.py linux_pslist

Volatility Foundation Volatility Framework 2.4

Offset Name Pid Uid Gid DTB StartTime

0xe7824000 init 1 0 0 0x57058000 2015-03-10 21:51:09 UTC+0000

0xe7824380 kthreadd 2 0 0 -0x1 2015-03-10 21:51:09 UTC+0000

0xe7824700 ksoftirqd/0 3 0 0 -0x1 2015-03-10 21:51:09 UTC+0000

<snip>

0xe0ec0000 kworker/0:0 1355 0 0 -0x1 2015-03-10 22:03:04 UTC+0000

0xe0ec1500 kworker/u:0 1359 0 0 -0x1 2015-03-10 22:05:27 UTC+0000

0xe0ec1c00 sh 1364 0 0 0x318fc000 2015-03-10 22:05:46 UTC+0000

Figure 4.11: Nexus S: List processes with Volatility

In order to perform a “realistic” memory acquisition we would have had to lock the boot
loader with fastboot oem lock after having �ashed the stock ROM in section 4.1.2. For
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this setup we did not �nd any way to root the phone without loss of the volatile memory.
The literature discusses FROST [31, 47] (cmp. section 2.3.3) which could be used here to
acquire the RAM. But the need to unlock the device would destroy/wipe the otherwise
persistent memory.

In the following section we will demonstrate rooting a locked smartphone without the
need to reboot.

4.2 HTC Magic: Root without loss of volatile memory

In this section we demonstrate a memory preserving rooting method.

The phone in �g. 4.12 is a HTC Magic 32B. Several versions of this smartphone were
build. We can identify the exact model by its appearance: The key characteristics are
the white color with a silver trim, the lack of a 3.5mm TRS jack for headphones and the
Vodafone logo.

Figure 4.12: HTC Magic 32B: The HTC Magic from 2009 is the suc-
cessor of the HTC Dream and hence the second commer-
cially released Android phone. Two di�erent hardware
platforms 32A and 32B exist for this phone. They vary in
the included RAM and processor as well as the need for
di�erent boot images and wireless LAN kernel modules.
The most recent o�cial update was Android 2.2.1 “Froyo”
in December 2010.

No lock screen was activated when we bought the phone. Thus we can look at “Settings”
→“About phone” for a few details about our target:

Model number HTC Magic
Android version 2.2.1
Baseband version 62.50SJ.20.17U_2.22.28.25
Kernel version 2.6.32.9-27237-gbe746fb

android-build@apa26 #1
Build number FRG83D

After enabling USB debugging we get more hardware details from /system/build.prop

while /proc/version discloses the compiler version (�g. 4.13).

Even though the Android version 2.2.1 was o�cially distributed over the air (OTA) the
HTC developer website [32] does not provide the kernel sources. Only the two preceeding
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$ adb shell "cat /system/build.prop" | grep product

ro.product.model=HTC Magic

ro.product.brand=vodafone

ro.product.name=vfpioneer

ro.product.device=sapphire

ro.product.board=sapphire

ro.product.cpu.abi=armeabi

ro.product.manufacturer=HTC

ro.product.locale.language=en

ro.product.locale.region=GB

# ro.build.product is obsolete; use ro.product.device

ro.build.product=sapphire

$ adb shell cat /proc/version

Linux version 2.6.32.9-27237-gbe746fb (android-build@apa26.mtv.corp.google.com) (gcc

version 4.4.0 (GCC) ) #1 PREEMPT Thu Jul 22 15:50:12 PDT 2010

Figure 4.13: HTC Magic: build.prop and /proc/version

Android versions are listed for the HTC Magic (cmp. table 4.3). We found rumors about
the HTC Magic 32B hardware platform being identical with the predecessor HTC Dream.
But HTC only lists kernel sources for the same Android versions as for the HTC Magic
(cmp. table 4.4). Thus we abandoned the plan to acquire a RAM dump.

Table 4.3: HTC Magic: Available kernel sources at htcdev.com
Device Carrier Region Type Kernel Android Size Description

Magic Rogers CA CRC 2.6.29 v2.1 73.4 MB
Magic N/A N/A N/A 2.6.27 v1.5 49.5 MB

Table 4.4: HTC Dream: Available kernel sources at htcdev.com
Device Carrier Region Type Kernel Android Size Description

Dream Sprint WWE MR 2.6.29 v2.1 74.0 MB
Dream Sprint WWE CRC 2.6.27 v1.5 49.7 MB
Dream N/A N/A N/A 2.6.27 v1.5 49.75 MB

Nevertheless, the HTC Magic is ideal for demonstrating Sebastian Krahmer’s “Rage
Against The Cage” exploit from August 2010 [41].

The exploit is about local root privilege escalation. Actually privileges are not really
escalated but their successful drop is prevented. The Android Debug Bridge daemon
(adbd) (cmp. section 2.3.1) starts with root privileges. After some initialization, it drops
its privileges with the setuid() method. A failure could have been recognized by the
setuid() return value but Android 2.2.1 doesn’t check this. Here is the exploit’s attack
vector.
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$ wget http://stealth.openwall.net/xSports/RageAgainstTheCage.tgz

<snip>

$ tar zxvf RageAgainstTheCage.tgz

<snip>

$ cd RageAgainstTheCage

$ adb devices

List of devices attached

HT973KF02465 device

$ adb shell

$ exit

$ adb push rageagainstthecage-arm5.bin /data/local/tmp/rageagainstthecage

97 KB/s (5392 bytes in 0.054s)

$ adb shell

$ cd /data/local/tmp

$ ./rageagainstthecage

[*] CVE-2010-EASY Android local root exploit (C) 2010 by 743C

[*] checking NPROC limit ...

[+] RLIMIT_NPROC={878, 878}

[*] Searching for adb ...

[+] Found adb as PID 64

[*] Spawning children. Dont type anything and wait for reset!

[*]

[*] If you like what we are doing you can send us PayPal money to

[*] 7-4-3-C@web.de so we can compensate time, effort and HW costs.

[*] If you are a company and feel like you profit from our work,

[*] we also accept donations > 1000 USD!

[*]

[*] adb connection will be reset. restart adb server on desktop and re-login.

$ adb kill-server

$ adb shell

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

#

Figure 4.14: HTC Magic: Gain temporary root permissions with the Rage-Against-The-Cage-
Exploit. In the beginning the ’$’ prompt indicates normal shell user privileges (red
circle). After the exploitation the ’#’ prompt indicates a root shell (green circle).

61



CHAPTER 4. REAL MACHINES – ANDROID SMARTPHONES

Android’s kernel de�nes a resource limit RLIMIT_NPROC which is the maximum number
of threads that can be created for the user ID of the calling process. The exploit forks o�
the adbd process until RLIMIT_NPROC is reached and further forking fails. Although each
fork exits immediately, they still exist as Zombie processes for a certain time and count
towards RLIMIT_NPROC .

When fork() fails, the exploit kills the ADB daemon which in turn restarts. Again
initial privileges are on root level and setuid() gets called. Now setuid() tries both
to decrement the number of root processes and to increment the count of shell user
processes. It fails because the RLIMIT_NPROC is already reached. As adbd does not check
the return value, it keeps on running with root privileges.

In practice you have to download the exploit, copy it to the phone and execute it. Then
kill the PC’s adb server and reconnect to the phone. The whole process is documented in
�g. 4.14. No reboot is needed. We did not research the consequences of the brute-force-
forking for the memory.

An important feature of Krahmer’s exploit is the availability of its source code. One can
inspect the code and compile it in order to obtain a trustworthy binary. This is not always
given as can be seen in the rooting method shown in the following section 4.3

4.3 Sony Xperia Mini Pro – Root and memory dump

With the Sony Xperia Mini Pro (see �g. 4.18) we almost can run through a complete
forensic live analysis. Only the very last step fails as Volatility does not accept the memory
dump.

4.3.1 Rooting with Eroot

As before the phone has no lock screen. We gather initial information about our target
(“Settings” →“About phone”):

Model number SK17i
Android version 4.0.4
Baseband version 8x55A-AAABQOAZM-203028G-77
Kernel version 2.6.32.9-perf

BuildUser@BuildHost #1
Build number 4.1.B.0.587

After enabling USB debugging more information is available over the ADB (see �g. 4.15).

So far a crucial code name has not yet appeared: For compiling the kernel we �nd the
compiler con�guration under the code name “smultron”.

Our internet research for rooting tools led to a recommendation of “Eroot” in the XDA
forum [48]. Eroot is a Windows binary and o�ered at several URLs. At least one of those
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$ adb shell "cat /system/build.prop" | grep product

ro.build.product=SK17i

ro.product.brand=SEMC

ro.product.name=SK17i_1249-1887

ro.product.device=SK17i

##### Values from product package metadata #####

ro.semc.product.model=SK17i

ro.semc.product.name=Xperia mini pro

ro.semc.product.device=SK17

ro.product.model=SK17i

ro.product.board=

ro.product.cpu.abi=armeabi-v7a

ro.product.cpu.abi2=armeabi

ro.product.manufacturer=Sony Ericsson

ro.product.locale.language=en

ro.product.locale.region=GB

<snip>

$ adb shell cat /proc/version

Linux version 2.6.32.9-perf (BuildUser@BuildHost) (gcc version 4.4.3 (GCC) ) #1

PREEMPT Wed Jul 4 12:32:24 2012

Figure 4.15: Sony Xperia Mini Pro: build.prop and /proc/version

we tried was de�nitely malware. In the following we describe the version which is linked
to from the XDA forum [22]. For execution we used a virtualized Windows 7.

The phone has to be prepared with two settings:
“Settings” →“Developer options” →“USB debugging” and
“Settings” →“Xperia” →“Connectivity” →“USB connection mode” →“Mass storage
mode (MSC)”.

In order to make sure we have all necessary ADB drivers in place we install Sony’s “PC
Companion” [59]. Having connected the phone over an USB cable, Eroot can be started.

Eroot presents a Chinese user interface. We show screenshots with a translation to
English in �g. 4.16. Running the software without knowing Chinese is like �ying blind
and hence not con�dence inspiring. On the one hand we have no idea how the software
works and not least of all whether it is reliable. A basic level of trust is only given by
the XDA forum’s reputation. A serious problem could arise if an expert witness had to
justify the use of such tools in court.

However after a few seconds Eroot announces successful rooting. The Xperia has a new
application logo “Superuser” (�g. 4.18). A quick test with an ADB shell validates the
expected result (�g. 4.17).
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(a) Eroot – Root has become so easy to make
Connecting the phone

Android 2.x: Settings > Applications > Development > USB
debugging
Android 4.x: Settings > Developers > USB debugging
2� Disclaimer Version V1.3.4_P6

(b) Eroot – Root has become so easy to make
SK17i

Did not get root permissions
One Key Root
2� Disclaimer Version V1.3.4_P6

(c) Eroot – Root has become so easy to make
SK17i

2� Beginning Root
2� Finding Solutions
2� Being Root
2 Root Completed
2� Disclaimer Version V1.3.4_P6

(d) Eroot – Root has become so easy to make
SK17i

Get Root Permissions Success
1. If you are unable to use permissions, restart the phone
2. If you no longer wish to use root permissions, you can lift
the root privileges
Un-Root
2� Disclaimer Version V1.3.4_P6

Figure 4.16: Sony Xperia Mini Pro: Eroot screens (with translations Chinese to English)

4.3.2 Preparing memory acquisition

Sony is exemplary in o�ering the sources for their Android smartphones, even for older
models. The appropriate �les for the Xperia Mini Pro can be downloaded from Sony’s
“Open source archive for build 4.1.B.0.587” [58].

Things are di�erent for Android prebuilt toolchains. At the beginning of this section we
learned that the gcc compiler in version 4.4.3 was used to build the kernel (see �g. 4.15).
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$ adb shell

shell@android:/ $ su

shell@android:/ # exit

shell@android:/ $ exit

Figure 4.17: Sony Xperia Mini Pro: root shell

Figure 4.18: Sony Xperia Mini Pro: Superuser installed by Eroot

The AOSP does not keep an archive of deprecated toolchains. The oldest available as of
this writing is version 4.6 which we used for the Nexus S kernel in section 4.1. If we try
to use this toolchain all we achieve are errors. Internet research led us to XDA developer
DooMLoRD’s git repository “android_prebuilt_toolchains” [18] which includes a “GCC
4.4.3 toolchain from CyanogenMod repo”.

Before the kernel can be compiled we have to �nd the correct *defconfig for the Xperia
Mini Pro. None of the code names in the kernel’s /arch/arm/configs *defconfig �les
�ts to the information we gathered so far. Another line of inquiry via the internet led
us to the “SEMC Blog” [57], an uno�cial Sony Ericsson blog. Here the “Model name:
Xperia mini pro” is linked to the “Project name: SK17i” and the “Codename: Smultron”.
The latter is used to name the *defconfig �le.

With these information the kernel can be compiled as shown in �g. 4.19.

The Makefile s for LiME and Volatility as well as compiling their modules and creating
the Volatility pro�le are straightforward. Hence we shifted the corresponding code to
the annex listings 7.1 to 7.2.
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$ # >>>> download prebuilt toolchain and check compiler version

$ git clone https://github.com/DooMLoRD/android_prebuilt_toolchains.git

<snip>

$ export PATH=/media/ultrabay/thesis/xperiamini/android_prebuilt_toolchains/arm-

eabi-4.4.3/bin/:$PATH

$ arm-eabi-gcc --version

arm-eabi-gcc (GCC) 4.4.3

<snip>

$ # >>>> download Sony kernel sources

curl -O http://dl-developer.sonymobile.com/code/copylefts/4.1.B.0.587.tar.bz2

<snip>

$ tar -xjf 4.1.B.0.587.tar.bz2

$ # >>>> prepare environment variables for kernel build

$ export ARCH=arm

$ export SUBARCH=arm

$ export CROSS_COMPILE=arm-eabi-

$ # >>>> make .config

$ cd kernel

$ find . -type f -path ’*/arm/configs*’ -name ’*smultron*’

./kernel/arch/arm/configs/semc_smultron_defconfig

$ make semc_smultron_defconfig

<snip>

$ # >>>> compile kernel

$ export CoresPlus1=$((‘grep -c processor /proc/cpuinfo‘ + 1))

$ make -j$CoresPlus1

<snip>

$ cp System.map ..

$ cd ..

Figure 4.19: Sony Xperia Mini Pro: Kernel compilation

$ cd volatility

$ export VOLATILITY_LOCATION=file:///media/ultrabay/SonyXperiaMiniPro.lime

$ export VOLATILITY_PROFILE=LinuxAndroid_SonyXperiaMiniPro_2_6_32_9-perfARM

$ python vol.py linux_pslist

Volatility Foundation Volatility Framework 2.4

Offset Name Pid Uid Gid DTB ...

---------- -------------------- --------------- --------------- ------ ---------- ...

No suitable address space mapping found

Tried to open image as:

<snip>

LimeAddressSpace: lime: need base

<snip>

LimeAddressSpace: Invalid Lime header signature

<snip>

Figure 4.20: Sony Xperia Mini Pro: List processes with Volatility fails
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4.3.3 Memory acquisition and analysis

Except for one little variation we can dump the Xperia’s memory just as before with the
Nexus S (section 4.1.5). The commonly used path for pushing the LiME module /sdcard/

is only accessible with root permission which the ADB doesn’t have (cmp. section 2.3.2).
Thus, we switch to /data/local/tmp/ in order to plant the LKM on the phone. (Due
to the similarity with the Nexus S process the corresponding shell commands can be
looked-up in the annex �g. 7.2.)

$ lime=/media/ultrabay/thesis/xperiamini/SonyXperiaMiniPro.lime

$ head=0x20

$

$ skip=0

$ xxd -s $skip -l $head $lime

0000000: 454d 694c 0100 0000 0000 2000 0000 0000 EMiL...... .....

0000010: ffff df03 0000 0000 0000 0000 0000 0000 ................

$

$ skip=$(($skip + $head - 0x00200000 + 0x03dfffff + 1))

$ xxd -s $skip -l $head $lime

3c00020: 454d 694c 0100 0000 0000 0007 0000 0000 EMiL............

3c00030: ffff ff0f 0000 0000 0000 0000 0000 0000 ................

$

$ skip=$(($skip + $head - 0x07000000 + 0x0fffffff + 1))

$ xxd -s $skip -l $head $lime

cc00040: 454d 694c 0100 0000 0000 0040 0000 0000 EMiL.......@....

cc00050: ffff ff4f 0000 0000 0000 0000 0000 0000 ...O............

$

$ skip=$(($skip + $head - 0x40000000 + 0x4fffffff + 1))

$ echo $skip

482345056

$

$ stat -c %s $lime

482345056

$

$ adb shell cat /proc/iomem | grep System

00200000-03dfffff : System RAM

07000000-0fffffff : System RAM

40000000-4fffffff : System RAM

$

Figure 4.21: Sony Xperia Mini Pro: Check memory dump segments

Finally Volatility’s plugins should be able to work with the memory dump. Contrary
to our expectations Volatility fails with an error message (�g. 4.20). Experience gained
during this work has shown that this error message can have various reasons. We �rst
ensure that the memory dump’s format can be excluded as the source of the error. As we
did before in section 2.2.1 we walk through the memory sections in the dump �le and
check the section headers. We compare the number of segments and their address ranges
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with the corresponding /proc/iomem entries on the phone. This check (see �g. 4.21)
leads us to believe that the dump’s contents are accurate.

At this point we end the investigation due to time constraints. The next step would be
a check of the Volatility pro�le. Still, the toolchain—even if compiling the kernel and
modules did not cause any concern—might di�er from the one we actually needed. We
also do not exclude the possibility that the compiler .config �le di�ers from the one
originally used by the manufacturer. Last but not least one could open an issue with the
Volatility project on github.

4.4 Sony Xperia Z3: Too new to be targeted

Sony’s Xperia Z3 is the most up-to-date smartphone we examined. The information was
copied from “Settings” →“About phone”:

Model number D6603
Android version 4.4.4
Baseband version 8974-AAAAANAZQ-00022-21
Kernel version 3.4.0-perf-g1b1963a-02930-g23f7791

BuildUser@BuildHost #1
Tue Nov 25 11:03:01 2014

Build number 23.0.1.A.5.77

The only applicable rooting tool we found was giefroot [81]. It should root a Sony Xperia
Z3 despite locked boot loader. Its description does not mention the need to reboot nor
an obligatory loss of data. But it assumes “Firmware < October 2014 (kernel and system)”
which is not the case here. With the given �rmware build 23.0.1.A.5.77 a way to get root
access might be a prior �rmware downgrade to its predecessor build 23.0.A.2.93 which of
course is not practicable as it would destroy the evidence on the device.

No further research was performed for this phone.

4.5 Identical twins

Many smartphones are manufactured in several �avours due to marketing considerations
and/or the regulatory characteristics of the target market. The fragmented Android
ecosystem (cmp. [19, chapter 1]) furthermore causes carrier speci�c developments of the
same device varying in OS version, software and sometimes appearance. As we have seen
in the previous sections, it is very important for a successful live analysis to know exactly
what device and what OS version is to be examined. Given an Android smartphone with
screen lock enabled and USB debugging disabled the only way to get certainty about the
exact model is via its physical appearance. Using the example of two (or more precisely
four) smartphone models, we show that this task is not always feasible in practice.
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4.5.1 Samsung Galaxy S III / S III LTE

Samsung’s 2012 �agship smartphone is the Galaxy S III. We know of four di�erent
versions listed in table 4.5.

Table 4.5: Samsung Galaxy S III models
Model Year Processor RAM LTE Androida

S III (GT-I9300) 2012 Quad-core 1.4 GHz Cortex-A9 1 GB # 4.3
S III Neo (GT-I9301) 2014 Quad-core 1.4 GHz Cortex-A7 1.5 GB # 4.4
S III LTE (GT-I9305) 2012 Quad-core 1.4 GHz Cortex-A9 2 GB  4.4
S III AT&T (SGH-I747M) 2012 Dual-core 1.5 GHz Krait 2 GB  4.4
a Latest o�cial Android version as of March 2015.

At least our two models S III (GT-I9300) and S III LTE (GT-I9305) appear as almost identical
twins. The only di�erence we spotted was a LTE logo on the I9305’s back cover (�g. 4.22).
As it is not uncommon for the back cover to be exchanged to personalize its appearance,
the LTE logo is not a reliable di�erentiator.

Every smartphone we dealt with disclosed its speci�c model on a label beneath the battery.
The S III labels are shown in �g. 4.23. Of course, as a practical matter, we cannot gather
knowledge about a booted smartphone by removing the battery as this would wipe out
the device’s volatile memory.

(a) S III front (b) S III LTE front (c) S III back (d) S III LTE back

Figure 4.22: Samsung S III and S III LTE: Only di�erence is the LTE logo on the back cover

Identifying a smartphone model by its appearance does not mean to know its OS version.
In the case of the above mentioned S III LTE (GT-I9305) one could expect the latest
o�cial Android version 4.4. Actually this particular phone runs with a custom ROM
CyanogenMod 10.1.3-i9305.
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(a) Samsung S III (GT-I9300) (b) Samsung S III LTE (GT-I9305)

Figure 4.23: Samsung S III and S III LTE: Labels under battery allow model identi�cation

4.5.2 Samsung Galaxy S III mini(s)

The Samsung Galaxy S III mini is an example of a visually identical twin. It was released,
amongst others, in two versions, one with and the other without Near Field Communi-
cation (NFC). First released in 2012, Samsung updated this model in 2014 with a new
chip set and a newer Android version. All four are listed in table 4.6. The external case
however has not changed at all as we can see in �g. 4.24.

Table 4.6: Samsung Galaxy S III mini models
Model Year SoC RAM NFC Androida

S III mini (GT-I8190) 2012 ST-Ericsson NovaThor U8500 1 GHz 1 GB # 4.1.2
S III mini (GT-I8190N) 2012 ST-Ericsson NovaThor U8500 1 GHz 1 GB  4.1.2
S III mini (GT-I8200) 2014 Marvell PXA986 1.2 GHz 1 GB # 4.2.2
S III mini (GT-I8200N) 2014 Marvell PXA986 1.2 GHz 1 GB  4.2.2
a Latest o�cial Android version as of March 2015.

As before with the bigger sibling S III a label hidden by the battery (�g. 4.25) o�ers
information about the speci�c model at hand.
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(a) GT-I8190 front (b) GT-I8200N front (c) GT-I8190 back (d) GT-I8200N back

Figure 4.24: Samsung S III mini (GT-I8190 and GT-I8200N): Not distinguishable from each other

(a) Samsung S III mini (GT-I8190) (b) Samsung S III mini (GT-I8200N)

Figure 4.25: Samsung S III mini (GT-I8190 and GT-I8200N): Labels under battery allow model
identi�cation
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4.6 Conclusion

4.6.1 10 steps to Android smartphone RAM analysis

We have shown the steps needed in order to successfully use LiME and Volatility for
Android smartphone forensics. These are:

• disable or sidestep lock screen

• enable USB debugging

• identify device: hardware, related code names, OS version

• �nd and download kernel sources

• �nd and download appropriate toolchain

• �gure out which compiler .config was used

• cross compile kernel, LiME, Volatility; create Volatility pro�le

• root the device while preserving RAM

• transfer LiME module using USB interface and acquire RAM

• run Volatility and be prepared to solve issues

While forensically examined an Android smartphone should be cut o� from any network
connections. In order to exchange data with the device the preferred method is via the
USB interface. This can either be done by booting the device into download mode or, on
a booted device, by enabling USB debugging. Booting would destroy the memory content
and is therefore not an option. A cold boot attack such as FROST may be possible, albeit
fraught with risk. Besides, FROST causes loss of persistent memory content if the boot
loader is locked. USB debugging is disabled by default for security reasons. In order to
enable it, interaction with the UI is needed. Thus a lock screen can successfully prevent
access to the device’s settings menu.

With access to the USB interface the examiner queries detailed information about the
device’s hardware and Android version. In addition, software for RAM acquisition can be
placed on the device using the ADB and the memory dump can be pulled over the same
channel.

Each combination of hardware and Android version requires its own speci�c LiME LKM
and Volatility pro�le. With knowledge of the hardware version and its related code
names it should be possible to �nd the kernel sources for the device’s Android version.
Although the open source license obligates the manufacturers to make the kernel sources
publicly available one cannot not �nd all the source code online. Additionally, the right
toolchain has to be found for compiling the kernel and modules. Even if the kernel
sources come with compiler con�gurations for some hardware, it cannot be excluded
that the manufacturer actually used a di�erent .config . If the sources, toolchain, and
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kernel con�guration harmonize, the kernel and the modules can be compiled and the
Volatilty pro�le created.

Execution of LKMs requires root privileges. Rooting an Android smartphone is often
possible. But most rooting solutions force at least a RAM erasing reboot if not unlocking
the boot loader which in turn erases even persistent user data. So the examiner has to
�nd a rooting method preserving the volatile memory which is not always available.
Furthermore, the solution used should be fully understood so that it can be explained in
court.

Having solved all these prerequisites, running LiME and transferring the memory dump
is straightforward.

Finally, Volatility can throw a last set of obstacles in one’s path. Linux and especially
Android analysis is not as perfected as is the case under Windows. Running Volatility on
Android dumps means that one is likely to run into issues.

4.6.2 Virtualized vs. real Android

Android Virtual Devices are very convenient for research purpose. All sources are
available and the VM can become designed as needed. When dealing with real devices,
sources and tools have to be assembled and additional security mechanisms have to be
overcome. Table 4.7 is an expanded version of table 3.2 including results of this chapter.

Table 4.7: Comparison of the VM and real phone experiments
Process step Windows GNU/Linux Android Android

VM VM AVD Smartphone

Common aspects
Detailed knowledge about the exact OS ver-
sion and con�guration is required

#    

Modules have to be compiled against the tar-
get’s kernel

#    

Cross compilation always necessary # #   
Research on kernel sources and kernel con-
�guration required

# # #  

Kernel has to be compiled in order to get
kernel symbols

# # #  

Find compatible compiler version # #   
Lock screen has to be overcome # # #  

Memory acquisition
Software has to be tailored for target #    
Root permissions required     
Rooting # # #  

Memory analysis
Volatility pro�les have to be tailored #    
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We have seen that the entire process from preparation to acquisition is likely to require
signi�cant time. Time that the forensics practitioner may not have due to his workload.
But even if he had su�cient time there is another time related issue. In the following
chapter 5 we try if the continuously changing memory content of the device under
investigation increases the time pressure for the examiner.
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Memory endurance – Evidence erosion

We have seen that it might take signi�cant time until everything is prepared to acquire a
memory dump from an Android device. During this time the device continues to operate.
This means the memory is constantly changing. The examiner will try to reduce this as
far as possible. It is standard procedure to instantly isolate the piece of evidence from
any radio communication such as cellular radio, WLAN, Bluetooth, NFC, etc. by caging
it in a Faraday bag or the like. At the same time the power supply has to be kept alive.

What is happening during this time in the device’s memory is highly dependant on the
installed and running software. In order to discover the least extent of evidence memory
erosion on a device we performed endurance tests with both an AVD and a Nexus S. The
goal was to acquire and compare several memory dumps over a period of 24 hours. The
experiment was executed three times with changing intervals of 15 minutes, one hour
and four hours.

5.1 Memory endurance test with AVD

Simulating a Faraday cage, the still operating device was disconnected from all networks.
The AVD was created by a bash script as were the dumps acquired in pre-set intervals.
(See listing 7.3 in the appendix.)

As one would expect every subsequent dump di�ered increasingly from the initial dump.
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Figure 5.1: Change of Gold�sh memory over 24 hours (view 1)

Figure 5.1 illustrates these slight but steadily accumulating changes over a period of
24 hours. During the �rst hour there are comparative big di�erences. Because it was
anticipated that the device works quite a lot right after it is �rst activated the script was
con�gured to wait 40 minutes between booting and taking the �rst dump in order to
reduce this e�ect.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

hours since �rst dump

ch
an

ge
d

by
te

si
n

%
of

du
m

p
siz

e

Memory dumps - Changes compared to previous dump

15m
1h
4h

Figure 5.2: Change of Gold�sh memory over 24 hours (view 2)

A remarkable observation is a peak of memory activity in the middle of the experiment.
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All three passes showed this peculiarity at the same time and with comparable values.
Figure 5.2 gives a di�erent view by way of a comparison of every dump with its preced-
ing dump. But what triggered this peak in memory changes? Leveraging Volatility’s
linux_pslist plugin we see about 70 processes. With the help of a short shell script
(listing 7.5) we concatenate each dump’s process lists and present the resulting data in
a chart (�g. 5.3). In order to maintain readability the process IDs have been eliminated
from the chart. Fragmentary representations of processes – namely the kworker and
flush processes – appear with multiple IDs. Processes that appear to be running all the
time generally kept their process IDs. The sole exception was creating the dump itself
which is based on the two processes sh and insmod .

Figure 5.3 reveals a reproducible change of processes unique to the examined 24 hour
experiments. Three programs stop:

• com.android.exchange

• com.android.email

• com.android.managedprovisioning

And three programs start:

• com.android.dialer

• com.android.browser

• com.android.sharedstoragebackup

Studying the mechanism behind this behavior goes beyond this scope of this thesis.
Further work could be spent on collecting such e�ects in order to include them in an
evaluation of the impact of malware.

The second remarkable observation can be read from �g. 5.2. During the 15-minutes-
pass the di�erence between two consecutive dumps is predominantly constant. A valid
forecast would be to have four times the amount of changes between two consecutive 1-
hour-dumps and 16 times the amount of changes between two consecutive 4-hour-dumps.
Instead, �g. 5.2 shows minor di�erences in the values of all three passes. If the peaks in
the chart’s middle are masked the average di�erence between two consecutive dumps is
2.3 MB, 2.9 MB, and 4.4 MB for the 15 minute, 1 hour, and 4 hour passes. We conclude
logically that the vast majority of memory activity is caused by LiME’s acquisition process,
namely the sh and insmod threads.

5.2 Memory endurance test with Nexus S

We repeated the endurance test with the Nexus S. Only the default applications are
installed in order to get a picture of the minimum expected activity. Immediately after
initializing the phone the airplane mode is switched on.
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5.2.1 Preperation

Each of the three runs begins with �ashing a fresh stock ROM and rooting as in sec-
tions 4.1.1 to 4.1.3. Half an hour before the �rst dump is taken the device is started and
initialized with the following settings:

Language: English (United States)
Insert SIM card: Skip
Select Wi-Fi: Skip
Got Google? (enter Gmail account): No
Make it Google (get Google account): Not now
Google and location: disable all
Date & time: Central European Time
This phone belongs to...: Skip

System settings →Developer options
Developer options: ON
Allow develoment settings? OK
USB debugging: Check
Allow USB debugging? OK

Press and hold On/O�-Button for 2 sec.
Airplane mode tap

As before with the AVD the memory acquisition is script driven. With the standard
AVD daemon on the phone the adb shell insmod command is not allowed. The error
message is: “adbd cannot run as root in production builds”. This constraint can be
solved by temporarily replacing the ADB daemon by adbd Insecure from XDA developer
Chain�re [13] (see also section 2.3.2). The corresponding adb install command is
shown in �g. 5.4.

$ adb install adbd-Insecure-v2.00.apk

2690 KB/s (752250 bytes in 0.273s)

pkg: /data/local/tmp/adbd-Insecure-v2.00.apk

Success

rm failed for -f, No such file or directory

Figure 5.4: Nexus S: Install “adbd Insecure”

The app “adbd Insecure” must be started manually and the option “Enable insecure adbd”
has to be checked.
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5.2.2 Results

When compared to the AVD experiment we �nd similar results. Though the Nexus S
possesses 50% more process names than its virtualized sibling (107 vs. 74), both systems’
memory changes are comparable in total numbers (�g. 5.5 and �g. 5.6). Figure 5.8 and the
lower part of �g. 5.7 document that again most processes occur in every memory dump
of each pass.
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Figure 5.5: Change of Nexus S memory over 24 hours (view 1)

0 2 4 6 8 10 12 14 16 18 20 22 24
0

1

2

3

4

5

hours since �rst dump

ch
an

ge
d

by
te

si
n

%
of

du
m

p
siz

e

Memory dumps - Changes compared to previous dump

15m
1h
4h

Figure 5.6: Change of Nexus S memory over 24 hours (view 2)

The main di�erence between the two experiments is the variance between the 15 minute,
1 hour, and 4 hour passes with respect to when the processes ran. While the AVD showed
a very homogeneous picture concerning this matter there are some process names on the
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Nexus S which do not appear in every pass. Furthermore, their start and end times are
more erratic. The most eye-catching processes are marked in �g. 5.7. Table 5.1 depicts
their varying occurrence. The whole picture is less de�nite than with the AVD.

Table 5.1: Nexus S: Occurrance of processes
Process name Occurrance

15m / 1h / 4h

com.android.inputmethod.dictionarypack    
com.android.musicfx #  
com.android.defcontainer #  
com.android.partnersetup    
com.google.android.googlequicksearchbox #  
com.google.android.talk  ##
com.google.android.music:main  ##
com.android.providers.calendar    
com.google.android.apps.maps:LocationFriendService  ##
com.google.android.calendar    
eu.chain�re.adbd    
com.android.settings   #
com.android.voicedialer #  
com.google.android.gm  ##
com.android.vending    
com.google.android.deskclock  ##
android.process.acore    

5.3 Conclusion

Both experiments indicated a moderate change in memory over time. We concluded that
the vast majority of memory activity is caused by LiME’s acquisition process. LiME as
it has been utilized is designed for one time use. That is, it is started with insmod and
ends all activities after having saved/transferred the memory dump. Hence, for each new
run we connected to the device, unloaded the module and loaded it again. The resulting
memory footprint could be reduced if the LiME module were expanded by the ability to
do multiple time triggered dumps by itself.

Furthermore, we saw self-acting processes starting and ending without a distinguishable
pattern of behavior. Some of these actions correlate temporally. We saw this very clearly
and reproducibly in the AVD experiment where it appeared that three processes were
exchanged by three other processes.

The Nexus S behaved more erratically than the virtual Gold�sh device. This proves our
statement that an AVD is more predictable and therefore more convenient to use for
research.
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Figure 5.7: Change of Nexus S memory over 24 hours (upper 75 processes)
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6

Conclusion and Future Work

Finally, we want to draw conclusions about the work which has been done during this
thesis and derive proposals for future research.

Academic research papers often look at a very speci�c question. If an answer is found
resulting from a speci�c experimental set-up the underlying assumption is considered
proven. It is beyond dispute that forensic analysis of Android volatile memory is possible
and—if successful—of potential value to law enforcement. Many papers present their
results on Android memory structures and application artifacts (cmp. 1.3, 2.3.4). We have
also created and described in detail experimental set-ups with both a virtualized and a
real but prepared Android device resulting in successful memory acquisition.

In a further step we examined whether Android smartphone live forensics with LiME and
Volatility can be said to be feasible in general. “Live” in this case has two meanings. First,
it refers to a booted device. Second, the memory should be acquired in a comparatively
short period. Here our conclusion is negative. We described the increasing complexity of
the memory acquisition process when moving from Windows to Linux to Android as
well as from virtualized to real devices. Additional complexity is added by the need to
create Volatility pro�les. Regarding Android smartphones the whole process is so slow,
that—even if successful—time e�ective acquisition is unlikely. On top of that there are
other obstacles which often force a failure (cmp. 4.6.1). Moreover, we have seen that
trying to overcome these obstacles can endanger the device’s volatile RAM and even its
persistent memory.

85



CHAPTER 6. CONCLUSION AND FUTURE WORK

There are also logistical obstacles. Kernel sources are not always available or do not
match those used by the actual phone. Perhaps the needed toolchain is deprecated and no
longer available. Or even more trivial: The required USB or charger cables are not at hand.
In addition, Android might throw other obstacles into the examiner’s path. Android
o�ers some features allowing the smartphone’s owner to secure his device and the
enclosed personal data against unauthorized access. Security aware users will take care
to not leave the boot loader unlocked, not to root their phone permanently, and keep the
developer options disabled. Additionally, they will allow Android to encrypt as much of
the persistent memory as possible, and enable the lock screen with an e�ective password.
These hurdles are hard or impossible to overcome even if one were not attempting to
preserve the device’s volatile memory.

A question we did not discuss is how to interpret the data gathered from a rooted
smartphone with no security features enabled. Could the owner, in this way, disclaim
accountability for any incriminating data found on his device?

Besides the complexity due to Android itself the reliability of tools used for the analysis
also has an impact on the success of an investigation. We noted two important facets.
On the one hand the utilized tools must be fully trustworthy. That is, they are open
source, the examiner understands their source code, and they build their own binaries.
Alternatively the tool might be certi�ed by a trusted authority. On the other hand the
tool should ideally be bug free. It is well known that software cannot be programmed
without bugs. But if it is crucial for an investigation then the technical support for the
tool must be fast and e�ective or else the forensics practitioner will need to be able to
help himself.

In summary, we addressed the following problems: fully understanding the rooting
technique (4.2), an obscure Chinese rooting windows binary (4.3.1), a problem with LiME
that was promptly solved by the developer on request (2.2.1), a bug in Volatility that we
solved ourselves (3.2.7), and a still unsolved issue in the Volatility bug tracker (3.2.2).

Since time e�ective memory acquisition is unlikely the question comes up if an acceptable
time frame can be de�ned. We developed an approach to evaluate memory erosion on an
Android smartphone but the test series were insu�cient for a �nal rating. The decay of
the original memory state is highly dependant on the active threads. We assume that
the vast majority of the observed changes are due to the repeatedly unloaded and loaded
LiME module. We therefore propose that LiME be re-designed with the ability to carry
out multiple dumps at pre-de�ned intervals.
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Appendices

7.1 Sony Xperia Mini Pro

Here are the Makefile s for LiME and Volatility as well as the commands required to
compile their modules and to create the Volatility pro�le as used in section 4.3.2.

Listing 7.1: SonyXperiaMiniPro/Makefile.Volatility.cross

1 obj-m += module.o

2

3 KDIR := /media/ultrabay/thesis/xperiamini/kernel/

4 CCPATH := \

/media/ultrabay/thesis/xperiamini/android_prebuilt_toolchains/arm-eabi-4.4.3/bin

5

6 -include version.mk

7

8 all: dwarf

9

10 dwarf: module.c

11 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-eabi- -C $(KDIR) \

CONFIG_DEBUG_INFO=y M=$(PWD) modules

12 dwarfdump -di module.ko > module.dwarf
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$ # >>>> compile LiME loadable module

$ git clone https://github.com/504ensicsLabs/LiME.git

<snip>

$ cp Makefile.LiME.cross LiME/src/Makefile

$ cd LiME/src

$ make clean && make

<snip>

$ cp lime-XperiaMiniPro.ko ../..

$ cd ../..

$ # >>>> create Volatility profile

$ git clone https://github.com/volatilityfoundation/volatility.git

<snip>

$ cp Makefile.Volatility.cross volatility/tools/linux/Makefile

$ cd volatility/tools/linux/

$ make

<snip>

$ zip -j Android_SonyXperiaMiniPro_2.6.32.9-perf.zip module.dwarf ../../../System.map

<snip>

$ cp Android_SonyXperiaMiniPro_2.6.32.9-perf.zip ../../..

$ cp Android_SonyXperiaMiniPro_2.6.32.9-perf.zip

../../volatility/plugins/overlays/linux/

$ cd ../../..

Figure 7.1: Sony Xperia Mini Pro: Compile LiME and create Volatility pro�le

Terminal 1

$ adb push lime-XperiaMiniPro.ko

/data/local/tmp/lime.ko

122 KB/s (5880 bytes in 0.046s)

$ adb forward tcp:4444 tcp:4444

$ adb shell

shell@android:/ $ su

shell@android:/ # insmod

/data/local/tmp/lime.ko

"path=tcp:4444 format=lime"

shell@android:/ # exit

shell@android:/ $ exit

Terminal 2

$ nc localhost 4444 >

SonyXperiaMiniPro.lime

$ ls -lgGh SonyXperiaMiniPro.lime

-rw-r--r-- 1 461M Apr 6 21:18

SonyXperiaMiniPro.lime

Figure 7.2: Sony Xperia Mini Pro: LiME TCP transfer
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Listing 7.2: SonyXperiaMiniPro/Makefile.LiME.cross

1 obj-m := lime.o

2 lime-objs := tcp.o disk.o main.o

3

4 KDIR := /media/ultrabay/thesis/xperiamini/kernel/

5 KVER := XperiaMiniPro

6

7 PWD := $(shell pwd)

8 CCPATH := \

/media/ultrabay/thesis/xperiamini/android_prebuilt_toolchains/arm-eabi-4.4.3/bin

9

10 default:

11 $(MAKE) -C $(KDIR) M=$(PWD) modules

12 $(CCPATH)/arm-eabi-strip --strip-unneeded lime.ko

13 mv lime.ko lime-$(KVER).ko

14

15 $(MAKE) tidy

16

17 tidy:

18 rm -f *.o *.mod.c Module.symvers Module.markers modules.order \.*.o.cmd \

\.*.ko.cmd \.*.o.d

19 rm -rf \.tmp_versions

20

21 clean:

22 $(MAKE) tidy

23 rm -f *.ko
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7.2 Memory endurance test scripts

The experiments in chapter 5 are script driven. So is the concatenation of the process
lists.

7.3 AVD: Bash script for multiple memory dumps over
time

This bash script (listing 7.3)

• creates an AVD

• starts the AVD at a de�ned time

• pushes a LiME module to the AVD

• acquires memory dumps at a de�ned time interval during a de�ned time

Chapter 5 describes the usage.

Listing 7.3: multidump-goldfish.sh

1 #!/bin/bash

2

3 # call me like

4 # |start |start | dump | start the |emu |netcat|

5 # |AVD |first | every x | last dump |port|port |

6 # | |dump | seconds | x seconds | | |

7 # | | | | after the | | |

8 # | | | | first one | | |

9 # ./multidump_goldfish.sh 183000 190000 $((15*60)) $((12*60*60)) 5560 6560

10

11 # global constants =============================================================

12 t1=$1 # time to start AVD [hhmmss] e.g. 134000

13 t2=$2 # time to start dump routines [hhmmss] e.g. 135900

14 timeInterval=$3 # time interval in sec.; e.g. 600sec = 10min

15 timeTotal=$4 # total time in sec; e.g. 12 * 60 * 60sec = 12hrs

16 portEmu=$5 # port for emulator; even integer between 5554 and 5680

17 portNc=$6 # port for netcat; e.g. 4444

18 pathKernel="${HOME}/android/test-goldfish/goldfish/arch/arm/boot/zImage"

19 pathLiME="${HOME}/android/test-goldfish/lime-goldfish.ko"

20 pathDump="/media/usb0/android/endurance"

21

22 # derived global constants -----------------------------------------------------

23 dumpsCount=$(($timeTotal / $timeInterval + 1)) # count of dumps

24 timeInterval5=$(printf "%05d" $timeInterval) # string with len 5; e.g. ’00600’

25 idAvd="AVD"$timeInterval5 # AVD name; e.g. ’AVD00600’

26 idEmu="emulator-$portEmu" # AVD serial; e.g.’emulator-5554’
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27

28 # log function =================================================================

29 log() {

30 timestamp=$(date +"%Y-%m-%d %T")

31 echo $timestamp $1

32 echo $timestamp $1 >> multidump_goldfish_$timeInterval5.log

33 }

34

35 # check if emulator has boot completed =========================================

36 emu_boot_completed() {

37 # is there a device?

38 if [ $(adb devices | grep -c "$idEmu.*device") = 1 ]; then

39 echo " waiting for boot complete"

40 # check boot complete

41 stateEmu=$(adb -s $idEmu shell getprop init.svc.bootanim)

42 if [ ${stateEmu:0:7} = "stopped" ]; then return 0; else return 1; fi

43 else

44 echo " waiting for device"

45 return 1

46 fi

47 }

48

49 # wait for time ================================================================

50 wait_until() {

51 log "wait until ${1:0:2}:${1:2:2}:${1:4:2}"

52 while [ $(date +"%H%M%S") -lt "$1" ]; do :; done

53 }

54

55 # MAIN #########################################################################

56 log "START"

57

58 log "create AVD (name = $idAvd)"

59 echo no | android create avd -n $idAvd -t ’android-21’ -b ’default/armeabi-v7a’ -c \

128M -f

60

61 wait_until $t1

62

63 log "start emulator (emu id = $idEmu)"

64 emulator -avd $idAvd -port "$portEmu" -kernel $pathKernel &

65

66 log "wait for bootcomplete and SD card to become writable"

67 until emu_boot_completed; do

68 sleep 5

69 done

70

71 log "push LiME module"

72 adb -s $idEmu push $pathLiME /sdcard/lime.ko

73

74 log "forward tcp port"

75 adb -s $idEmu forward tcp:"$portNc" tcp:"$portNc"

76
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77 wait_until $t2

78

79 log "acquire $dumpsCount memory dumps; interval = $(($timeInterval / 60))min"

80 for i in ‘seq 1 $dumpsCount‘; do

81 j=$(printf "%03d" $i) # counter for file name

82

83 while [ $(( $(date +"%s") % $timeInterval )) != 0 ]; do

84 :

85 done

86

87 log "loop $j - insmod"

88 adb -s $idEmu shell insmod /sdcard/lime.ko "path=tcp:$portNc format=lime" &

89 sleep 5

90

91 dumpfile="$pathDump/goldfish.$idAvd.$j.lime"

92 log "loop $j - netcat writes to $dumpfile"

93 nc localhost "$portNc" > $dumpfile

94 sleep 5

95 ls -gG $dumpfile

96

97 log "loop $j - rmmod"

98 adb -s $idEmu shell rmmod lime.ko

99 done

100

101 log "kill AVD"

102 adb -s $idEmu emu kill

103

104 log "END"

105 # END ##########################################################################
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7.4 Nexus S: Bash script for multiple memory dumps
over time

This bash script (listing 7.4) is a revised version of the previously used script (listing 7.3).
For the Nexus S experiment the AVD management is stripped.
Chapter 5 describes the usage.

Listing 7.4: multidump-nexuss.sh

1 #!/bin/bash

2

3 # call me like

4 # |start | dump | start the |netcat|

5 # |first | every x | last dump |port |

6 # |dump | seconds | x seconds | |

7 # | | | after the | |

8 # | | | first one | |

9 # ./multidump_nexuss.sh 205900 $((15*60)) $((24*60*60)) 4444

10

11 # global constants =============================================================

12 tstart=$1 # time to start dump routines [hhmmss] e.g. 135900

13 timeInterval=$2 # time interval in sec.; e.g. 600sec = 10min

14 timeTotal=$3 # total time in sec; e.g. 12 * 60 * 60sec = 12hrs

15 portNc=$4 # port for netcat; e.g. 4444

16 pathLiME="${HOME}/Dokumente/M18/Experiment-NexusS/lime-NexusS.ko"

17 pathDump="/media/ultrabay/thesis/dumps/endurance_nexuss_"

18

19

20 # derived global constants -----------------------------------------------------

21 dumpsCount=$(($timeTotal / $timeInterval + 1)) # count of dumps

22 timeInterval5=$(printf "%05d" $timeInterval) # string with len 5; e.g. ’00600’

23 pathDump=$pathDump$timeInterval5

24 mkdir -p $pathDump

25

26

27 # log function =================================================================

28 log() {

29 timestamp=$(date +"%Y-%m-%d %T")

30 echo $timestamp $1

31 echo $timestamp $1 >> multidump_nexuss_$timeInterval5.log

32 }

33

34

35 # wait for time ================================================================

36 wait_until() {

37 log "wait until ${1:0:2}:${1:2:2}:${1:4:2}"

38 while [ $(date +"%H%M%S") -lt "$1" ]; do :; done

39 }

40
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41

42 # MAIN #########################################################################

43 log "START"

44

45 log "push LiME module"

46 adb push $pathLiME /sdcard/lime.ko

47

48 log "forward tcp port"

49 adb forward tcp:"$portNc" tcp:"$portNc"

50

51 wait_until $tstart

52

53 log "acquire $dumpsCount memory dumps; interval = $(($timeInterval / 60))min"

54 for i in ‘seq 1 $dumpsCount‘; do

55 j=$(printf "%03d" $i) # counter for file name

56

57 while [ $(( $(date +"%s") % $timeInterval )) != 0 ]; do

58 :

59 done

60

61 log "loop $j - insmod"

62 adb shell insmod /sdcard/lime.ko "path=tcp:$portNc format=lime" &

63 sleep 5

64

65 dumpfile="$pathDump/NexusS.$j.lime"

66 log "loop $j - netcat writes to $dumpfile"

67 nc localhost "$portNc" > $dumpfile

68 sleep 5

69 ls -gG $dumpfile

70

71 log "loop $j - rmmod"

72 adb shell rmmod lime.ko

73 done

74

75 log "END"

76 # END ##########################################################################
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7.5 Bash script for merging process lists of multiple
memory dumps

This bash script (listing 7.5) runs Volatility’s linux_pslist module on every memory
dump of the previously executed endurance experiments. The process information is
complemented by the experiment’s time interval, the dump’s �le name and the point of
time during the experiment. The resulting data is ready to become analyzed, e.g. using a
pivot table or a chart like �g. 5.3.

Listing 7.5: multidump-goldfish-pslist.sh

1 cd ~/android/test-goldfish/volatility

2 export VOLATILITY_PROFILE=LinuxAndroid_Goldfish_3_4_67-01413-g9ac497fARM

3

4 outFile=~/Dokumente/M18/Experiment-Android/pslist.csv

5 rm -f $outFile

6

7 for ti in 15 60 240; do # minutes

8 tt=$( printf "%05d" $(( $ti * 60 )) )

9 dumpDir=/media/ultrabay/dumps/endurance_goldfish_"$tt"/goldfish.AVD"$tt".*.lime

10

11 i=0

12 for f in $( ls $dumpDir ); do

13 echo $f

14 fb=$(basename $f)

15 m=$(($i*$ti)) # minute

16 python vol.py -f $f linux_pslist | \

17 awk ’BEGIN{OFS=";"} /^0x/ {print "’$ti’","’$fb’","’$m’",$1,$2,$3,$4,$5,$6,$7" \

"$8" "$9;}’ >> $outFile

18 i=$(($i+1))

19 done

20 done
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7.6 Memory endurance test results

The charts 5.1, 5.2, 5.5, and 5.6 are based on the �gures of the following tables.

Table 7.1: Memory endurance test / AVD / 4 hour pass / reference is �rst dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
240 5591789 1,04
480 6158423 1,15
720 25851890 4,82
960 27913876 5,2
1200 28451937 5,3
1440 28819017 5,37

Table 7.2: Memory endurance test / AVD / 1 hour pass / reference is �rst dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
60 4662219 0,87
120 5831746 1,09
180 6633632 1,24
240 8204905 1,53
300 9330212 1,74
360 9654156 1,8
420 9763171 1,82
480 9743002 1,81
540 9963914 1,86
600 10003027 1,86
660 10348731 1,93
720 28717012 5,35
780 29145013 5,43
840 29546085 5,5
900 29757185 5,54
960 30104193 5,61
1020 30287428 5,64
1080 30172251 5,62
1140 30321891 5,65
1200 30317213 5,65
1260 30186848 5,62
1320 30315768 5,65
1380 30469253 5,68
1440 30735427 5,72
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Table 7.3: Memory endurance test / AVD / 15 minutes pass / reference is �rst dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
15 4688249 0,87
30 5433981 1,01
45 6565447 1,22
60 8984552 1,67
75 9525785 1,77
90 9684784 1,8
105 10076135 1,88
120 10150356 1,89
135 10391839 1,94
150 10562144 1,97
165 10851326 2,02
180 10950271 2,04
195 11233142 2,09
210 11605734 2,16
225 11957284 2,23
240 12653393 2,36
255 12726652 2,37
270 12511557 2,33
285 12730305 2,37
300 12834514 2,39
315 13476980 2,51
330 13579688 2,53
345 13656034 2,54
360 13620686 2,54
375 13672958 2,55
390 13770293 2,56
405 13673778 2,55
420 13856176 2,58
435 13769826 2,56
450 13646450 2,54
465 13881922 2,59
480 13902113 2,59
495 14313580 2,67
510 14166672 2,64
525 14368791 2,68
540 14198379 2,64
555 14203337 2,65
570 14269102 2,66
585 14409110 2,68
600 14166655 2,64
615 14212859 2,65
630 14353651 2,67
645 14523867 2,71
660 14711688 2,74
675 14760301 2,75
690 14498514 2,7
705 26047637 4,85
720 30714254 5,72

minute bytes changed bytes changed
total [% of total mem.]

735 30862620 5,75
750 31011767 5,78
765 30950977 5,77
780 31059067 5,79
795 31142652 5,8
810 31262810 5,82
825 31094337 5,79
840 31153569 5,8
855 31404091 5,85
870 31554122 5,88
885 31345527 5,84
900 31512295 5,87
915 31556441 5,88
930 31632693 5,89
945 31742159 5,91
960 31815720 5,93
975 31961030 5,95
990 31945512 5,95
1005 31971900 5,96
1020 32080159 5,98
1035 32010325 5,96
1050 32097087 5,98
1065 32252640 6,01
1080 32254448 6,01
1095 32212096 6
1110 32379237 6,03
1125 32303825 6,02
1140 32267818 6,01
1155 32262579 6,01
1170 32207028 6
1185 32276945 6,01
1200 32187205 6
1215 32344136 6,02
1230 32447484 6,04
1245 32511624 6,06
1260 32427936 6,04
1275 32466656 6,05
1290 32437920 6,04
1305 32517932 6,06
1320 32449890 6,04
1335 32811601 6,11
1350 32795303 6,11
1365 32773854 6,1
1380 32631051 6,08
1395 32631473 6,08
1410 32775821 6,1
1425 32820671 6,11
1440 33022698 6,15
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CHAPTER 7. APPENDICES

Table 7.4: Memory endurance test / AVD / 4 hour pass / reference is previous dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
240 5591789 1,04
480 3642042 0,68
720 22559966 4,2
960 4956342 0,92
1200 4317541 0,8
1440 3508055 0,65

Table 7.5: Memory endurance test / AVD / 1 hour pass / reference is previous dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
60 4662219 0,87
120 2781617 0,52
180 3424356 0,64
240 3925577 0,73
300 3194048 0,59
360 2834567 0,53
420 3206473 0,6
480 2818755 0,53
540 2788734 0,52
600 2570652 0,48
660 2231148 0,42
720 21285051 3,96
780 3560843 0,66
840 3081331 0,57
900 2903830 0,54
960 2993463 0,56
1020 2396729 0,45
1080 2889583 0,54
1140 2251562 0,42
1200 2504750 0,47
1260 2887732 0,54
1320 2461653 0,46
1380 2111427 0,39
1440 3026763 0,56
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7.6. MEMORY ENDURANCE TEST RESULTS

Table 7.6: Memory endurance test / AVD / 15 minutes pass / reference is previous dump
minute bytes changed bytes changed

total [% of total mem.]

0 0 0
15 4688249 0,87
30 1766839 0,33
45 2540347 0,47
60 3963329 0,74
75 2528374 0,47
90 2527385 0,47
105 2498068 0,47
120 2299376 0,43
135 2350178 0,44
150 2003077 0,37
165 2362114 0,44
180 2590071 0,48
195 2403147 0,45
210 2268839 0,42
225 2532641 0,47
240 2250767 0,42
255 2264988 0,42
270 2535136 0,47
285 1967472 0,37
300 2286962 0,43
315 2739157 0,51
330 2015281 0,38
345 2309768 0,43
360 2847534 0,53
375 2340056 0,44
390 2422620 0,45
405 2356460 0,44
420 2033034 0,38
435 2898074 0,54
450 2275792 0,42
465 2064225 0,38
480 2298719 0,43
495 2541383 0,47
510 2722764 0,51
525 2599470 0,48
540 2360064 0,44
555 1923782 0,36
570 1729440 0,32
585 1770289 0,33
600 2288814 0,43
615 1912878 0,36
630 1918256 0,36
645 2191831 0,41
660 2026017 0,38
675 2280942 0,42
690 2656804 0,49
705 15755542 2,93
720 6691815 1,25

minute bytes changed bytes changed
total [% of total mem.]

735 1908779 0,36
750 1726158 0,32
765 1838446 0,34
780 2897437 0,54
795 2418197 0,45
810 2233396 0,42
825 2322874 0,43
840 2140853 0,4
855 2192948 0,41
870 2168885 0,4
885 2156991 0,4
900 2257769 0,42
915 2398902 0,45
930 2083314 0,39
945 2223224 0,41
960 2456516 0,46
975 2216389 0,41
990 2343337 0,44
1005 2108697 0,39
1020 2020392 0,38
1035 2564042 0,48
1050 2395072 0,45
1065 2160793 0,4
1080 2319362 0,43
1095 2010525 0,37
1110 1972744 0,37
1125 2611746 0,49
1140 2194505 0,41
1155 2060524 0,38
1170 1785183 0,33
1185 1598544 0,3
1200 2014144 0,38
1215 2617637 0,49
1230 2122984 0,4
1245 2426916 0,45
1260 2217664 0,41
1275 1820832 0,34
1290 2407546 0,45
1305 2406757 0,45
1320 2389418 0,45
1335 2091833 0,39
1350 2103100 0,39
1365 2311912 0,43
1380 2486386 0,46
1395 2153748 0,4
1410 1973384 0,37
1425 2116290 0,39
1440 2372255 0,44
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