Tackling Androids Native Library Malware with Robust,
Efficient and Accurate Similarity Measures

Anatoli Kalysch

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU), Germany
anatoli.kalysch@fau.de

Mykolai Protsenko
Fraunhofer Institute for Applied
and Integrated Security
Garching, Germany

mykolai.protsenko@aisec.fraunhofer.de

ABSTRACT

Code similarity measures create a comparison metric showing to
what degree two code samples have the same functionality, e.g., to
statically detect the use of known libraries in binary code. They
are both an indispensable part of automated malware analysis, as
well as a helper for the detection of plagiarism (IP protection) and
the illegal use of open-source libraries in commercial apps. The
centroid similarity metric extracts control-flow features from binary
code and encodes them as geometric structures before comparing
them. In our paper, we propose novel improvements to the centroid
approach and apply it to the ARM architecture for the first time. We
implement our approach as a plug-in for the IDA Pro disassembler
and evaluate it regarding efficiency, accuracy and robustness on
Android. Based on a dataset of 508,745 APKs, collected from 18 third-
party app markets, we achieve a detection rate of 89% for the use of
native code libraries, with an FPR of 10.8%. To test the robustness of
our approach against the compiler version, optimization level, and
other code transformations, we obfuscate and recompile known
open-source libraries to evaluate which code transformations are
resisted. Based on our results, we discuss how code re-use can be
hidden by obfuscation and conclude with possible improvements.

KEYWORDS

Code Similarity, Android Static Analysis, Reverse Engineering

ACM Reference Format:

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller.
2018. Tackling Androids Native Library Malware with Robust, Efficient and
Accurate Similarity Measures. In ARES 2018: International Conference on
Availability, Reliability and Security, August 27-30, 2018, Hamburg, Germany.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3230833.3232828

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARES 2018, August 27-30, 2018, Hamburg, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6448-5/18/08...$15.00
https://doi.org/10.1145/3230833.3232828

Oskar Milisterfer

Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU), Germany

oskar.milisterfer@gmail.com

Tilo Miller
Friedrich-Alexander-Universitat
Erlangen-Niirnberg (FAU), Germany
tilo.mueller@cs.fau.de

1 INTRODUCTION

Androids’ ecosystem is inherently plagued by application clones
transgressing on intellectual property rights, and malicious actors
using native code to mitigate malware detection and hide payloads
more efficiently.

Application clones are motivated by economic gain. “Cloning”
in this context refers to the process of unpacking an APK and
repackaging it, including possible tampering. Since Android’s APK
building process allows for fairly easy repackaging, its code and
resources can be tampered with before repackaging. Attackers use
repackaging to redistribute popular non-free apps for a cheaper
price, but also free apps took a hit on their business model. Popular
apps financed by ad-revenue can find clones of themselves uploaded
by fraudsters with one simple modification: either the Google ads
ID is replaced or the advertisements displayed belonged to another
beneficiary. Although third-party markets are primarily affected,
Google’s Play Store, while implementing UI similarity and code
similarity detection mechanisms, still struggles with repackaged
apps [33, 37].

Particularly repackaged Android apps from third-party markets
are often extended with malicious payloads. This is evident through
reports from IT-security firms, e.g., Kasperky and McAfee, releasing
trends in malware activity and analysis [26, 29]. March 2018 saw the
release of Kasperky’s yearly Mobile malware evolution report [26],
once again reinforcing the impression of high native library usage
among all trending types of mobile malware, including rooting mal-
ware, ransomware and banking trojans. Even malware performing
relatively simple operations, such as premium SMS trojans, started
using native code to thwart their detection and prolong their time
to be in the wild [29].

These days, most Android reverse engineering and app analysis
tools still only support the analysis of Dalvik bytecode, due to
most Android apps having their core logic implemented in Java
or Kotlin [22]. The need for more efficient and accurate similarity
measures, especially for Android native code becomes apparent.

1.1 Contributions

In this paper, we present improvements to the centroid approach,
a control-flow graph based method for code similarity detection,

https://doi.org/10.1145/3230833.3232828
https://doi.org/10.1145/3230833.3232828

ARES 2018, August 27-30, 2018, Hamburg, Germany

and apply it to Android native libraries on the ARM architecture
for the first time. With our improvements, implemented as an IDA
Pro plug-in, the centroid approach gains higher efficiency while
retaining its accuracy level. In detail, our contributions are:

e We propose algorithmic improvements to the computation
of centroids reducing the space and improving runtime re-
quirements for the computation.

e The improved algorithm is evaluated with the Tigress obfus-
cator to assess its robustness against automated code transfor-
mations, such as compiler versions and optimization levels.

e Using the centroid similarity metric, we investigate to what
extent Android developers and malware authors rely on the
re-use of native libraries in a large scale study of 508,745 apps.

e Comparing our approach with other implementations for
malware detection, which are featured on VirusTotal, yields
higher accuracy values for our approach detecting nearly
twice as many malware samples.

e Our implementation is freely available at https://www1.cs.
fau.de/content/centroid as an open-source plug-in for IDA
Pro, published under the MIT license.

2 BACKGROUND

This section describes the building blocks necessary to understand
the design and implementation of our code similarity detection.
Readers familiar with domination relationship computation in CFGs
(Section 2.1), database clustering algorithms (Section 2.2), or native
C++ libraries on Android (Section 2.3) may safely skip these sections.

2.1 Domination Relationship

Domination is a principle for many code optimizations concerning
CFGs. It is deeply rooted in compiler theory and also part of the
computation of centroids. Algorithms to determine domination
operate on the basis of relationships between the nodes of a CFG.
Aho et al. describe the domination relationship between nodes,
corresponding to basic blocks in case of a CFG, as follows [1]:

Definition 2.1 (CFG Dominance Relationships). Given a directed
graph G incorporating one root, then a node x € G dominates
another node y € G if and only if every path from the root node
to y contains x. x is then called a dominator of y, and a strict
dominator if x! = y. The dominance relationship is reflexive as well
as transitive, and an immediate dominator is a dominator of a node
which is next to this node.

Building on the dominance relationship one can define natural
loops inside a CFG as edges from the dominator x of y to y as back-
ward edge. Each backward edge defines a natural loop containing
x, y and every node dominated by x and from which a path to y
exists which does not traverse x [1].

However, naive attempts at computation of dominators, e.g.,
iterative fix-point algorithms performed rather slow in practical
scenarios [10]. This prompted the creation of optimizations that re-
quire the introduction of an additional concept of semi-dominators.
Semi-dominators form ancestors from the spanning tree T of graph
G, and approximate the immediate dominators. They are formally
defined as follows [27]:

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller

Definition 2.2 (CFG Semi-Dominators). Given depth first graph
node numbers, apath P = (vg, v1, . . ., Ug_1, U) is a semi-dominator
path in the spanning tree T with v; > vy for 0 < i < k. A node’s
semi-dominator is the minimum of the starting points of all semi-
dominators paths to the node.

Semi-dominators can be calculated quickly if done in reverse
preorder because semi-dominator candidates of a node then will
include the semi-dominators of its immediate CFG-predecessors
that are part of the path to the node on the spanning tree T. On
the basis of the semi-dominators the immediate dominators are
derivable. As the semi-dominator is an ancestor of the node and
all nodes on the semi-dominator path between the two are larger
than the node, the immediate dominator must be an ancestor of
the semi-dominator or the semi-dominator. The node with the
smallest semi-dominator on the spanning tree path between the
semi-dominator excluded and the node has the same immediate
dominator as the node [27].

2.2 Clustering Algorithms

We refer to clustering as an analogy to unsupervised learning with
the objective of grouping similar items together such that intra-
cluster differences are maximized and inter-cluster differences min-
imized. The partitioning-based k-Means, k-Medoids and CLARA
variants implement heuristics to approximate solutions of corre-
sponding optimization problems for k clusters, and apply metrics
like the sum of square distances [30]. These algorithms have in
common, that the number of clusters needs to be known prior to
the analysis.

Grid-based methods like Sting and Clique [4] define clusters
based on densities of cells in a n-dimensional euclidean vector
space. Hierarchical clustering in turn [4] defines nested clusters
either through division or agglomeration. The more practical ag-
glomerative algorithms initialize each sample as a cluster and then
iteratively merge clusters with their nearest neighbor defined by a
metric like minimum (single linkage) or maximal sample distances
or centroids. This is repeated until a user-defined cluster differ-
ence threshold is exceeded and results in a tree of clusters called
dendrogram.

Clusters can also be defined as connected dense regions [4] in
accordance with a density metric. An advantage of this approach
is that it can be performed in a single database scan and detect
clusters of any shape. "Density-based"clustering algorithms include
DENCLUE and DBSCAN [15]. The latter estimates probability den-
sity functions and defines clusters by their local maxima. DBSCAN
in turn defines dense regions via core points with at least “minPts”
other samples having a distance smaller or equal epsilon. During
the main database scan each "core pointénd its neighbors define
a new cluster which is extended by solely such neighbors of each
cluster element which are also "core points". This algorithm applied
with a “minPts” parameter of 1 results in exactly one dendrogram
cut of an agglomerative single linkage clustering.

2.3 Native Libraries on Android

Android makes it quite easy to write a library’s logic in C++ and
compiling it afterwards through the use of Android Studio’s Native

https://www1.cs.fau.de/content/centroid
https://www1.cs.fau.de/content/centroid

Tackling Androids Native Library Malware with Robust,
Efficient and Accurate Similarity Measures

Development Kit (NDK) [17]. While Java libraries packaged along-
side the applications code into the classes.dex file containing the
bytecode application logic, native libraries are stored as additional
files under an architecture dependent path. At runtime the func-
tionality of native libraries can be queried for example through the
use of the Java Native Interface (JNI). Native code executes with
the same permissions as the underlying application and will adhere
to Android’s sandboxing principle.

Malware usually utilizes native code to thwart analysis. Assem-
bly offers less meta information than Dalvik bytecode, and also the
ability to tamper with the process address space comes in handy,
as it allows powerful changes to the Android runtime itself, creat-
ing major hindrances for static analysis. Cryptographic operations
enjoy computational advantages while several Android reverse
engineering tools fail disassembling native code which is widely
employed by malware, e.g., the DroidKungFu family [21].

Dynamic code loading [28] is often handled through the use of
native code as well, and allows the extraction and decryption of
network resources or disguised application resources into Dalvik
or native code at runtime. Further use cases include spy ware, e.g.,
CarrierIQ which employed adware and spyware capabilities [18]
and rooting exploits [13].

3 DESIGN AND IMPLEMENTATION

This section presents the design and implementation of our ap-
proach. We implemented the centroid approach as an IDA Pro 6.8
plug-in, building upon IDA’s automated analysis API. Our open-
source implementation is available at https://www1.cs.fau.de/content/
centroid.

3.1 Centroid Approach

Broadly speaking, the centroid approach operates on a method-level
CFG, encoding it to a 3D-CFG and then computing a mass center
inside the 3D coordinate system. A 3D-CFG is a 3D vector where
each basic block has a unique coordinate. The centroid of a method
represents an encoding of this 3D-CFG, by assigning weight to
3D-nodes and computing a mass center accordingly.

3D-CFG. Chen et al. [7] suggest using sequence, selection and
repetition to encode a classic CFG into a 3D-CFG due to their impor-
tance as basic building blocks of structured programming languages.
The x coordinate hereby encodes the sequence number, defining
the order in which a CFG node executes. Chen et al. start with
a sequence number of one for the entry node of the method and
increment the sequence number with every following basic block. If
a branch is encountered, the path with the most nodes is sequenced
first, and if two paths have the same number of nodes the number
of instructions per branch becomes relevant. The representation
of selection, or branch statements, is encoded by the y coordinate
through the number of outgoing edges. Lastly, the z coordinate rep-
resents repetition by encoding the node’s loop depth. The resulting
structure consists of nodes or basic blocks connected by directed
vectors in a 3D space.

In the 3D space an additional dimension can be introduced by
including a weight 7 for the nodes of a 3D-CFG. In the model
suggested by Chen et al. the weight corresponds to the number of

ARES 2018, August 27-30, 2018, Hamburg, Germany

statements in a node. Differing encoding schemes are possible as
well, e.g., giving additional weight to invocation instructions.

Centroid Computation Theory. Chen et al. define a centroid of a
3D-CFG as a vector ¢ =< cy, Cy,Cz, T >, with

o _ Zetpg)esp-craTpXp + 7qxXq)
.=
T

>

and ¢y and c; accordingly. The 7 coordinate is encoded as 7 =
2e(p,q)e3D-CFG(7mp + 7q) where e(p, q) refers to an edge in the 3D-
CFG, which connects the two nodes p and g. < xp, yp, zp > encodes
p’s coordinates while 7, represents the number of statements in
p.The resulting centroid of a method hence can be described as the
mass center of the methods’ 3D-CFG.

Chen et al. showed centroids to have monotonicity properties,
ensuring that equal methods are always mapped to the same cent-
roid and minor changes inside a method will only incur a minor
effect on the methods’ centroid. This is particularly useful since
centroids are sortable, thereby enabling a faster method comparison
after computation.

Centroid Similarity. The comparison of two centroids is per-
formed through the computation of the Centroid Difference Degree
(CDD), a normalized distance for each dimension, as follows [7]:

Definition 3.1 (Centroid Difference Degree). Given two centroids,
¢ and d, the CDD is computed as

5 —-d cy—d —d —
CDD(E,d):maX('cx | |y y| ez 2| e — gl)

cx+dy cy+dy cz+d; me+mg

3.2 Algorithmic Improvements

Our improvements to the centroid computation build heavily upon
dominator computations and graph optimizations, as described in
section 2.1. The computation of a node’s z coordinates requires
knowledge of the current loop depth. Compared with the x and
y coordinates, the z coordinate is the most expensive in terms of
computation resources. However, if the dominance relationships
inside a CFG are known this computation can be handled a lot more
efficiently.

Dominance Computation Algorithms. The most straightforward
approach to calculate dominance relationships is an iterative fix-
point algorithm, which is the approach of Chen et al. [7]. Those
algorithms are based on the observation that the dominator of a
node must also dominate all predecessors of the node. The domina-
tor set of the root is initialized to the root itself and the dominator
sets of all other CFG nodes are initialized to the whole set of nodes.
Thereafter iterations are performed in which each CFG node is
visited after all of its predecessor have already been processed. The
dominator set of each node is hereby set to the intersection of its
previous set and the dominator sets of all predecessors. The al-
gorithm stops when no single dominator set changes during one
iteration.

Lengauer et al. published the Lengauer-Tarjan algorithm based
on semi-dominators, which is still today considered as one of the
fastest [27]. The Lengauer-Tarjan algorithm keeps track of can-
didate semi-dominator paths via a forest which is initialized as

https://www1.cs.fau.de/content/centroid
https://www1.cs.fau.de/content/centroid

ARES 2018, August 27-30, 2018, Hamburg, Germany

Algorithm libwilhelm.so libjnlua5.1.s0 libcore.so
Original Fixpoint 310 107.3 243.6
Boost Len.-Tar. 504.3 179 188.3
Custom Len.-Tar. 2853 109.3 134.3
Cooper Fixpoint 256.6 94 115.6

Table 1: Runtimes in seconds of the centroid calculations for
the ARM 32-bit libraries 1ibwilhelm. so, 1ibjnlua5.1.so and
libcore. so with different dominance algorithms.

singletons for each node, and the node semi-dominators are initial-
ized as the nodes themselves. After a semi-dominator of a node has
been calculated, the node is linked to its parent in the spanning
tree. This allows to determine semi-dominators as the minimum
of those of the nodes returned by the fast eval(v) function on all
immediate predecessors, which returns v if v is a root in the forest
and the node with the smallest semi-dominator out of v and its
ancestors excluding the roots in the forest otherwise. Thereby path
compression is done what means that it is checked only once if
a direct ancestor in the forest has a smaller semi-dominator and
thereafter this ancestor is skipped.

The earlier described fixpoint algorithm can be accelerated via
data structures that allow for faster intersections like proposed
by Cooper et al. [10]. A single array can encode an immediate
dominator tree, wherein per-node elements hold the indices of the
respective immediate dominators and the entries are ordered by
node postorder numbers. A fast algorithm thereon first calculates
the postorder numbers and initializes the immediate dominator of
the root to itself and all others to undefined. Then it iteratively
performs intersections on the immediate dominator tree in reverse
postorder. A new immediate dominator of each node is set to the
one of an already processed predecessor, which has to exist because
of the reverse postorder processing. This new entry is intersected
with the entries of all other predecessors by a procedure with two
pointers initialized to point to the two immediate dominators of
the respective nodes [10].

To improve the runtime of the centroid computation, we decided
to compare the prominent algorithms for dominance computation
through runtime measurements. We selected three native Android
libraries with differing sizes and different amounts of functions,
namely libwilhelm.so with 164kB and 1236 functions (multime-
dia processing), 1ibjnlua5. 1. so with 46kB and 393 functions (lua
language interpreter), and libcore. so with 42kB and 46 functions
(Adobe AIR). For each library, the centroids were calculated several
times, 10k times for 1ibwilhelm. so and 15k times for the others.
This procedure was first executed with the original fixpoint algo-
rithm and then repeated with the Boost graph Lengauer-Tarjan
algorithm, a self-programmed custom version of Lengauer-Tarjan,
and Cooper’s algorithm. The mean for each algorithm and library
is shown in table 1. Overall the Cooper algorithm clearly performed
best, prompting the decision to implement a variant of the Cooper
algorithm.

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller

Coordinate Calculations. With the algorithmic improvements
introduced above, we compute the actual centroids. Aside from
the 3D-CFG computation, the 7 coordinate needs to be computed
for the centroid generation. Extending the explanation given in
Section 3.1, we compute 7’s weight depending on the instructions
inside a node and add additionally the number of call statements
inside the basic block, giving more weight to function calls. This
requires the instructions of a node to be known prior to the com-
putation of the 7 coordinate.

Our implementation is implemented as a superordinate depth
first search (DFS) [36]. In the beginning of each processing step,
the instructions of a node are counted and scanned for call instruc-
tions and the outgoing edges for this node are retrieved, which
correspond to the y coordinate.

To compute the x coordinate we perform a recursive node enu-
meration DFS, starting from the branch start nodes and ending at
already visited nodes or the branching postdominator. This enables
us to count the basic block instructions during the DFS visit to
the node, and ensures the correctness of the sequence numbers.
This increases the accuracy of our fingerprints, because the more
differing two CFG branches are, the more their node’s sequence
numbers will differ.

Once dominance relationships are established, the calculations
of 3D-CFG z coordinates (node loop depth) are possible. Those
were implemented to be done in the main DFS as work between the
visits of the successors of a node:The dominators of each node are
efficiently searched for a successor via the immediate dominator
tree array and if one successor dominates the node a backward
edge is identified. The corresponding natural loop’s nodes are then
traversed via a DFS starting at the dominated node and stopping
at the dominating successor. For each thus visited node’s adjacent
edges the 7 coordinates of the node are accumulated to the enu-
merator of the z coordinate. Two loops with the same loop head are
not considered to be nested, thus already identified loop heads are
memorized for each node. When the sums in the depth first search
are calculated, the final divisions to obtain centroids coordinates
are performed.

3.3 Implementation and Efficiency
Considerations

Computational and algorithmic improvements aside, certain run-
time considerations can be helpful in either improving the efficiency
of the system as a whole or preventing unnecessary overhead dur-
ing the initial computation of centroids or the later comparison
phase. These runtime improvements can save considerable amounts
of resources especially if applied to large datasets.

One such consideration posed the choice of database. The plug-in
supports both, the relational database MySQL and the NoSQL solu-
tion MongoDB. To find an optimal solution we compared the run-
time characteristics of both, MongoDB and MySQL, with schemes
for both designed for maximum space efficiency. At first centroid
fingerprints of 40 libraries with a total size of about 94 MB were in-
serted. Then reading data of centroids libraries with a total of about
500,000 functions was measured directly after system reboots to
avoid memory caching-based result falsifications. Results showed

Tackling Androids Native Library Malware with Robust,
Efficient and Accurate Similarity Measures

0.06

0.05

0.04

0.03

FPR for LCS 0.7

0.02

0.01

0 0.05 0.1 0.15 0.2
CDD threshold

Figure 1: LCS-based FPR pre-analysis of centroids-based li-
brary variant detection with an LCS threshold of 0.7.

significantly faster insert and read performance for MongoDB and
thus prompted the decision to build a MongoDB-based distributed
database.

Fingerprint-based Parallel Clustering. A clustering of the An-
droid native library centroids DB was intended for an analysis of
fingerprint accuracy at a large scale and to investigate detection of
malware samples in the database. After careful considerations we
decided upon DBSCAN due to its ability to detect clusters with any
shape and its more efficient calculations of one dendogram cut. The
DBSCAN algorithm was parallelized via the implementation of a
master-slave scheme, under which each thread processes preferably
similar sample subsets and memorizes other partition’s neighbors
of an own core point by putting both in a cluster-specific list.

For fast CDD derivation complying to the definition of Chen et
al.[7], the coordinate pairs were checked for dissimilarity in the
order of the presumably most differing ones. This enables contin-
uation to the next comparison function after each dissimilarity
threshold - exceeding coordinate pair. An efficient coordinate order
was derived from two million non-zero centroid comparisons on
a test set which contained unrelated libraries and library versions.
The results showed the largest differences for the 7-coordinates,
followed by the x,y, and z coordinate pairs in that order.

With respect to the applied centroids-based native library simi-
larity measurement, the following library similarity degree (LSD)

was used:
[ncsy, 2|

LSD(ncsy, nesg) = Incsal

where ncsy, 2 is the subset of the non-zero centroids set of the smaller
of the two non-zero centroids library sets (any of the two if the sets
are equal-sized) for which a similar entry in the second set exists
and ncs; is the larger of the two sets (any of the two if the sets are
equal-sized).

A fine tuning of the CDD and LSD were additionally performed.
A longest common subsequence preanalysis yielded insights, that
a CDD-threshold of 0.05 or less is needed for a FPR of less than 1%
for function similarity. Then a library version detection analysis,
which constituted a centroids accuracy investigation itself, lead to
the decision to apply the CDD/LSD threshold-pair 0.01/0.7. Con-
trary to other pairs this CDD/LSD threshold-pair had not a single

ARES 2018, August 27-30, 2018, Hamburg, Germany

false positive on unrelated native libraries greater or equal 100 func-
tions. While it performed worse at library version detection with a
detection rate of only 54.6%, the minimal FPR was deemed more
important. Other promising CDD/LSD threshold pairs included
0.01/0.5, 0.01/0.6 and 0.01/0.7 with FPRs of 0.008, 0.004 and 0.000
respectively, which classified 70.1%, 69.1% and 54.6% of the versions
as variants. Figure 1 shows the FPR of a preanalysis of different
varying CDDs for an LSD of 0.7.

Despite sophisticated tuning the clustering had to be constrained
to native library pregroups for performance reasons. Test pregroups
with certain numbers of libraries and average number of functions
were runtime-measured to derive the expected runtime by taking
into account a roughly quadratic increase by both number of sam-
ples and functions, due to the respective algorithmic properties.

4 EVALUATION

To evaluate the centroid approach for its effectiveness on native
libraries, we computed the centroid fingerprints from a large data
set of Android apps and stored them inside a database. For a graph-
ical overview of the approach refer to figure 2. The hardware setup
consisted of four workstations with a distributed MongoDB cent-
roid database. Two of the workstations were Intel Core i7 (8 cores)
with 16GB DDR3 RAM each and the other two were Intel Core i5 (4
cores) with 16 and 12GB DDR3 RAM respectively. Each workstation
featured 1.5 TB hard drives for the distributed DB and the required
software stack for similarity computations. To avoid overhead by
DBMS-based sharding, app sharding via the number of native li-
brary functions was implemented, supporting a potential cluster
pregrouping by the same key.

The app dataset was created from 18 largest third party app
stores, Androidsapkfree, anruan, apkfiles, apkmirrordownload, ap-
kpure, appsapk, aptoide, eoemarket, fdroid, freewarelovers, hiapk,
mobileapkworld, mumayi, nduo, play_mob, shoujibaidu, slideme,
up2down [23]. We used app store crawlers that download the most
popular apps first to access the most popular apps [23].

With more than 2.7 TB source APK files, the batched DB build
took the 24 CPU cores approximately 5 weeks and resulted in a DB
containing data of 508,745 Android native libraries and 2,346,005,582
functions. After computation we stipulated about 200 pregroups in
the database to increase centroid comparison efficiency. Pregroups
represent a form of preclustering according to a functions size and
ensue that centroids are not compared to each other if there is a
significant size difference in the underlying functions.

4.1 Approach Accuracy

We used the detection of similar ARM 32-bit native libraries inside
the evaluation dataset as a criterion for accuracy.

Library Versions. The comparisons of 1,500 unrelated library
pairs served to determine FPRs. Afterwards, the inclusion of native
library versions with differing ARM ABIs enabled additional inves-
tigation of the centroids fingerprints capabilities in identification
of native library variants with different ABIs. The CDD threshold
0.01 showed FPRs of less than 1% for LSD thresholds over 0.4 and
no single false positive for LSD thresholds greater equal 0.7. Note-
worthy is the significantly worse performance for small libraries

ARES 2018, August 27-30, 2018, Hamburg, Germany

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller

Centroid
Computation

2]

|—>

Centroid
Computation

Load Balancer
Centroid

Computation

i

2]

APK -
Centroid

Computation

L.

2]

>] VirusTotal

Report APK &
PHALib
— Native PHALib =] [Malware T
S — Centroid Fingerprint (—3|Centroid
Comparison Report
MongoDB
Native Library 2] [Centroia
Centroid Fingerprint —>{Cluster
Comparison Report

Figure 2: Overview of the evaluation system. To evaluate the accuracy and efficiency of the approach a fingerprint database
of available samples from third-party markets was computed. Section 4 describes the setup and result gained by analyzing
the resulting fingerprints and the respective clusters. Section 5 covers insights into the distribution of potentially harmful

application libraries (PHALib) throughout the dataset.

Seconds

0 10000 20000 30000 40000 50000 60000

Number of library functions

=== Centroid computation =%==Database access

Figure 3: Time comparison of the centroid fingerprint com-
putation and the DB interaction for libraries varying sizes.

containing less than 100 functions. For them the FPRs were 10%
and more.

Database Clustering. The clustering of the native library cen-
troids database enabled an analysis of the fingerprint’s accuracy up
to large scales. For similarity measurements we used the parallel
DBScan variant with a 0.01/0.7 CDD/LSD threshold. We clustered
146,264 native libraries from 40 pregroups chosen at random, result-
ing in 4,201 clusters. At first, discriminative power was determined
by measurement of up to 50 intra-cluster and 50 inter-cluster LSDs
per cluster of the randomly sampled pregroups. This made for a
total of 209,850 inter-cluster and 66,119 intra-cluster LSDs. 98.97%
of them were smaller than 0.4, and only one of 209,850 was greater
or equal 0.9. Further only 13 were greater or equal 0.8 and only 52
greater or equal 0.7. 97.45% of the intra-cluster LSDs were greater
or equal to 0.6, with values between 0.7 and below belonging ex-
clusively to libraries with a low function count.The average intra-
cluster LSDs of 0.89 and inter-cluster LSDs of 0.08 show a clean
separation of related and unrelated libraries.

To confirm the similarity inside clusters a name-based library
comparison of over ten thousand randomly selected cluster samples
was performed. It was observed that in 99.87% cases the sampled

library was identical or a version of the predominant native library
for their respective cluster. Manual analysis for the remaining cases
yielded similar method-level CFGs for the sampled library and
the predominant library. In that regard versions with different
ABIs were also in the same clusters. These results indicate that the
centroid fingerprints detected variants among a huge number of
native libraries with high accuracy.

4.2 Approach Efficiency

Efficiency was a key aspect and performance enhancing runtime
considerations were already presented in Section 3.3. We evaluate
the efficiency of the fingerprint computation and the similarity
analysis separately, each in their respective subsections.

Fingerprint Computation. A runtime cost analysis was performed
several times on 24 Android native libraries of different sizes (104
to approx. 50,000 functions) on a Core i7 CPU and its results are
displayed in Figure 3. The figure also includes the proportion of
database read and write operations. The generation of centroids on
existing CFGs libraries with less than 10,000 functions, which repre-
sented about 89% of all identified native libraries in our dataset, was
in the order of hundreds of milliseconds. For large libraries with ap-
prox. 10,000 to approx. 50,000 functions, runtimes were up to seven
seconds at most. Including IDA’s autoanalysis to derive the CFGs,
runtimes for libraries with under 10,000 functions were around a
half up to six seconds, progressing super-linear with library size.
The throughput of our implementation, including IDA’s auto anal-
ysis, the database interactions and the centroid computation can
be seen in Figure 4

Similarity Measurement. The second efficiency criteria was the
similarity measurement runtime. Edge cases, e.g., method stubs
referencing imports were disregarded during this analysis because
they are encoded as zero vectors due to their single basic block
nature.

Figure 5 shows the runtimes for similarity computation for ver-
sions of the same library and unrelated libraries separately. We
additionally take database read operations for centroid fingerprint

Tackling Androids Native Library Malware with Robust,
Efficient and Accurate Similarity Measures

160
140
120
100

80

Number

60

40

20

Intel i5 Intel i7
S APKs/Hour M Library/Hour OMB/Hour

Figure 4: Throughput for the implementation of the cent-
roid fingerprint computation on Intel i7 and i5 processors.
These values include the centroid computation, database in-
teraction, and IDA’s auto analysis performed for each new
binary.

retrieval into account. Similarity measurement on in-memory cen-
troids of libraries with less than 10,000 functions was conductible
within up to a few hundred milliseconds. On libraries with ten thou-
sands of functions runtimes were several seconds and increased
quadratically, which is in accordance with algorithmic properties.
The library version comparisons were overall more expensive, and
the MongoDB fingerprint readout times showed to be non-marginal
proportions.

4.3 Obfuscation and Compiler Robustness

Obfuscation robustness is an additional ability which software
variant detection metrics may or may not possess. Having high ob-
fuscation robustness means a technique can withstand significant
obfuscation attempts, i.e. code variations, and still detect a similarity
relation between obfuscated and unobfuscated code. Android obfus-
cation techniques range from simple manually applicable changes,
e.g., byte patching or renaming to fully automated and extensive
techniques, such as APK packing or APK bytecode stripping [6].

We investigated the robustness of our improved centroid ap-
proach with selected Android obfuscation techniques that were
often employed in the wild [39]. Specifically these include modifica-
tions to the APK meta data, native library relocation, native library
renaming, variable name obfuscation, binary stripping, payload
placement in native libraries, junk function insertion, literal and
arithmetic encoding and basic block segment reordering. Addition-
ally, we introduced control-flow altering obfuscation techniques,
namely opaque predicates, function in- and outlining and control-
flow flattening into our experiments. To research the effects of
native library obfuscation we used open source libraries from the
AOSP, including renderers, audio- and video processors, and com-
pile them to ARM 32-bit libraries. The control-flow alterations were
performed with Tigress, a C obfuscator by Collberg [9]. For each
technique we obfuscated 53 methods with varying sizes from the
AOSP libraries.

ARES 2018, August 27-30, 2018, Hamburg, Germany

Runtime in seconds

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Number of library functions

=& Unrelated with DB == Unrelated
= Variants with DB~ ==%=Variants

Figure 5: Runtime measurements for the similarity compu-
tation of centroid fingerprints.

Native library obfuscation can prove effective, especially if ad-
vanced control-flow tampering techniques are involved. The intro-
duction of junk functions and the inclusion of malicious payloads
did not obstruct library similarity and CDDs of the available meth-
ods did not vary. String-based obfuscations had little to no effect
at all. The effect of junk code insertions varies, depending on the
number of additionally introduced instructions. They increase the
weight of the CFG node or nodes they are introduced to and there-
fore shift the centroids mass accordingly, the CDDs’ median for
our test cases with varying degrees of junk code was 0.1. Put into
context these values are already quite high, mitigating detection
if CDD thresholds of 0.01 are considered which allow for library
variant scanning with low FPRs. Similar results were observed for
integer arithmetic encoding, resulting in a CDD median of about
0.3 and function outlining with a CDD of 0.5. Opaque predicates
combined with junk code, and control flow flattening performed
by far the worst. Their app changes the CFG quite considerably
resulting in completely differing centroids. Both techniques caused
CDDs of 1.0 for almost every native function, effectively disabling
native library variant detection.

Our results show that APK structure and meta data changes, e.g.,
modified APK meta data, library path and extension changes as
well as binary stripping can be resisted, because they operate on an
abstraction layer that is removed during the centroid computation.
Those results can be applied to differing compiler versions and
optimization levels, too, which typically introduce smaller changes
to the binary code than obfuscation.

5 FINDINGS

To conduct experiments on malware detection of the centroid
approach, we use a database of about 140 GB of malicious An-
droid apps. Samples were gathered from the preexisting datasets
Drebin[3] and Contagio[31], and additionally new samples from the
malware repositories AndroMalShare[5] and VirusShare[38] were
used. The 36,908 malware samples resulted in 75,517 ARM 32-bit
native libraries that were extracted and their centroid fingerprint
introduced to the database.

Malware in the Dataset. We used results from malware analysis
firms such as Symantec and Kaspersky to narrow down a list of

ARES 2018, August 27-30, 2018, Hamburg, Germany

Market Name Malicious NLs Detected NLs
Androidapkfree 2 120
anruan 5 20
apkpure 5 160
playmob 26 1089
mumayi 36 151
baidu 44 368
apkmirror 80 3393
nduo 128 396
up2down 219 4195
apkworld 307 1880

Table 2: Malicious native libraries among ARM 32-bit na-
tive libraries. Non-listed markets were not found to be in-
fected by the selected malware families’ native components.
Each detected malware family result was confirmed using
the VirusTotal APL

promising malware families that abused native libraries to either
introduce exploits or perform malicious actions. This sets the focus
for our dataset similarity comparison to 29 malware families, each
including several native library versions. After a similarity compar-
ison on the fingerprint database clusters for all families were found,
the ten largest belonging to Bios.A, DroidDream, GingerBreak,
Godless, KungFu, OldBoot, Rootnik, TatooHack, VikingHorde, and
Ycchar. The found malware clusters assembled family members
while excluding known malware native libraries other than those
of the considered families.

Comparison to VirusTotal. To compare the detection ratio of our
approach with established malware detection tools, we tested how
many of the malicious native libraries would have been detected by
VirusTotal. We separately uploaded the APK and its native library
flagged as malicious through our clustering to VirusTotal. Since
VirusTotal has a limitation on uploads we randomly sampled ap-
plications from the detected clusters. A result was considered as
malware recognition if at least two scanners identified the sample
as malicious.

The randomly sampled applications contained 2,476 known mal-
ware native library samples of 1,795 apps. The native library sam-
ples were clustered into totally 249 clusters and 100 noise points. If
the submitted file was an APK, 124 of those clusters were detected
by VirusTotal to contain native library samples of newly recog-
nized malware, and 1,957 of 9,877 previously undetected apps of
the library samples in the 249 clusters were thereby recognized as
malicious. Among the detections were families like SimpLocker,
Rootnik and Kungfu, which were confirmed to use malicious native
libraries through reports from malware analysis labs. Table 2 shows
the distribution of all detected malware samples inside clusters
across the sampled markets. Non-listed markets were not found to
be plagued by the selected malware families native components.

On native library file level, the VirusTotal approach recognized
only 9 out of 249 clusters as malicious. This points out that native

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller

libraries pose a significant attack vector since the detection ratio
by commercial tools seems to be low.

6 RELATED WORK

The research landscape of code similarity measures offers a wide
range of approaches, ranging from fragile hash-based value calcula-
tions [19, 42] to graph-based methods, e.g., API call graph [14, 40]
and program dependency graph based [11, 12] methods.

Notable is the emergence of Android-specific approaches which
utilize machine learning to detect functionality similarity through
feature vector detection. PiggyApp [41], which was invented to
detect piggybacked Android apps, is an exemplary tool relying on
feature vectors, which are built from statically extracted seman-
tic app features. Semantic app features are applicable to machine
learning as performed by AndroTracker [25], and include requested
permissions, intent types, kernel API calls and certificate content
like authorship information. AndroSimilar [16] extracts features
with a low a priori occurrence probability deduced from an em-
pirical entropy study in a fuzzy hashing approach. The downside
of machine learning-based techniques is the high susceptibility to
code obfuscation, e.g., reflection or even renaming.

Current endeavors in code similarity detection can be catego-
rized into hash value calculations and graph-based approaches, e.g.,
API call graphs (ACGs), program dependency graphs (PDGs) and
control-flow graphs (CFGs). The centroid-based approach, which
is categorized as the latter since it operates on CFGs, was first ap-
plied to app clone detection based on Dalvik bytecode in 2014 [7].
Examples for the former category on Android, namely hash value
calculations, are presented by Juxtapp [19] and DroidMOSS [42].
While Juxtapp applies feature hashing on a sliding opcode win-
dow, DroidMOSS uses fuzzy hashing. Although being faster than
other most approaches, hash-based approaches have an inherent
weakness to even minor code variations.

DroidSIFT [40] and DroidLegacy [14] construct ACGs in order
to perform static classification of Android malware behavior. Droid-
SIM [35] creates ACGs for code reuse detection. ACG-based mal-
ware tracking can have the drawback that some benign apps use
malware-typical API call sequences, e.g., for dynamic code loading.
The Android bytecode clone detector DNADroid [11] calculates
subgraph isomorphism on PDGs at the cost of high computational
effort. The same authors presented Andarwin [12], which also relies
on PDGs but aims to speed up computations by stripping control
flow dependent edges, splitting PDGs into connected components
and representation of the components with vectors which count
binary operation types.

Regarding Androids’ event-driven OS, which allows for an easy
obfuscation of API call patterns, and the missing adaptation for
native code in PDGs, recently CFG-based gained attention as well.
Chen et al. [7] and Alam et al. 2] both used CFGs properties for An-
droid code clone and variant detection. The former study proposed
to use the CFG-based fingerprint called centroids, which are similar
to mass centers based on control flow characteristics and basic block
size. In 2016, the same authors applied the centroid approach to de-
tect malicious Android bytecode libraries at large scale [8]. Alam et
al. dealt with both bytecode and native code variant detection. Their
approach relies on an CFG annotated with intermediate language

Tackling Androids Native Library Malware with Robust,
Efficient and Accurate Similarity Measures

statements (ACFG), on which subgraph isomorphism analysis is
performed.

When comparing the many methodologies usually the measu-
res efficiency and accuracy are consulted to position them in the
research landscape. Hence, we will put our approach into context
with the other methodologies.

Efficiency. Our implementation took a few hundred milliseconds
for very small libraries of about 100 functions to several minutes
for extremely large libraries of 50,000 functions and more while
roughly displaying linear growth. On the efficiency scale our ap-
proach performed worse that hashing-based approaches, e.g., Jux-
tapp which was shown to extract signatures and perform pairwise
comparisons of 95,000 apps on an EC2 cluster with 200 threads in
less than 4 hours [19]. This is a significantly faster scanning than
measured in this study for the centroids on native libraries, but at
the price of comparably low accuracy and robustness. Runtimes on
the same level as our implementation can be found in ACG-based
and annotated CFG-based approaches, for example, DroidSIFT [40]
with 175.8 seconds per app on average on an Intel Xeon CPU, and
DroidNative [2] with 59.81 s/MB for disassembly, annotated CFG
generation and classification.

Our implementation is faster than the PDG-based tool DNADroid
and beats Andarwin [12] in terms of presimilarity analysis. Andar-
win reported 109 seconds on average per thread to create PDG-
based semantic vectors which is slower that our fingerprint genera-
tion. However, Andarwin applies locality sensitive hashing during
similarity computations and thereby shows better efficiency values
after the fingerprint computation.

Accuracy. The centroid approach was parametrized for a low
FPR. Section 3.3 details that the CDD/LSD chosen had still allowed
the detection of library variants. Including small sized libraries of
under 400 functions the FPR grew to 10.8%. Excluding these libraries,
a centroid difference degree/library similarity threshold pair of
0.01/0.7 showed no single false positive among 1500 unrelated pairs
and detected same versions of a library with 54.6% accuracy. In
this regard, a detection rate of 89% on the investigated library
version set with an FPR of 10.8% was determined for the CDD/LSD
threshold pair 0.01/0.7. Notably also versions with different ABIs
had fingerprint similarity scores which allow discrimination from
unrelated pairs. The randomly sampled clusters of the centroids
DB with an average intra-cluster LSD of 0.89 and inter-cluster LSD
of 0.08 showed that centroids-based native library variant scanning
has overall high discriminative power.

Compared to other approaches our implementation performs in
the range of DroidLegacy [2] with a detection rate of 92.73% with
20.83% FPR for malware variant detection. The authors of Droid-
SIFT presented 93% recall and 5.15% FPR for ACG-based bytecode
signatures, but aside from substantial ACG-inherent shortcomings
those appealing numbers stem from a classifier specifically trained
in malware family detection [40]. The PDG tool Andarwin was
reported to cluster bytecode clones with a 3.72% FPR, and its evalu-
ation includes no FNRs [12]. Chen et al. in contrast observed highly
attractive FPRs for centroids of bytecode, namely no single false
positive [7, 8]. The malware detection experiments via centroids DB
clusters with known malware demonstrated that centroids-based

ARES 2018, August 27-30, 2018, Hamburg, Germany

scanning can be utilized for native library malware detection at
large scale. In contrast to application level VirusTotal only rec-
ognized a few clusters as malicious on native library level, what
again suggests a need for new effective techniques of scanning for
malicious native libraries.

7 DISCUSSION

While the comparison with other similarity measures shows a good
accuracy and high efficiency, the current implementation still has
limitations that motivate future areas of research for the centroid
approach.

7.1 Limitations

One limitation of our study is its exclusion of x86, MIPS and 64-
bit ARM Android native libraries as the IDA Pro plug-in does not
support the respective ABIs yet. The signature database build was
done by crawling for ELF files and carving their sections, being
effective but it does not identify with absolute certainty each native
library. Furthermore, encrypted ELF files that are decrypted at
runtime are not detected by our approach. ELF files using heavy
obfuscation, such as packers or virtualization based obfuscation
require deobfuscation prior to the analysis. While some tools for
deobfuscation exist [24, 32, 34], the impact on the centroid accuracy
after deobfuscation is not clear and needs to be assessed.

The clustering was performed in native library pregroups to
confine the experiments’ runtime to sane levels, thus the clusters
might miss samples at opposite pregroup border regions and core
functionality library variants. With respect to the present study’s
accuracy evaluation false negative rates were derived on the basis
of native library versions, which are not totally representative for
malicious native library variants or native library clones.

7.2 Future Work

The results of this work suggest that machine code variant detec-
tion via centroids is an accurate method. A promising aspect is
the automatic identification of heavily reused standard libraries in
reverse engineering. The IDA Pro disassembler currently applies
so-called FLIRT signatures [20]. Those signatures store the first 32
bytes of each function in prefix trees in signature files and function
names are kept in the tree leafs. Centroids are an interesting alter-
native for such an approach as they have a memory footprint of
only four floating point values per function, and their accurateness
avoids multistage collision handling efforts.

We focussed on malware in the evaluation, but another nearby
application of similarity metrics is plagiarism detection. IP theft
through application clones is still an unsolved problem. Respec-
tive large-scale and potentially cross-market studies might reveal
clones [8], rebranding and copyright infringement. The centroids
technique is also applicable to fields like automatic library version
identification and vulnerability pattern detection.

Looking at the overall fingerprinting approach of our study,
several possible alternative parametrization models are not investi-
gated yet. Regarding the native library similarity degree definition,
for instance the Jaccard-Index would be applicable to a full library
variant scanning which relates the cardinality of the intersection

ARES 2018, August 27-30, 2018, Hamburg, Germany

of two centroid sets to that of their union. Also alternative defini-
tions of centroid difference degrees are possible, including different
normalizations or using the minimum coordinate pair distance.

8 CONCLUSION

We present an improved version of the centroid-based similarity
measure and the first study of native library use among Android
malware in third-party app stores. The improvements operate on
an algorithmic level which we leverage to create an efficient and
accurate analysis system. A dataset of over 508,745 apps from 18
different third-party APK stores serves the purpose of evaluation.
We established accuracy parameter combinations that allow for a
clone and variant detection with low FPR of 10% for all libraries and
an FPR of 1% for libraries bigger than 400 functions, while retaining
a precision of 89% in both cases. A malware centered analysis of our
dataset uncovered infection ratios of up to 17.05% among the third-
party app stores and outperformed VirusTotal, especially if only
the malicious native library was analyzed. Looking at the efficiency
of our approach it performed better than PDG-based and Android
bytecode clone detection.

REFERENCES

[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, Principles,
Techniques. Addison Wesley 7, 8 (1986), 9.

[2] Shahid Alam, Issa Traore, and Ibrahim Sogukpinar. 2015. Annotated control flow
graph for metamorphic malware detection. Comput. 7. 58, 10 (2015), 2608-2621.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hiibner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In NDSS.

[4] Pavel Berkhin. 2006. A survey of clustering data mining techniques. In Grouping
multidimensional data. Springer, 25-71.

[5] Ashish Bhatia. 2015. AndroMalShare.
cessed on 16. March 2018.

[6] Marcel Busch, Mykolai Protsenko, and Tilo Miiller. 2017. A Cloud-Based Com-
pilation and Hardening Platform for Android Apps. In Proceedings of the 12th
International Conference on Availability, Reliability and Security. ACM, 37.

[7] Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability
simultaneously in detecting application clones on android markets. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 175-186.

[8] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. 2016. Following devil’s
footprints: Cross-platform analysis of potentially harmful libraries on android
and ios. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 357-376.

http://sanddroid.xjtu.edu.cn:8080/, ac-

[9] Christian Collberg. 2015. The Tigress C diversifier/obfuscator. Retrieved August
14 (2015), 2015.
[10] Keith D Cooper, Timothy] Harvey, and Ken Kennedy. 2001. A simple, fast

dominance algorithm. Software Practice & Experience 4, 1-10 (2001), 1-8.

[11] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of the clones:
Detecting cloned applications on android markets. In European Symposium on
Research in Computer Security. Springer, 37-54.

[12] Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. Andarwin: Scalable detection

of semantically similar android applications. In European Symposium on Research

in Computer Security. Springer, 182-199.

Andrew Rice Daniel Thomas, Alastair Beresford and Daniel Wagner. 2018. AVO:

Collection of all android vulnerabilities. https://androidvulnerabilities.org/all,

accessed on 16. March 2018.

Luke Deshotels, Vivek Notani, and Arun Lakhotia. 2014. Droidlegacy: Automated

familial classification of android malware. In Proceedings of ACM SIGPLAN on

program protection and reverse engineering workshop 2014. ACM, 3.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

Kdd, Vol. 96. 226-231.

Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur, and Ammar

Bharmal. 2013. AndroSimilar: robust statistical feature signature for Android

malware detection. In Proceedings of the 6th International Conference on Security

of Information and Networks. ACM, 152-159.

[13]

[15]

[16]

10

(17]

(18]

[19]

[21

[22

[23

[24

[26

[27

[28

[29

'w
=

[31

(32

[33

(34]

@
i

[36

(37]

[38

[39

S
=

[41

[42]

Anatoli Kalysch, Oskar Milisterfer, Mykolai Protsenko, and Tilo Miiller

Google LLC. 2018. Getting started with NDK. https://developer.android.com/

ndk/guides/index.html, accessed on 15. March 2018.
Andy Greenberg. 2011. Phone rootkit carrierIQ) may have violated wiretap law

in millions of cases. https://www.forbes.com/sites/andygreenberg/2011/11/30/
phone-rootkit-carrier-iq-may-have-violated- wiretap-law-in-millions- of- cases/,
accessed on 16. March 2018.

Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. 2012. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 62-81.

HexRays Inc. 2018. FLIRT Signatures in depth. https://www.hex-rays.com/
products/ida/tech/flirt/in_depth.shtml, accessed on 30. March 2018.

Xuxian Jiang. 2011. Security alert: New sophisticated android malware droid-
kungfu found in alternative chinese app markets. URL http://www. csc. ncsu.
edu/faculty/jiang/DroidKungFu. html (2011).

Caleb Fenton Jon Sawyer, Tim Strazzere. 2015. Offensive and Defensive An-
droid Reverse Engineering. https://github.com/rednaga/training/tree/master/
DEFCON23, accessed on 15. March 2018.

Anatoli Kalysch. 2017. Third Party APK Store Crawlers. https://github.com/
anatolikalysch/APKCrawler, accessed on 03. April 2018.

Anatoli Kalysch, Johannes Gotzfried, and Tilo Miiller. 2017. VMAttack: De-
obfuscating Virtualization-Based Packed Binaries. In Proceedings of the 12th
International Conference on Availability, Reliability and Security. ACM, 2.

Hyun Jae Kang, Jae-wook Jang, Aziz Mohaisen, and Huy Kang Kim. 2014. An-
drotracker: Creator information based android malware classification system. In
Information Security Applications-15th International Workshop, WISA, Vol. 8909.
Kaspersky Lab. 2018. Mobile malware evolution 2017. https://securelist.com/
mobile-malware-review-2017/84139/, accessed on 10. March 2018.

Thomas Lengauer and Robert Endre Tarjan. 1979. A fast algorithm for finding
dominators in a flowgraph. ACM Transactions on Programming Languages and
Systems (TOPLAS) 1, 1 (1979), 121-141.

Dominik Maier, Tilo Miiller, and Mykola Protsenko. 2014. Divide-and-conquer:
Why android malware cannot be stopped. In Availability, Reliability and Security
(ARES), 2014 Ninth International Conference on. IEEE, 30-39.

McAfee Labs. 2017. Android Banking Trojan MoqHao Spreading via SMS
Phishing in South Korea. https://securingtomorrow.mcafee.com/mcafee-labs/
android-banking-trojan-moghao- spreading-via- sms- phishing-south-korea/, ac-
cessed on 15. March 2018.

Raymond T. Ng and Jiawei Han. 2002. CLARANS: A method for clustering objects
for spatial data mining. IEEE transactions on knowledge and data engineering 14,
5 (2002), 1003-1016.

Mila Parkour. 2015. Contagio Mobile. http://contagiominidump.blogspot.com/,
accessed on 19. March 2018.

Rolf Rolles. 2009. Unpacking Virtualization Obfuscators. In Proceedings of the 3rd
USENIX Conference on Offensive Technologies (WOOT 09). USENIX Association,
Berkeley, CA, USA.

Search Security. 2015. How did a malicious app slip past Google
Play app store security? http://searchsecurity.techtarget.com/answer/
How-did-a-malicious-app- slip- past- Google- Play- app- store- security, accessed
on 15. March 2018.

Tim Strazzere. 2015. android-unpacker.
android-unpacker, accessed on 13. March 2018.
Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie. 2014. Detecting code
reuse in android applications using component-based control flow graph. In IFIP
International Information Security Conference. Springer, 142-155.

Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM journal
on computing 1, 2 (1972), 146-160.

Trend Micro. 2014. Malware in Apps’ Clothing: A Look at Repackaged
Apps. https://www.trendmicro.com/vinfo/us/security/news/mobile-safety/
malware-in-apps-clothing-a-look-at-repackaged-apps, accessed on 15. March
2018.

VirusShare.com. 2018. VirusShare Malware Repository. https://virusshare.com,
accessed on 01. April 2018.

Ilsun You and Kangbin Yim. 2010. Malware obfuscation techniques: A brief survey.
In Broadband, Wireless Computing, Communication and Applications (BWCCA),
2010 International Conference on. IEEE, 297-300.

Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android
malware classification using weighted contextual api dependency graphs. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1105-1116.

Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013. Fast,
scalable detection of piggybacked mobile applications. In Proceedings of the third
ACM conference on Data and application security and privacy. ACM, 185-196.
Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. Detecting repackaged
smartphone applications in third-party android marketplaces. In Proceedings of
the second ACM conference on Data and Application Security and Privacy. ACM,
317-326.

https://github.com/strazzere/

http://sanddroid.xjtu.edu.cn:8080/
https://androidvulnerabilities.org/all
https://developer.android.com/ndk/guides/index.html
https://developer.android.com/ndk/guides/index.html
https://www.forbes.com/sites/andygreenberg/2011/11/30/phone-rootkit-carrier-iq-may-have-violated-wiretap-law-in-millions-of-cases/
https://www.forbes.com/sites/andygreenberg/2011/11/30/phone-rootkit-carrier-iq-may-have-violated-wiretap-law-in-millions-of-cases/
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml
https://github.com/rednaga/training/tree/master/DEFCON23
https://github.com/rednaga/training/tree/master/DEFCON23
https://github.com/anatolikalysch/APKCrawler
https://github.com/anatolikalysch/APKCrawler
https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
https://securingtomorrow.mcafee.com/mcafee-labs/android-banking-trojan-moqhao-spreading-via-sms-phishing-south-korea/
https://securingtomorrow.mcafee.com/mcafee-labs/android-banking-trojan-moqhao-spreading-via-sms-phishing-south-korea/
http://contagiominidump.blogspot.com/
http://searchsecurity.techtarget.com/answer/How-did-a-malicious-app-slip-past-Google-Play-app-store-security
http://searchsecurity.techtarget.com/answer/How-did-a-malicious-app-slip-past-Google-Play-app-store-security
https://github.com/strazzere/android-unpacker
https://github.com/strazzere/android-unpacker
https://www.trendmicro.com/vinfo/us/security/news/mobile-safety/malware-in-apps-clothing-a-look-at-repackaged-apps
https://www.trendmicro.com/vinfo/us/security/news/mobile-safety/malware-in-apps-clothing-a-look-at-repackaged-apps
https://virusshare.com

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Domination Relationship
	2.2 Clustering Algorithms
	2.3 Native Libraries on Android

	3 Design and Implementation
	3.1 Centroid Approach
	3.2 Algorithmic Improvements
	3.3 Implementation and Efficiency Considerations

	4 Evaluation
	4.1 Approach Accuracy
	4.2 Approach Efficiency
	4.3 Obfuscation and Compiler Robustness

	5 Findings
	6 Related Work
	7 Discussion
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	References

